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PHAGOCYTES, GRANULOCYTES, AND MYELOPOIESIS
Tracing the evolutionary history of blood cells to the
unicellular ancestor of animals
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KEY PO INT S

• The initial blood cells
emerged in the
common ancestor of
animals inheriting a
phagocytic program
from unicellular
organisms.

• In murine
hematopoiesis, CEBPα
is commonly repressed
by polycomb
complexes to maintain
nonphagocytic
lineages.
d

Blood cells are thought to have emerged as phagocytes in the common ancestor of animals
followed by the appearance of novel blood cell lineages such as thrombocytes, erythrocytes,
and lymphocytes, during evolution. However, this speculation is not based on genetic
evidence and it is still possible to argue that phagocytes in different species have different
origins. It also remains to be clarified how the initial blood cells evolved; whether ancient
animals have solely developed de novo programs for phagocytes or they have inherited a
key program from ancestral unicellular organisms. Here, we traced the evolutionary history
of blood cells, and cross-species comparison of gene expression profiles revealed that
phagocytes in various animal species and Capsaspora (C.) owczarzaki, a unicellular organism,
are transcriptionally similar to each other. We also found that both phagocytes and
C. owczarzaki share a common phagocytic program, and that CEBPα is the sole transcription
factor highly expressed in both phagocytes and C. owczarzaki. We further showed that the
function of CEBPα to drive phagocyte program in nonphagocytic blood cells has been
conserved in tunicate, sponge, and C. owczarzaki. We finally showed that, in murine hema-
_bld-2022-016
topoiesis, repression of CEBPα to maintain nonphagocytic lineages is commonly achieved by polycomb complexes. These
findings indicate that the initial blood cells emerged inheriting a unicellular organism program driven by CEBPα and that
the program has also been seamlessly inherited in phagocytes of various animal species throughout evolution.
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Introduction
Among various lineage blood cells, such as erythrocytes and
lymphocytes, phagocytes including macrophages and neutro-
phils have been thought to represent the most evolutionarily
ancient blood cells because phagocytes can be found in any
animal including organisms that are morphologically very sim-
ple multicellular like the sponge,1 whereas more lineage types
can be seen in more complex animals.2-5 It has thus been
speculated that the evolutionary initial blood cells emerged as
phagocytes in the common ancestor of animals, and that
various nonphagocyte lineages have evolved from the primor-
dial phagocytes during evolution. Concerning this issue, we
have demonstrated that the potential to produce phagocytes is
retained in the early progenitors primed for erythroid, T- and
B-cell lineages in murine hematopoiesis.6-10 Based on such
findings, we have proposed that the retention of phagocyte
potential in these lineage progenitors is a vestige of the phy-
logenic process, where each of these lineages has evolved from
ancestral phagocytes.2,11 The vestige has also been found in
other vertebrates: thrombocytes, erythrocytes, and B cells in
shark, bony fish, and frog have phagocytic potential.12-14

One thing to note here is that such speculation can be made
provided that all phagocytes have the same origin during
phylogeny. However, genetic evidence supporting this model
has been insufficient, and we can still argue a possibility of
convergent evolution: phagocytes in different animal species
have different origins. Furthermore, it remains to be clarified
how the initial blood cells evolved. We can argue 2 possible
cases: the first is that ancient animals have solely developed de
novo programs for phagocytes, and the second is that they
inherited a key program from ancestral unicellular organisms.

To address this issue, we decided to clarify whether a common
program has been shared in phagocytes of various animal
species and whether the program is also shared with a unicel-
lular organism. To this end, we compared gene expression
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profiles in phagocytes and nonphagocytes of various animal
species, and unicellular organisms.

Methods
Mice
Ert2Cre-Cdkn2a−/−Ring1a−/−Ring1bfl/fl, Ert2Cre-CAGflox-stop-GFP-
Cdkn2a−/−Ring1a−/−Ring1bfl/fl and LckCre-Cdkn2a−/−Ring1a−/−

Ring1bfl/fl mice were generated and maintained in our animal
facility. All mice were maintained in specific pathogen-free con-
ditions in our animal facility. All experiments were performed in
accordance with the guidelines of the Kyoto University animal
experiment committee and approved by our institutional
committee.

Tunicate
Ciona intestinalis (type A; also called Ciona robusta) adults were
obtained from the National BioResource Project for Ciona.

