
Letter to Blood
TO THE EDITOR:
Increased incidence of hematologic malignancies in
SCD after HCT in adults with graft failure and mixed
chimerism
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Two population studies reported an increased risk of hemato-
logic malignancies in patients with sickle cell disease (SCD)
compared with the general population.1,2 Hematopoietic cell
transplantation (HCT) is curative for SCD; however, many adults
cannot tolerate myeloablative conditioning because of preex-
isting organ damage. Therefore, we aimed to induce mixed
chimerism using nonmyeloablative conditioning.3 The human
leukocyte antigen (HLA)–matched sibling donor (MSD)
approach has been efficacious, with 85% SCD-free survival and
minimal graft-versus-host disease.4 Because <15% of patients
have an HLA-MSD,5 we expanded the approach to the hap-
loidentical setting, albeit initially with a high graft rejection
rate.6 Herein, we report the incidence of all hematologic
malignancies, including therapy-related myeloid neoplasms
(TRMNs), in our patients with SCD who underwent non-
myeloablative allogeneic peripheral blood HCT between
September 2004 and December 2020.

All protocols were approved by the National Heart, Lung, and
Blood Institute Institutional Review Board (ClinicalTrials.gov
identifier NCT00061568, NCT02105766, NCT00977691, or
NCT03077542), and all subjects gave written informed consent.
Patients undergoing HLA-MSD HCT received alemtuzumab,
300 cGy total body irradiation (TBI), and sirolimus with or
without pentostatin and oral cyclophosphamide (PC) pre-
conditioning (Table 1). Patients who underwent haploidentical
HCT received alemtuzumab, 400 cGy TBI, and sirolimus with or
without posttransplant cyclophosphamide (up to 100 mg/kg)
and PC preconditioning. The patients’ hematologic malignancy
status and clinical course were obtained by reviewing their
medical records.

Of our 120 patients who underwent allogeneic HCT for SCD,
81 received HLA-MSD and 39 received haploidentical HCT. The
median (range) of their ages was 31 (10-64) and 32 (19-51)
years, respectively. Eight patients aged between 19 and
53 years at HCT developed hematologic malignancies between
4 months and 9 years post-HCT (Table 1); all except 1 had
homozygous SCD. Five received HLA-MSD and 3 received
haploidentical HCT. Five developed aggressive TRMN, all
deceased: 3 acute myeloid leukemia and 2 myelodysplastic
syndrome. All 5 patients developed TRMN in the setting of
persistent autologous hematopoiesis: 4 patients rejected their
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grafts, and 1 had low donor myeloid chimerism levels associ-
ated with the return of SCD.7,8 Three living patients with mixed
chimerism developed other hematologic malignancies: 1 T-cell
acute lymphoblastic leukemia, 1 chronic myeloid leukemia, and
1 mantle cell lymphoma (Table 1).

The incidence of hematologic malignancies using our alloge-
neic regimen is compared with 3 other cohorts in Table 2.
Starting with the cohorts that employed one of our conditioning
regimens, 2 patients developed TRMN on HLA-MSD protocols,
with incidence ranging from 1.8% to 4.2% and follow-up
ranging from 4.0 to 9.1 years after HCT. Our HLA-MSD proto-
col adopted in Chicago, IL, and Riyadh, Saudi Arabia, is also
shown: 1 of 64 patients (1.6%) developed TRMN with a median
follow-up of up to 4 years.4 Three of 21 patients (14.3%)
developed TRMN on our original haploidentical HCT protocol
at a median follow-up of 8.4 years. On the newer haploidentical
HCT protocol, which includes PC preconditioning, no patients
have developed TRMN, with a median follow-up of 2.6 years.
Of note, 1 patient received haploidentical HCT in the study as
part of both protocols (Table 2).

The higher incidence of TRMN in our patients (5 of 120 patients
[4.2%]) is comparable to the rate of TRMN development 3 to
5.5 years after gene therapy with myeloablative busulfan for
SCD (2 of 47 patients [4.3%], aged 25-42 years).9-11 In contrast,
a large multicenter study based on data reported to the Center
for International Blood and Marrow Transplant Research
included 908 patients with SCD: 74% were aged <18 years, and
53% received myeloablative conditioning with a goal of full
donor chimerism. In addition, 61% had HLA-MSD, and 15% had
haploidentical donors. The incidence of TRMN was much lower
(2 of 908 patients [0.22%]; Table 2).12 In addition, a recent
French study included 234 patients with a median age of 8.4
years who underwent myeloablative HLA-MSD HCT.13

Although 79 patients (34%) developed mixed chimerism, no
TRMN was reported, with a median follow-up of just <8 years.

