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Exome and genome sequencing has facilitated the identification of hundreds of genes and other regions that are
recurrently mutated in hematologic neoplasms. The data sets from these studies theoretically provide opportunities.
Quality differences between data sets can confound secondary analyses. We explore the consequences of these on
the conclusions from some recent studies of B-cell lymphomas. We highlight the need for a minimum reporting
standard to increase transparency in genomic research.
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Introduction
The clinical and translational value of high-throughput
sequencing (HTS) to analyze genomes and its use in the study
of cancer and other genetic diseases is well established. The
role of sequencing in detecting somatic mutations that may be
actionable or facilitate assignment of patients to molecular
subgroups is becoming standard in a growing array of settings.
Projects such as The Cancer Genome Atlas applied whole-
exome sequencing (WES) to catalog the common sites of
mutation in cohorts of hundreds of patients but prioritized solid
tumors, with only a single hematologic malignancy (AML)
thoroughly studied in The Cancer Genome Atlas.1,2 Multiple
hematologic neoplasms were studied by whole-genome
sequencing (WGS) in the International Cancer Genome Con-
sortium (ICGC), namely chronic lymphocytic leukemia,3 diffuse
large B-cell lymphoma (DLBCL), Burkitt lymphoma (BL), and
follicular lymphoma.4 Many WES- or WGS-based studies of
these neoplasms and other hematologic cancers have fol-
lowed.5-9 Using recent publications on BL10-12 and DLBCL13-18

as examples (Figure 1A), we explore how experimental design
and methodology can influence the results of genome-wide
surveys of cancer genomes. We caution the community that
the completeness and accuracy of HTS studies is highly variable
and offer some suggestions that could enhance the interpret-
ability of such experiments.

Drinking from the data oasis
National Cancer Institute–driven projects implemented defined
standards to ensure the generation and release of consistently
high-quality data. These standards included requirement for a
germ line (reference) control, consistency in pathology review
and sample preparation, and quality control criteria at each step
of data generation and analysis. Such scrutiny can lead to a
significant reduction in the number of samples suitable for
genomic studies. Thus, the data from comprehensive “omic”
experiments come at an enormous cost, not just in sequencing
but in the time involved in annotating and triaging samples.
Thankfully, some data sets can be obtained by researchers for
secondary analysis, typically from controlled-access reposi-
tories. Because of a lack of reporting standards, differences in
bioinformatics pipelines and variable degrees of quality control,
understanding these data sets generally requires complete
reanalysis and careful scrutiny of individual samples, an
expensive and time-consuming process likely to be impractical
for many. When performing such analyses, some elements that
can influence the comparability of data sets were identified.

A search for common ground
Multiple HTS-based surveys of many cancers may use different
assays or focus on different patient populations/subtypes, and
thus results tend to be complementary while largely in agree-
ment. When there are notable discrepancies in the significantly
mutated genes (SMGs) reported or the frequency of mutations
therein, it can be difficult for readers to discern the underlying
causes. The mutational landscape of DLBCL has been particu-
larly dynamic, with SMGs ranging in number from 32219 to
15013 in studies from a single group. The latter number is closer
to that reported in another large WES-based study (98), and yet
these lists only share 62 genes.14 In other words, these 2 studies
disagree on more genes than they agree on! If we can conclude
anything from this, it is that any gene list from a single study is
probably incomplete. As part of the scientific process, we can
accept that the list of SMGs in any one entity will remain a
moving target, migrating with increases in data scale,
comprehensiveness, and cohort size.

Among the genes that are consistently reported, comparable
mutation frequencies across studies are expected. Although
generally true, some striking exceptions exist. For instance, the
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coding mutations in TP53 in 3 recent studies of BL10-12 are
reported to be somewhere between 5% and 50%. In other
cases, comparisons can be more difficult to resolve without
access to the raw data. For example, H1-4 (HIST1H1E) might be
mutated in anywhere from 0 (mutations not reported11), 8%,10

or 42%12 of BLs, and yet the mutation rate of this gene
appears much lower in our reanalysis of the same data. Each
such situation begs the question: which (if any) is the correct
value and what variables, biological or technical, might explain
such discrepancies?