Capsaspora
Capsaspora owczarzaki was maintained at 23◦C in the ATCC
1034 medium as previously reported.15

Data and code availability
Public data of mouse in EMBL-EBI (supplemental Table 1,
available on the Blood website) and data of mouse, tunicate,
sponge, C. owczarzaki, Salpingoeca rosetta, and Creolimax
fragrantissima in previous reports were analyzed15-23. RNA
sequencing (RNA-seq) data of tunicate phagocytes and Ring1a/
b knockout (KO) myeloid cells are available at DNA Data Bank
of Japan database (DRA013007 and DRA014437).

Cross-species transcriptomic comparison
We identified homologs in Mus musculus, C. intestinalis,
Amphimedon queenslandica, and C. owczarzaki using the
OrthoFinder (supplemental Table 2).24 Homolog groups
commonly conserved across the 4 species were selected and
used for cross-species comparison (supplemental Table 3).
Cross-species analysis of 6 species adding S. rosetta and
C. fragrantissima was also performed (supplemental Tables 4-5).

Transcription factors (TFs) and phagocytosis-
related genes
For selecting TFs and phagocytosis/lysosome-related genes,
we used the AmiGO2 database (http://amigo.geneontology.
org/amigo) (supplemental Table 6).

Isolation of mouse progenitors
Single-cell suspensions of the thymus or bone marrow (BM)
were prepared and progenitors were isolated by fluorescence-
activated cell sorting. Gating strategies are shown in supple-
mental Figure 1.

CEBPα and Ring1B encoding vectors
Codon-optimized DNA sequences of CEBPα and Ring1B were
synthesized using GeneArt (Thermo Fisher Scientific) (supple-
mental Table 7).

Retrovirus production and transduction
CEBPα- and Ring1B-encoding vectors were transfected into the
Plat-E cells (CosmoBio) and supernatants were harvested. For
transduction, purified progenitors were resuspended with the
2612 15 DECEMBER 2022 | VOLUME 140, NUMBER 24
supernatant, and were centrifuged for 90 minutes at 1000×g
at 32◦C.

Phagocytosis assay
pHrodo-green zymosan or Staphylococcus aureus beads
(Invitrogen) were added to each culture. One hour later, the
medium was replaced with phosphate-buffered saline and
phagocytosis was observed using a fluorescence microscope.

RNA extraction and real-time quantitative
polymerase chain reaction
Total RNA was isolated using an RNeasy kit (Qiagen).
Complementary DNA synthesis was performed using a Super-
Script IV VILO Master Mix complementary DNA synthesis
kit (Invitrogen). Real-time polymerase chain reaction was per-
formed using PowerUp SYBR Green Master Mix (Applied Bio-
systems) and analyzed by StepOnePlus (Applied Biosystems).

RNA-seq of tunicate phagocytes and Ring1a/b KO
myeloid cells
Libraries were prepared using SMART-Seq v4 Ultra Low Input
RNA Kit for Sequencing (Takara) and Nextera XT DNA Library
Prep kit (Illumina) and sequenced on a NovaSeq 6000 (Illumina).

In vitro deletion of Ring1b
The isolated progenitors were cocultured with TSt425 or
TSt4-DLL126 cells for 4 to 12 days, and Ring1b was deleted by
4-hydroxytamoxifen (4-OHT).

BM chimera mice
Hemolyzed whole BM cells (2 × 106 cells) were IV injected into
sublethally irradiated (4 Gy) Rag2−/− mice. For long term
observation, 1 × 106 BM cells were transplanted with 1 × 106

competitor cells.

Statistical analysis
Survival rates were estimated using Kaplan-Meier methods and
compared using log-rank tests. Continuous and categorical
variables were compared using 2-tailed t tests and Fisher exact
test, respectively.

Further experimental details are provided in supplemental
methods.

Results
Phagocytes of mouse, tunicate, and sponge are
transcriptionally similar to a unicellular organism
We compared gene expression profiles of various lineage or
stage cells among 4 species: mouse (M. musculus), tunicate
(C. intestinalis), sponge (A. queenslandica), and C. owczarzaki, a
unicellular organism (hereafter Capsaspora) (Figure 1A). Among
invertebrates, we selected tunicate and sponge because tuni-
cate belongs to chordates and is close to vertebrates, whereas
sponge is the animal oldest and farthest from vertebrates.27,28