Others have reported a higher risk of hematologic malignancies
in patients with SCD who do not undergo HCT.1,2 In 6423
patients with SCD compared with the general population with
27 years of data, individuals with SCD were 1.7 times more
likely to develop hematologic malignancies.2 However, only
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Table 1. Demographic and clinical information for patients with SCD who developed hematologic malignancies after allogeneic HCT

Patient
No.

SCD
type

Age at
HCT,
y/sex

SCD
comorbidities HCT type

TBI
dose,
cGy PC

PT-Cy
dose,
mg/kg

Cytos
pre-
HCT

Day of
graft
failure Malignancy

Time of
malignancy
dx post-
HCT, y

Cytos and
bone

marrow
blasts at

malignancy
dx

DMC
at dx

DLC
at dx

Current
status

1 HbSS 37/male Recurrent VOC
Chronic pain

HLA
matched

300 No 0 Normal 183 MDS 2.5 Complex
<5%

0 0 Dec

2 HbSS 19/male Priapism
ACS

HLA
matched

300 No 0 Normal N/A CML 3.5 46XY, t(2, 9,
22), BCR/
ABL1 p210
fusion

<5%

39 59 Alive

3 HbS-
β0thal

53/male TRV 3.2 m/s HLA
matched

300 No 0 ND N/A MCL 9 Monosomy 13,
11q deletion
and t(11;14)

<5%

89 73 Alive

4 HbSS 34/male TRV 2.5 m/s
Priapism
ACS
Recurrent VOC

HLA
matched

300 Yes 0 Normal 74 AML 0.33 Complex
15%-20%

16 18 Dec

5 HbSS 39/female Silent infarct
ACS
TRV 2.8 m/s
SCD-associated

liver disease

HLA
matched

300 Yes 0 Normal N/A T-cell ALL 3 46XX, t(9:22)
[18]/46,XY[2]

BCR/ABL1
p190 fusion

93%

30 25 Alive

6 HbSS 37/male Stroke
CRI
Recurrent VOC

Haplo 400 No 100 Normal 73 MDS 2 Complex
<5%

0 0 Dec

7 HbSS 20/female Recurrent VOC
ACS
SCD-associated

liver disease
Chronic pain

Haplo 400 No 100 Normal 90 AML 5.5 Complex
20%

0 0 Dec

8 HbSS 44/female ESRD pHTN
Diastolic

dysfunction

Haplo 400 No 0 Normal 7 mo AML 5 7q deletion
10%-15%

0 0 Dec

ACS, acute chest syndrome; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CML, chronic myeloid leukemia; CRI, chronic renal insufficiency; Dec, deceased; DLC, donor lymphoid chimerism; DMC, donor myeloid chimerism; dx, diagnosis;
ESRD, end-stage renal disease; Haplo, haploidentical; HbS-β0thal, compound heterozygosity for hemoglobin S and β 0 thalassemia; HbSS, homozygous SCD; MCL, mantle cell lymphoma; MDS, myelodysplastic syndrome; N/A, not applicable; ND, not done;
pHTN, right heart catheterization-documented pulmonary hypertension; PT-Cy, posttransplant cyclophosphamide; t, translocation; TRV, tricuspid regurgitant velocity; VOC, vaso-occlusive crises.
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Table 2. Comparison of hematologic malignancy incidence for patients transplanted using our regimens vs other conditioning regimens

Conditioning

NHLBI HLA matched NHLBI haploidentical Gene therapy French group CIBMTR

Alemtuzumab
300 cGy TBI

Pentostatin/Cy
alemtuzumab
300 cGy TBI

(Chicago, IL, and
Riyadh, Saudi Arabia)

alemtuzumab
300 cGy TBI

Alemtuzumab
400 cGy TBI

± PT-Cy

Pentostatin/Cy
alemtuzumab
400 cGy TBI

PT-Cy Busulfan
Cy

± ATG busulfan

Cy
± ATG
busulfan
(mostly)

No. enrolled in study 57 24 64 21* 19* 47 234 (79 with mixed
chimerism long-
term)

908†

TRMN (MDS, AML), No. (%) 1 (1.8) 1 (4.2) 1 (1.6)‡ 3 (14.3) 0 2 (4.3) 0 2 (0.22)†

Hematologic malignancies
(including TRMN), No. (%)

3 (5.3) 2 (8.3) 1 (1.6)‡ 3 (14.3) 0 2 (4.3) 1 (0.4) 3 (0.33)†

Median time to hematologic
malignancy development, y

3.5 1.7 3 5 N/A 4.3 6 1

No. deceased from
hematologic malignancies

1 1 0 3 0 2 ? ?