Thorny issues
Although discrepant findings may be caused by a combination
of patient demographics, clinical setting, experimental meth-
odology, or analytical approach, it is critical to discern biolog-
ical variation from technical influences. One confounder when
comparing studies is whether a source of matched constitu-
tional (or germ line) DNA was included. Blood and buccal
sources of DNA can be contaminated with mutations from
malignant cells in many of the myeloid cancers, lymphoid leu-
kemias, and other lymphoid cancers such that other tissues are
required.20 Whole blood may also include mutations repre-
senting clonal hematopoiesis of indeterminate potential.21 In
cases of germ line contamination, the standard practice of
removing mutations with significant support in the matched
sample can lead to the under-reporting of somatic variants. In
contrast, in situations where germ line DNA was not considered,
we must be careful to avoid mistaking rare or common poly-
morphisms for somatic mutations. In one such example, a
polymorphism in CCNF was reported as SMG in endemic BL,
but the variant was not reproduced in subsequent studies that
relied on tumor/normal pairs.22 On the other hand, the com-
mon practice of applying strict filters to remove common
polymorphisms can artificially redact some somatic mutations in
the process. Each bioinformatics pipeline has its own unique
trade-off of false-positive rate and false-negative rate, but
analyses using matched normal reference samples can improve
upon both measures. Besides informing on somatic status, a
second benefit of paired sequencing is the natural reduction of
systematic sequencing artifacts or false-positive variants arising
from the incorrect placement of reads from regions with high
sequence similarity. KMT2C (MLL3), for example, has been
reported as significantly mutated in DLBCL13,19,23,24 but is
known to be affected by this issue.25 The shorter fragment
lengths of degraded DNA can further reduce the accuracy of
read mapping, leading to spurious findings even when a
matched normal is sequenced.26

A moving target in an ever-changing
landscape
Many hematopathologists and treating physicians will
remember the annoyances of competing nomenclatures and
appreciate the benefits of the relatively stable diagnostic
framework afforded by the modern WHO classification.27,28

Unfortunately, most descriptive terms relating to HTS experi-
ments are only loosely defined. For example, the term “exome”
itself is ambiguous because it is dictated by the manufacturers
of reagents and does not indicate whether exome enrichment
strategies include untranslated regions. Similarly, there are
2550 15 DECEMBER 2022 | VOLUME 140, NUMBER 24
various uses of “coverage” that depend on the computational
pipeline used. Because of DNA damage, sequencing error, and
coverage evenness varying with sample quality, there is no
consistent depth at which the “whole” genome or exome of a
sample can be considered adequately sequenced for all
applications. Early WGS studies strived for an average coverage
around 30×.7 With falling costs and more reliance on FFPE
specimens, target depths of 80× or higher are becoming
common for WGS.10 This continues to shift because of ongoing
evolution of sequencing technologies, which affects
throughput, read length and sequencing error profiles, along
with our increased understanding of the subclonal diversity of
different cancer types. An early step in repurposing and
combining HTS data is to determine the relative coverage
between samples in each study and, if necessary, remove those
having insufficient quality. Within pan-cancer analysis of whole
genomes, they used number of reads per cancer chromosome
copy as a metric to represent the depth relative to the inferred
purity and ploidy of the specimen to compare the relative
sampling from tumor cells between experiments.29 To illustrate
the case, for our analysis we computed several coverage met-
rics for each sample using an open-source pipeline (https://
tinyurl.com/HTSQC) and compared samples from the selected
studies using MeanCorrectedCoverage (supplemental Table 1,
available on the Blood website).

Deep sequencing or laying it on thick?
Across the studies evaluated, the achieved coverage genome-
wide or in target regions spans a startling range. This is partly
a function of the age of the study, but there is also widespread
variability within studies. Importantly, the actual usable
sequence data and its variation across samples is not conveyed
by the common practice of reporting of study-wide averages
and is further obfuscated when the authors instead report
study-wide “targets” (Figure 1B). Indeed, the per-sample
coverage is positively correlated with the number of coding
point mutations we can detect, particularly in lower coverage
and/or low purity settings (ie, lower values of number of reads
per cancer chromosome copy). This indicates that more data
would be required to consider such cases adequately
sequenced. This relationship is apparent in many samples from
a DLBCL study (Figure 1C), but at higher coverages, this cor-
relation diminishes and can saturate because most clonal vari-
ants will be detected, as seen in the other studies (Figure 1D). If
we directly compare the mutational frequencies in the DLBCLs
with high (above 25×) and low (below 25×) Mean-
CorrectedCoverage, the frequency of mutations affecting
known lymphoma genes is strikingly different (supplemental
Figure 1) and the difference is statistically significant for many
genes (supplemental Figure 2). This illustrates potential effect of
variable sequencing depths on the overall conclusions and
further highlights the need for consistent, transparent reporting
of this information. As the reader may appreciate, using terms
such as WES or WGS to describe an experiment is about as
useful as assigning a diagnosis of “lymphoma.” As the defini-
tions have been refined in hematology, we must improve our
language for describing data from HTS experiments. Many of us
would be wary of a clinical study that lacked the obligatory
“Table 1,” detailing the patient demographics and clinical
characteristics. Shouldn’t genomics researchers be held to a
similar standard of transparency?
DREVAL et al
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Figure 1. Coverage and mutation burden in samples from selected genomics studies. (A) The assay type, experimental design, and DNA source is shown for each study
selected for comparison. WGS studies in the darker shade of pink also performed sequencing on matched normal samples and the remaining studies shown all (or primarily)
sequenced only tumors. (B) Box-whisker plot showing the effective nonredundant coverage across the target space or genome (MeanCorrectedCoverage), respectively for the
samples from WES (top) or WGS (bottom) studies. Samples from fresh frozen or FFPE tissue are shown separately where that information was available. Individual points
showing the coverage of each sample are overlaid. The average depth reported in each study or, when not reported, the targeted coverage is indicated. (C-D) All samples
from 8 studies were subjected to the same in-house variant calling pipeline to determine the number of coding variants we could detect. These values are plotted as a function
of coverage and shown separately for WES and WGS studies. Insets on the right-hand side show the number of cases in each study with MeanCorrectedCoverage of at least
25×. *Data from the ICGC MALY-DE project were used in a series of studies. We use ICGC to refer to all the cases available through EGA. **Panea et al12 described WGS, but
the data deposited in EGA contained both WGS and WES data combined. The original bam files containing both data types were used here, and thus we present them as
WES data for comparison. FFPE, formalin-fixed paraffin-embedded.
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Table 1. Recommended information for reporting sample sequencing details