Among unicellular organisms, Capsaspora was selected
because it is phylogenetically close to animals, forming a clade
termed Holozoa together with Metazoa (Figure 1A).29-31 We
first searched homologs conserved among the 4 species and
3237 homolog groups were identified; 5911 genes in mouse,
4031 genes in tunicate, 5443 genes in sponge, and 4096 genes
NAGAHATA et al
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in Capsaspora were assigned to the 3237 homolog groups. Then,
gene expression profiles were compared based on the homolog
groups (supplemental Figure 2A). As expected, mouse, tunicate,
sponge, and Capsaspora were very different form each other
(supplemental Figure 2B). Among blood cells, macrophages were
more similar to Capsaspora than nonphagocytic cells were
(Figure 1C-D). Macrophages were also more similar to Capsaspora
than neutrophils, in line with the fact that neutrophils with multi-
lobulated nuclei are unique to vertebrates.32 In order to exclude
batch effect between mouse data sets, comparison using a single
data set of mouse cells with the cap analysis gene expression
(CAGE) method was also performed (Figure 1C). In both the
analysis with RNA-seq and CAGE data sets, macrophages, hepa-
tocytes, fibroblasts, and adipocytes among mouse cells showed
high similarity to Capsasapora (Figure 1B-C). Because hepato-
cytes, fibroblasts and adipocytes are known to have phagocytic
potential,33-35 macrophages and these 3 lineage cells can be
categorized as phagocytes. In principle component (PC) analysis,
phagocytes of mouse and tunicate, sponge archaeocytes, which
are known to have phagocytic potential,1 and Capsaspora showed
similarity to each other (Figure 1D).

Next, we examined how frequently Capsaspora and various
mouse cell lineages share highly expressed genes; number of
genes expressed higher than ESCs were examined. Capsaspora
and macrophages highly expressed 325 and 545 genes, respec-
tively, and they shared 101 genes (Figure 1E). Macrophages
shared more genes with Capsaspora than other blood cell line-
ages (Figure 1F and supplemental Figures 3-4). Hepatocytes also
shared many genes with Capsaspora and shared more with
macrophages among nonblood cells (supplemental Figures 3-4).
Kyoto Encyclopedia of Genes and Genomes pathway analysis
showed that lysosome-related genes were among genes shared
by Capsaspora, macrophages, and hepatocytes (supplemental
Figure 5). Gene ontology analysis using AmiGO2 database
showed that 325 genes highly expressed in Capsaspora were
more frequently phagocytosis/lysosome-related genes compared
with the 2252 low expressed genes (Figure 1G). These data sug-
gested that phagocytosis- and lysosome-related genes shape the
similarity between Capsaspora and mouse phagocytes. In fact,
Capsaspora cells showed mouse macrophage–like cytology with
several vacuoles in the cytoplasm (Figure 1H) and robust phago-
cytic activity (Figure 1I-J). These data suggested that the tran-
scriptional profile of phagocytes has been conserved from
common ancestors of Capsaspora and animals.

Phagocytes and a unicellular organism share a
CEBPα-driven phagocytic program
Next, we compared gene expression profiles of Capsaspora and
mouse macrophages with mouse ESCs and the nonphagocytic
Figure 1. Phagocytes of mouse, tunicate, and sponge are transcriptionally similar t
noflagellate, Capsaspora, Ichthyosporea, and fungi. (B-C) Heat map with Pearson correla
compared among 3 stages of Capsaspora and 30 mouse lineages (B) or 15 lineages (C) ba
CAGE method (C) were analyzed. (D) PC analyses of various lineages or stages of 4 spec
homologs were normalized and compared. (E) Venn diagrams with the number of highly
with mouse ESCs. (F) Frequency of genes shared by various mouse cell lineages among 3
differences between macrophage and the other lineages are also shown. (G) Frequency
filopodial stage and 2252 genes low expressed in Capsaspora filopodial stage comp
expressed higher in mouse macrophages than mouse ESCs are shown. Frequency of gen
blood cells are shown in red and black, respectively. (H) Cytology of mouse phagocyte (le
activity of Capsaspora was evaluated by engulfment of pHrodo-green beads (I), and frequ
of 2 independent experiments. *P < .05, **P < .01, ****P < .0001. ESCs, embryonic stem
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blood cells, Lin−Sca1+ckit+ cells, T cells, B cells, megakaryocytes,
and erythroid cells. Eleven genes were highly expressed in both
mouse macrophages and Capsaspora (Figure 2A and supple-
mental Figure 6A), and these 11 genes were lysosome related,
suggesting that these genes contribute to phagocytosis in phag-
osome/lysosome pathway (Figure 2B and supplemental
Figure 6B). Nine of the 11 genes were also highly expressed in
hepatocytes (supplemental Figure 6A). Next, we attempted to
reveal which TFs commonly play a key role in both Capsaspora
and mouse phagocytes. We found that 62 TFs were conserved
among the 4 species, and then we compared their expression
levels. As with the comparison based on the 3237 conserved
genes (Figure 1B-C), the comparison based on the 62 conserved
TFs showed that mouse phagocytes were closer to Capsaspora
than mouse nonphagocytes were (Figure 2C and supplemental
Figure 7A-B). CEBPα was the sole TF highly expressed in both
Capsaspora and mouse macrophages compared with mouse
ESCs and nonphagocytic blood cells (Figure 2D-F and supple-
mental Figure 8A). Several regions of the CEBPα homologs,
especially DNA binding bZIP domain, were conserved among the
4 species (supplemental Figure 9). Other TFs were also conserved
among the 4 species (supplemental Figure 8B), and CEBPγ,
another CEBP homolog, was also examined because we were not
able to distinguish which was a functional CEBPα homolog in the
phylogenetic tree (supplemental Figure 10). However, we found
that expression levels of CEBPγ were not highly expressed in
Capsaspora (supplemental Figure 8C). Expression levels of
GATA1-6 homologs in Capsaspora, macrophages, and hepato-
cytes were lower than in megakaryocytes and erythroid cells
(supplemental Figure 8D), and those of EBF1-4 were lower than
B cells (supplemental Figure 8E). Relatively high expression levels
of GATA and EBF families in Capsaspora and some mouse non-
hematopoietic cells suggested that these TFs determine programs
conserved among Capsaspora and mouse nonhematopoietic lin-
eages.36-38 Although PU.1 and IRF are important in murine
myeloid cells,39,40 their homologs were not detected in Cap-
saspora (supplemental Figure 8B). When gene expression levels
were compared between the 3 stages of Capsaspora, CEBPα was
expressed more in filopodial or cystic stages than in the aggre-
gative stage (Figure 2F). Among the 11 genes highly expressed in
mouse macrophages and Capsaspora, PLA2G15 was also
expressed more in filopodial and cystic stages (Figure 2F and
supplemental Figure 6A). PLA2G15 is a lysosomal protein and
plays a role in host defense and efferocytosis by human phago-
cytes.41,42 These data suggested that a CEBPα-driven phagocytic
program including PLA2G15 expression has been conserved
between a unicellular organism and vertebrates.