Graft status 1 Graft failure, 2
mixed
chimerism

1 Graft failure, 1
mixed
chimerism

1 Graft failure 3 Graft failure N/A Group A ? ?

Median follow-up, y 9.1 4.0 4 8.4 2.6 ? 7.9 2.1-3.9

Therapeutic goal Mixed chimerism Mixed chimerism Mixed chimerism Mixed chimerism Mixed chimerism Gene-corrected
autologous
HSPCs

Full donor chimerism Full donor
chimerism

AML, acute myeloid leukemia; ATG, antithymocyte globulin; CIBMTR, Center for International Blood and Marrow Transplant Research; Cy, cyclophosphamide; HSPC, hematopoietic stem and progenitor cells; MDS, myelodysplastic syndrome; N/A, not
applicable; NHLBI, National Heart, Lung, and Blood Institute; PT-Cy, posttransplant cyclophosphamide; TRMN: therapy-related myeloid neoplasm.

*One patient was transplanted on study for both protocols.

†Two patients transplanted at the NHLBI and who developed therapy-related myeloid neoplasms were included with the NHLBI studies and are not included herein.

‡Incidence of hematologic malignancies and median duration of follow-up are reported from the time of article publication.
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31 patients with SCD developed hematologic malignancies
over 141 752 person-years (0.021 per 100 person-years). And,
18 individuals without SCD were expected to develop hema-
tologic malignancies over that time frame when controlled for
age, sex, race, and ethnicity (0.013 per 100 person-years).
Therefore, although the relative risk of hematologic malig-
nancies is higher in SCD, the absolute risk is low. In contrast, 8
of our patients developed hematologic malignancies over 844
person-years (0.94 per 100 person-years). Thus, the rate of
hematologic malignancy is ≈45 times higher following HCT for
SCD using our approach compared with those with SCD who
do not receive curative therapy.

Notably, others have reported adults with graft failure after
nonmyeloablative allogeneic HCT for SCD subsequently
developing aggressive TRMN.14,15 Still, the incidence of
hematologic malignancies, particularly aggressive TRMN, is
higher than expected in our patients after nonmyeloablative
allogeneic HCT. Multiple potential reasons exist: First,
compared with the Center for International Blood and Marrow
Transplant Research and French studies, our patients are older
with severe SCD-related complications; both factors have been
implicated in increasing the risk of leukemia in individuals with
SCD.2 Second, our patients receive TBI vs chemotherapy-based
conditioning and peripheral blood stem cells rather than bone
marrow as the hematopoietic cell source. Third, our patients
receive alemtuzumab rather than antithymocyte globulin, and
per protocol, many remain on prolonged immunosuppression
due to mixed chimerism. Last, the goal of our allogeneic HCT
regimen has traditionally been mixed chimerism instead of full
donor chimerism.

TRMN, arising from autologous hematopoiesis, is a known risk
following chemotherapy, radiation, or both,16-18 with rates of
5% to 10% reported following autologous HCT.19-22 DNA
sequencing of pretreatment samples in those who later devel-
oped TRMN after chemotherapy or radiotherapy for solid
tumors,17,18 or after autologous HCT for lymphoma21 or multi-
ple myeloma,22 has shown the etiology to most commonly
involve the expansion of preexisting clones containing TP53
during such therapy. The TRMN rates of 5% to 10% following
autologous HCT are similar to the 4% rate of hematologic
malignancies found in our cohort and following gene therapy
for SCD. We recently reported that 2 of our patients with
pathogenic TP53 mutations at TRMN diagnosis had the same
TP53 mutation at baseline,23 in the context of persistent
autologous hematopoiesis. Furthermore, 2 older patients who
developed TRMN following gene therapy for SCD were in the
first group of the bluebird bio study, where the cell dose was
low, and the patients did not experience sufficient therapeutic
benefit.10,11 We postulate that the incidence of hematologic
malignancies is higher in older individuals undergoing regen-
erative hematopoiesis from preleukemic autologous cells
exposed to genotoxic HCT conditioning.9 Interestingly, in
younger patients, despite mixed chimerism following myeloa-
blative conditioning, the French study did not report TRMN.13

Currently, available data are insufficient to test for potentially
preleukemic clones to reassure patients that they will not
develop a TRMN, but this is an active area of research. In the
interim, patients with SCD should be alerted about the risk of
hematologic malignancies after curative therapy, particularly in
LETTER TO BLOOD
adults following autologous approaches or allogeneic HCT,
which results in mixed chimerism. Furthermore, the decision to
move forward should be based on a benefit/risk assessment
that includes the risk of dying early from SCD itself.

In conclusion, we report an increased incidence of hematologic
malignancies after allogeneic HCT for SCD. Given a likely eti-
ology is selective pressure placed on autologous preleukemic
clones in adults with severe disease, we have shifted the ther-
apeutic goal of future regimens for this adult population from
mixed chimerism to full donor chimerism. We do not have
sufficient evidence to deduce that TBI-based regimens create
an added risk for TRMN at this time. However, more evaluation
and long-term follow-up are necessary to establish clinical and
genetic risk factors and the incidence of hematologic malig-
nancies after all types of curative therapies for SCD.
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