Attribute Attribute type Description

Unique sample identifier Identifier The unique identifier for the sample

Component Sample metadata Category of sample type referring to experimental design (eg, tumor, normal, cell-free)

Tissue preservation Sample metadata Category of preservation method for tissue/sample (eg, frozen, FFPE)

Sequencing assay type Assay metadata Generic name for the assay used to generate the data (eg, WGS, WES)

Sequencing platform Assay metadata Unambiguous name of sequencing platforms used to generate the data for the sample

Target capture regions
URL

Assay metadata Link to a BED format file that specifies the regions targeted for sequencing (when applicable)*

Aligner Analysis metadata Generic name for the workflow/software used to generate alignments (eg, bwa-mem, minimap2)

Genomic reference Analysis metadata Exact version of the human genome reference used in the alignment of reads

Genomic reference URL Analysis metadata Link to human genome sequence. URL

Average insert size Quality metric Average insert size collected from samtools. Integer

Average read length Quality metric Average read length collected from samtools. Integer

MeanCorrectedCoverage Quality metric Mean coverage of whole genome or targeted regions, correcting for overlapping regions of reads,
collected from Picard. Number

Pairs on diff chromosome Quality metric Pairs on different chromosomes collected from samtools. Integer

Total reads Quality metric Total number of reads per sample. Integer

Total uniquely mapped Quality metric Number of reads that map to genome. Integer

Total unmapped reads Quality metric Number of reads that did not map to genome. Integer

Proportion reads
duplicated

Quality metric Proportion of duplicated reads collected from samtools. Number

Proportion reads mapped Quality metric Proportion of mapped reads collected from samtools. Number

Proportion targets no
coverage

Quality metric Proportion of targets that did not reach 1× coverage over any base. Number*

Proportion coverage 10× Quality metric Proportion of all reference bases for WGS or targeted bases that achieves 10× or greater coverage

Proportion coverage 30× Quality metric Proportion of all reference bases for WGS or targeted bases that achieves 30× or greater coverage

Proportion coverage 100× Quality metric Proportion of all reference bases for WGS or targeted bases that achieves 100× or greater
coverage*

All fields are recommended for WGS and targeted sequencing experiments with the exception of those marked with an asterisk, which are required only for targeted sequencing.
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Although it would be convenient if every study achieved
some “ideal” target depth, this is impractical. Different
biological questions can be answered at different
sequencing depths. Furthermore, the volume of raw data
generated is dictated by biological and budgetary consid-
erations, whereas the amount of usable data is influenced
by technical variables. These jointly affect the accuracy of
results and may significantly affect mutation frequencies,
thereby potentially affecting biological or clinical conclu-
sions. In theory, samples with insufficient sequencing depth
or purity should be excluded from analysis, but the exclu-
sion criteria will likely depend on the application. Some
material may be fairly rare; therefore, maximizing the value
from low-quality samples is critical and the inclusion of
2552 15 DECEMBER 2022 | VOLUME 140, NUMBER 24
samples with suboptimal data may be warranted. We note
that in the largest DLBCL WES study, 66% of samples
would be eliminated if a very modest threshold of 25×
corrected coverage was applied (Figure 1B). It is key to
identify technical variables such as this to help identify
potential causes of conflicting results.