We also performed cross-species analysis adding a choano-
flagellate (S. rosetta) and Ichthyosporea (C. fragrantissima). In
o a unicellular organism. (A) Phylogenetic tree of mouse, tunicate, sponge, choa-
tion of various mouse cell lineages and Capsaspora. Gene expression profiles were
sed on 3237 conserved homologs. Transcriptome data examined by RNA-seq (B) or
ies: Capsaspora, sponge, tunicate, and mouse. Expression levels of 3237 conserved
expressed genes in Capsaspora filopodial stage or mouse macrophages compared
25 highly expressed genes in Capsaspora filopodial stage. Statistical significance of
of phagocytosis-related genes among 325 genes highly expressed in Capsaspora

ared with mouse ESCs. Frequency of phagocytosis- and lysosome-related genes
es highly expressed in macrophages compared to mouse ESCs and nonphagocytic
ft) and Capsaspora (right) was examined by Wright-Giemsa staining. (I-J) Phagocytic
ency of phagocytic cells was evaluated by flow cytometry (J). Data are representative
cells; PtC, peritoneal cavity.

NAGAHATA et al
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Figure 2. Phagocytes and a unicellular organism share a CEBPα-driven phagocytic program. (A,D) Venn diagrams with the number of highly expressed genes (A) and TFs
(D) in Capsaspora or mouse macrophages compared with mouse ESCs and nonphagocytic blood cells. (B) Top 8 KEGG pathways involved in the 11 genes highly expressed in
Capsaspora and mouse macrophages compared with mouse ESCs and nonphagocytic blood cells. (C) PC analyses of various lineages or stages of 4 species: Capsaspora,
sponge, tunicate, and mouse. Expression levels of 62 conserved TFs were compared. (E) Heatmap of scaled expression levels (z score) of TFs in Capsaspora, mouse mac-
rophages, mouse ESCs, and mouse nonphagocytic blood cells. Four TFs expressed higher in Capsaspora or mouse macrophages than in mouse ESCs and nonphagocytic
blood cells were selected. Expression levels were scaled among the 8 cell groups. (F) Expression levels of CEBPα homologs and PLA2G15 homologs in Capsaspora, and
various mouse cell lineages. Data are mean ± standard error of the mean. Statistical significance of differences between 3 stages of Capsaspora are shown, *P < .05, **P < .01.
KEGG, Kyoto Encyclopedia of Genes and Genomes.
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this analysis, phagocytes of various species also showed simi-
larity to each other and to unicellular organisms (supplemental
Figure 11A-C). In mouse cell lineages, macrophages and adi-
pocytes showed high similarity to unicellular organisms (sup-
plemental Figure 11B-C). Hgd was highly expressed in mouse
macrophages, Capsaspora, and C. fragrantissima (supplemental
Figure 11D). However, because both S. rosetta and
C. fragrantissima lack CEBPα, no TFs highly expressed in all of
mouse macrophages, Capsaspora, and C. fragrantissima were
detected. Some important genes other than CEBPα may
determine the similarity of these cells.

Tunicate and sponge phagocytes highly express
CEBPα homologs
Next, we examined whether expression levels of CEBPα were
different between phagocytes and nonphagocytic blood cells in
sponge and tunicate. In sponges, we focused on archaeocytes,
which behave like blood cells in that they circulate around the
body cavity and have phagocytic potential.1 Analysis of
archaeocytes showed that CEBPα expression levels were posi-
tively correlated with those of phagocytosis-related genes and
PLA2G15, but CEBPγ levels were not (Figure 3A).

We also examined tunicate blood cells and their expression of
CEBP homologs and phagocytosis-related genes. CEBPα and
phagocytosis-related genes were highly expressed in the blood
cells, especially in phagocytes, but CEBPγ was not (Figure 3B).
In order to investigate whether CEBPα is differently expressed
among various blood lineage cells in tunicate, we collected
blood cells from tunicates (Figure 3C). The blood cells were
then sorted into 4 fractions based on characteristics of (1) small
size (hemoblasts), (2) autofluorescence (morula cells), (3) fluo-
rescence of engulfed beads (phagocytes), and (4) negative for
these features (other blood cells) (Figure 3D). We found that the
expression levels of CEBPα and PLA2G15 were remarkably
higher in phagocytes compared to other lineages of blood
cells, whereas the expression level of CEBPγ was not or only
slightly (Figure 3E). These data may indicate that, in both
sponge and tunicate, CEBPα commonly exert a phagocyte
program.

Function of CEBPα to drive the phagocyte
program has been conserved from a unicellular
organism
Next, we asked whether CEBPα of the tunicate, sponge, and
Capsaspora has a function similar to mouse CEBPα, the
enforced expression of which has been shown to convert T and
B cells into phagocytes.43-46 First, mouse pro-B cells were
transduced with CEBPα of mouse, tunicates, sponge, or Cap-
saspora (Figure 4A). CEBPα of tunicate and sponge, as well as
mouse CEBPα, converted these B progenitors into cells that
express CD11b, whereas the CEBPα of Capsaspora, and CEBPγ
of sponge and Capsaspora, did not (Figure 4B and supple-
mental Figure 12A). The majority of the CD11b+ cells induced
by either tunicate or sponge CEBPα looked like macrophages
and showed efficient phagocytic activity (Figure 4C-D). D-J–
rearranged IgH genes were present in the generated CD11b+

cells (supplemental Figure 12B), indicating that they were
derived from pro-B cells. In order to clarify whether CEBPα of
Capsaspora has the potential to drive the phagocyte program,
we further examined other lineage progenitors. MkPs, ErPs, and
2616 15 DECEMBER 2022 | VOLUME 140, NUMBER 24
DN3 T-cell progenitors were examined. CEBPα of Cap-
saspora as well as that of mouse, tunicate, and sponge
converted MkPs into CD11b+ phagocytes, whereas CEBPγ of
Capsaspora did not (Figure 4E-G and supplemental
Figure 12C), indicating that Capsaspora CEBPα has the
potential to drive the phagocytic program. We also found
that CEBPα of mouse, tunicate, sponge, and Capsaspora
converted ErPs into CD11b+ cells (Figure 4H and supple-
mental Figure 12D). DN3 T-cell progenitors were converted
into CD11b+ cells by mouse and sponge CEBPα but not
by the tunicate and Capsaspora homologs (Figure 4I and
supplemental Figure 12E).