Out in the open
The sequencing coverage (or depth) is alone insufficient as a
metric for the discovery potential of an experiment.30 Other
features affecting library quality include the fragment length
distribution and diversity, which influence the redundancy
required to accurately detect somatic mutations (Figure 2A).
DREVAL et al
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Figure 2. Experimental variables affecting data quality and
accuracy for detecting mutations. (A) Panel-based, WES and
WGS are compared in their completeness and requirements for
volume of raw data (reads). Each method can be applied to
tumors in isolation or with matched germ line DNA also
sequenced (T/N pairs). Only common single nucleotide poly-
morphisms can be recognized from variants detected in
unmatched tumors, whereas rare germ line variants and private
mutations can be removed if the germ line is sequenced. (B)
Frozen tissue is a preferred source of genomic DNA. FFPE-
derived DNA has various forms of DNA damage and can be
highly fragmented, leading to more overlapping read pairs and
more redundant sequence information from each fragment. (C) It
has been common to report the average total depth of depth
regardless of fragment length or read overlap. Effective (or cor-
rected) depth accounts for the redundant information from
overlapping reads and is more consistent with how variant calling
algorithms detect mutations.
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For technical reasons (Figure 2B), libraries generated from
FFPE material require more raw sequencing data to obtain
reasonable sensitivity and specificity across the regions of
interest. For WGS, variables such as evenness of coverage and
proportion of read pairs that span 2 chromosomes can inform
on the usefulness of the data, respectively, for copy number and
rearrangement detection.30 However, in case of FFPE material,
often severely high background of structural variations because
of sample degradation makes use of these samples virtually
impossible. These factors are partly resolved by reporting the
effective coverage or the average coverage after correcting for
redundant portions of overlapping reads (Figure 2C).
MINIMAL INFORMATION FOR A GENOMICS EXPERIMENT
A path forward
Many standards exist for ensuring consistency in the perfor-
mance and/or reporting of specific types of experiments, but
the proposed HTS standard31 is not easily adopted for research
on human subjects and does not consider factors such as DNA
quality from archival tissues. In hopes of avoiding the trap of
proposing a data standard that would never be adopted, we
suggest a minimal set of quality metrics that could enable the
objective evaluation and comparison of data completeness and
quality. Table 1 shows our proposed standard for reporting
WGS and WES experiments, on a per-sample basis, that will
facilitate transparent and consistent description of data quality
15 DECEMBER 2022 | VOLUME 140, NUMBER 24 2553
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reporting metrics proposed here can be readily inferred by
potential secondary users, this process requires obtaining
access to the data, which can be surprisingly arduous. This
standard is based directly from the Human Tumor Atlas
Network standard for bulk DNA sequencing experiments
(https://data.humantumoratlas.org/standard/bulkdnaseq). This
set of metrics is equally relevant for genomic studies of other
conditions such as clonal hematopoiesis of indeterminate
potential and studies seeking rare germ line or de novo variants
of potential relevance to disease. The information required from
each sample includes a unique sample identifier, preanalytic
variables such as sample preservation technique (frozen or
FFPE), other sample details such as tumor/normal status, library
preparation type, and the sequencing platform. Details of the
initial standard analytical steps are also required, including the
aligner and the specific genome reference build. The actual
quality metrics may vary according to the sequencing technol-
ogy but include total reads and the number of aligned and
nonduplicate reads. Metrics relating to the quality of the library
include an estimate of chimeric fragments (approximated from
pairs mapping to different chromosomes) and average insert
size. In addition to reporting the average coverage of target
regions (or genome-wide), we suggest tabulation of the pro-
portion of those regions having at least N-fold coverage, where
the authors should report this for N = 30 and at least one higher
value of N that represents the desirable coverage for a specific
application (eg, 100).32 This standard also requires the mean
coverage to be reported after correcting for overlapping
regions of reads (MeanCorrectedCoverage) to convey the
effective coverage resulting from unique molecules. Impor-
tantly, these variables can all be affected by sample quality and
are particularly relevant in comparing data from degraded
sources of DNA such as FFPE tissues.

Conclusion
When evaluating genomic research, it can be difficult to discern
a data oasis from a mirage. We call on the community to adopt
a reporting standard that ensures studies contain sufficient
details, allowing for adequate scrutiny of their quality and,
where feasible, consolidation in meta-analyses. Although there
is no shortage of them, widespread adoption of a community
standard likely represents the exception rather than the rule.
We hope the ASH family of journals will strongly encourage – if
not require – adherence to this proposed data reporting stan-
dard. A more widespread adoption of MIRAGE or comparable
2554 15 DECEMBER 2022 | VOLUME 140, NUMBER 24
standard across the hematology research community would be
collectively beneficial. This would require that authors provide
details on data quantity and quality for each sample. Such
information is often requested during peer review, but the
provided quality control metrics and methods of their collection
are inconsistent. Regardless of the nuances of the approach, it
must address an unmet need in genomic and germ line
research, namely a common language for communicating
experimental details to empower stakeholders to assess the
value and potential caveats of individual data sets.
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