We then examined how functionally similar the CEBPα homo-
logs were. CEBPα is known to play roles in the differentiation of
mouse neutrophils, and indeed, mouse CEBPα converted pro-
B cells into neutrophil-like cells with ring-shaped or multi-
lobulated nuclei, whereas CEBPα of tunicate and sponge
hardly did so (Figure 4J-K). The expression levels of various
genes were also compared between pro-B cells transduced
with the mouse or sponge CEBPα, which converted pro-B cells
into phagocytes to a similar extent (Figure 4B). To examine the
direct consequence of Cebpa gene expression, we collected
the cells on day 2, when they had not yet begun to express
CD11b (supplemental Figure 12F-G). Sponge CEBPα upregu-
lated phagocyte-associated genes to the same extent as
mouse CEBPα, but mouse CEBPα was superior to sponge
CEBPα in inducing expression of neutrophil-associated genes
and in repressing B cell–associated genes (Figure 4L and
supplemental Figure 12H).
Polycomb-mediated suppression of CEBPα is
required for maintenance of various hematopoietic
lineages in mouse
In mouse blood cells, CEBPα functions as master regulators of
phagocytes, or myeloid cells in other words, having the
potential to convert nonphagocytic lineage progenitors into
myeloid cells,43-50 implying that CEBPα must be strictly
repressed for maintenance of nonphagocytic lineages. We
attempted to reveal how CEBPα is repressed in nonphagocytic
lineage cells, and hypothesized that the polycomb complex,
one of major epigenetic repressors,51 plays a role in suppres-
sion of the phagocyte program. We focused on Ring1A and B,
which are catalytic components of polycomb complexes.52

Expression levels of Ring1B were higher in nonphagocytic lin-
eages than in myeloid cells reciprocally to those of CEBPα
(supplemental Figure 13A-B). By analyzing published data, the
Cebpa locus encoding CEBPα was found to be heavily marked
with H3K27me3 in DN3 cells, pro-B cells, ErPs, and MkPs, but
not in myeloid cells (supplemental Figure 13C). In contrast, Spi1
locus encoding PU.1 was found not to be marked with
H3K27me3 (supplemental Figure 13D). We also observed
Ring1B binding at the Cebpa locus (supplemental Figure 13E).
In order to confirm that CEBPα is suppressed by polycomb,
we deleted Ring1b by using 4-OHT in progenitors of
each lineage from Ert2Cre -Cdkn2a−/−Ring1a−/−Ring1bfl/fl mice
(supplemental Figure 13F). In this experiment, we used
Cdkn2a−/− background mice because Ring1a/b KO may cause
derepression of Cdkn2a, leading to apoptosis of Ring1a/b-
deleted cells.53 Upon deletion of Ring1b, expression levels of
CEBPα were remarkably elevated within a few days in all
NAGAHATA et al
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lineages (supplemental Figure 13G). These data indicate that
polycomb complexes commonly suppress CEBPα in various
nonphagocytic lineages.

Next, we examined whether polycomb-mediated CEBPα sup-
pression is physiologically important. We made BM chimera
miceby transplantation ofBMcells fromErt2Cre-CAGflox-stop-GFP-
Cdkn2a−/−Ring1a−/−Ring1bfl/fl mice into sublethally irradiated
Rag2−/− mice. Six weeks after transplantation, Ring1b was
deleted by administration of tamoxifen, and mice were analyzed
2 weeks later (Figure 5A). The number of thymocytes, double-
positive cells, DN cells, and DN3 cells in the green fluorescent
protein–positive (GFP+) fraction was decreased, whereas that of
THE EVOLUTIONARY ORIGIN OF BLOOD CELLS
DN1 cells was increased in the Ring1a/b KO BM chimera mice
(Figure 5B,E and supplemental Figure 14A-B,E). We also found a
decrease in the number of pro-B cells and an increase of the
number of B-1 progenitors, defined as CD19+B220− cells
(Figure 5C,F and supplemental Figure 14F). Lin−Sca1+ckit+ cells
including hematopoietic stem cells were decreased, whereas
Lin−Sca1−ckit+ cells were increased (supplemental
Figure 14C,G). The proportion of ErPs and MkPs was decreased,
whereas common myeloid progenitors were increased, and
megakaryocyte-erythroid progenitors were intact (Figure 5D,G
and supplemental Figure 14D,H). Because hematopoiesis of the
BM chimera mice was severely impaired, they died within a few
months (Figure 5H).
15 DECEMBER 2022 | VOLUME 140, NUMBER 24 2617
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To evaluate the long-term effect of Ring1a/b KO in blood cells,
we performed transplantation of Ring1a/b KO BM cells with
competitor BM cells, which should contribute normal hemato-
poiesis (Figure 5I). Eight weeks after deletion of Ring1b, almost
all GFP+ Ring1a/b KO cells became CD11b+ myeloid cells
(Figure 5J-K). Furthermore, the BM of Ring1a/b KO mice was
occupied with myeloid cells and exhibited an anemic appear-
ance, and the mice died within 3 months (Figure 5L and sup-
plemental Figure 15A-D). These GFP+ Ring1a/b KO myeloid
cells expressed CD34 and looked like immature blasts (sup-
plemental Figure 15E-F). Various lineage progenitors of
2618 15 DECEMBER 2022 | VOLUME 140, NUMBER 24
thymocytes and BM cells, including competitor cells, were
decreased, indicating that Ring1a/b KO myeloid cells were
transformed into leukemic blasts and disturbed normal hema-
topoiesis (supplemental Figure 15G-L). We then examined
whether sole Ring1a/b KO without Cdkn2a KO causes leuke-
mia. We found that mice with Cdkn2a+/−Ring1a−/−Ring1bΔ/Δ

cells did not develop leukemia, and GFP+ cells disappeared
(Figure 5J and supplemental Figure 15D). This result suggested
that the KO of Ring1a/b, leaving Cdkn2a+/− still present, led to
an overexpression of Cdkn2a, resulting in apoptosis of KO cells
as previously reported in the T cell–specific KO case.53
NAGAHATA et al
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Various lineage progenitors were reverted
into the primordial lineage of phagocytes by
Ring1a/b KO
In BM chimera mice, we showed that the number of various
lineage progenitors was decreased, whereas that of myeloid
cells was increased (Figure 5). Next, we tested whether cell
fate conversion from each of the lineage progenitors into
myeloid cells had occurred. First, we found that the myeloid
cells from the Ring1a/b KO mice carried rearranged IgH
genes but those of control mice showed no rearrangements
(supplemental Figure 16A). Among 8 Ring1a/b KO BM
chimera mice examined, 5 carried IgH-rearranged myeloid
cells. These data indicate that B cells were converted into
myeloid cells in vivo. In order to examine whether various
lineage progenitors are converted into myeloid cells by
Ring1a/b KO, DN3 cells, pro-B cells, ErPs, and MkPs of
Ert2Cre-Cdkn2a−/−Ring1a−/−Ring1bfl/fl mice were cultured
THE EVOLUTIONARY ORIGIN OF BLOOD CELLS
with or without 4-OHT (Figure 6A). Because these progenitors
had already been determined to their respective lineages,
control cells maintained their lineage identity (Figure 6B). In
contrast, by deletion of Ring1b, these progenitors gave rise to
CD11b+ macrophage-like cells (Figure 6B-C). DN3- and pro-
B–derived myeloid cells harbored V-DJ–rearranged TCR
genes and IgH genes, respectively, confirming that they had
originated from T and B lineage progenitors (supplemental
Figure 16B-C). We also observed lineage conversion from
pro–B cells into myeloid cells via B-1 stage in vitro (supple-
mental Figure 16D-E), which was consistent with the increase
in number of B-1 cells in BM chimera mice (Figure 5C and
supplemental Figure 14F). We previously reported that
Ring1a/b KO by LckCre converted T cells into B cells.53 We
again analyzed LckCre-Cdkn2a−/−Ring1a−/−Ring1bfl/fl mice
and found that Ring1a/b KO DN3 cells expressed CD19 but
some of them were B-1 phenotype lacking B220 expression
15 DECEMBER 2022 | VOLUME 140, NUMBER 24 2619
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(supplemental Figure 16F). In addition, DN3 cells of LckCre
mice were converted into myeloid cells via B lineage cells
carrying rearranged IgH and Tcrb genes (supplemental
Figure 16G-J). Although Ring1b deletion converted non-
phagocytic lineage cells into phagocytes, Ring1B
2620 15 DECEMBER 2022 | VOLUME 140, NUMBER 24
overexpression did not convert phagocytes into non-
phagocytic lineage cells (supplemental Figure 17A-E), indi-
cating that polycomb complexes play a role in the
maintenance of nonphagocytic lineages but not in induction
of nonphagocytic lineages.
NAGAHATA et al
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Lastly, we found that expression levels of Ring1A/B homologs
were low in Capsaspora (Figure 6D), and Ring1a/b KO myeloid
cells were more similar with Capsaspora than normal myeloid
cells (Figure 6E). These data suggested that Ring1a/b KO
reverted mouse cells toward a primordial status close to Cap-
saspora, and that Ring1A/B has played a role in acquiring new
lineages in evolution.
Discussion
Animals evolved from unicellular organisms,29,30,54-57 and
Capsaspora, which is known to exhibit typical filopodial fea-
tures, is phylogenetically close to animals.15,20,58-61 The present
THE EVOLUTIONARY ORIGIN OF BLOOD CELLS
study enabled us to envisage that the phenotype of Capsaspora
represents the origin of phagocytes in animals. We showed that
Capsaspora has phagocytic potential and exhibit gene
expression profiles similar to phagocytes of animals character-
ized by high CEBPα expression. Furthermore, we showed that
CEBPα homologs converted murine nonphagocyte progenitors
into phagocytes.

Here, we propose the following scenario in the evolutionary
history of blood cells: when a unicellular ancestor came to form
a multicellular organism, a body cavity structure surrounded by
epithelium would have formed. In such a situation it would have
been advantageous if the organism had an ancestral type of cell
15 DECEMBER 2022 | VOLUME 140, NUMBER 24 2621
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in the cavity that was able to patrol the cavity to eliminate
pathogens and dead cells by phagocytosis. Thus, the multi-
cellular organism should have survived after succeeding in
holding such cells by inheriting the ancestral program for
phagocytic characteristics driven by CEBPα, bringing about the
birth of the initial blood cells (Figure 7).

Thereafter, megakaryocyte, erythroid, T-cell, and B-cell line-
ages were generated during the evolution of animals. An early
study reported that the sea urchin has blood cells with clotting
function,62 so it is probable that the megakaryocyte lineage had
been segregated at an earlier stage than echinoderms in the
branch of Deuterostomia. An early branch of the megakaryo-
cyte lineage in the hematopoietic differentiation pathway63

should reflect its evolutionary early segregation. In chordates,
at the level of protochordates, blood cells are segregated into
several lineages,5,64 and, in accordance with this finding, we
showed that CEBPα is specifically expressed in the phagocytic
blood cells. In the evolutionary history of vertebrates, before
branching into jawless and jawed fish, the erythroid and
lymphoid lineages should have arisen, because both jawless
and jawed fish have these 2 cell types.65-67 In vertebrate
hematopoiesis, CEBPα is specifically expressed in phagocytes,
and it is now clear, based on this study, that repression of
CEBPα to maintain nonphagocytic lineages is commonly ach-
ieved by polycomb complexes in vertebrates (Figure 7). The
findings that Ring1a/b KO leads to leukemogenesis in absence
of Cdkn2a further suggest that Cdkn2a has been employed for
secure hematopoiesis, so that dysfunction of the polycomb
complex results in apoptosis (Figure 5J and supplemental
Figure 15D).

In vertebrate hematopoiesis, phagocytic blood lineages and
CEBPα has also been diverged. It is known that quadruplication
of the genome took place in an ancestor of vertebrates after
segregation from tunicates,68,69 and vertebrates have
quadruple CEBPα genes: CEBPα, CEBPβ, CEBPδ, and CEBPε.
Such quadruplication of CEBPα has enabled vertebrates to
acquire various phagocytic blood cells; for example, CEBPδ and
CEBPε are important in granulocyte.46,70,71 Homologs of other
TFs essential to myeloid cells in vertebrates, such as PU.1 and
2622 15 DECEMBER 2022 | VOLUME 140, NUMBER 24
IRF, were not found in Capsaspora (supplemental Figure 8B). It
is probable that these genes have emerged after multicellular
organisms had evolved from unicellular organisms and have
enabled vertebrates to acquire another phagocytic blood cells,
for example, dendritic cells.

We further argue whether findings in this study shows some
implications regarding multicellularization in ancestral unicellu-
lar organisms. Phagocytosis itself is common among some
unicellular eukaryotes,72,73 but CEBP homologs has been found
only in Filozoa.60 Acquisition of CEBPα in ancestral Filozoan
organisms, together with cis-regulatory system,61 should have
enabled them to regulate a phagocytic program. Lower
expression of CEBPα homolog and higher expression of
Ring1A/B homologs in the aggregative stage of Capsaspora
than the filopodial stage (Figures 2F and 6D) suggested that
polycomb complexes have played a role in repressing CEBPα
and a phagocytic program in ancestral Filozoa. It is tempting to
speculate that polycomb-mediated CEBPα repression has
contributed to aggregation and multicellularization.

Of note was that hepatocytes, fibroblasts, and adipocytes, in
which CEBPα is also known to be expressed, showed similarity
to Capsaspora. Because these cells are known to have phago-
cytic potential, it is likely that these cells also inherited Cap-
saspora program driven by CEBPα. Further study is required to
unveil whether such programs have been seamlessly main-
tained in the evolutionary history of these cells. Another
unsolved issue is the evolutionary history of Protostomia blood
cells. It remains to be clarified whether they have seamlessly
inherited the CEBPα-driven program or have inherited an
alternative program driven by different TFs.

Overall, this study has provided insight into the origin of blood
cells in the animal kingdom, where the primary phagocytes in
the ancestor of animals arose by activating the CEBPα-driven
phagocytic program inherited from a unicellular organism, and
has clarified the molecular mechanism by which the phagocytic
program is suppressed to maintain nonphagocytic lineage cells
in vertebrate hematopoiesis, that is, polycomb-mediated
epigenetic suppression of CEBPα.
NAGAHATA et al
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