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Azithromycin promotes relapse by disrupting immune
and metabolic networks after allogeneic stem cell
transplantation
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KEY PO INT S

•Azithromycin after
allogeneic
hematopoietic stem cell
transplantation
increases relapse of
malignancies in a
randomized-placebo
trial.

•Azithromycin dampens
antitumor immune
response by disrupting
T-cell functions through
inhibition of energy
metabolism in immune
cells.
2500 8 DECEMBER 2022
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Administration of azithromycin after allogeneic hematopoietic stem cell transplantation
for hematologic malignancies has been associated with relapse in a randomized phase 3
controlled clinical trial. Studying 240 samples from patients randomized in this trial is a
unique opportunity to better understand the mechanisms underlying relapse, the first
cause of mortality after transplantation. We used multi-omics on patients’ samples to
decipher immune alterations associated with azithromycin intake and post-transplantation
relapsed malignancies. Azithromycin was associated with a network of altered energy
metabolism pathways and immune subsets, including T cells biased toward immuno-
modulatory and exhausted profiles. In vitro, azithromycin exposure inhibited T-cell
cytotoxicity against tumor cells and impaired T-cell metabolism through glycolysis inhi-
bition, down-regulation of mitochondrial genes, and up-regulation of immunomodulatory
genes, notably SOCS1. These results highlight that azithromycin directly affects immune
cells that favor relapse, which raises caution about long-term use of azithromycin treat-
ment in patients at high risk of malignancies. The ALLOZITHRO trial was registered at
www.clinicaltrials.gov as #NCT01959100.
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Introduction
Allogeneic hematopoietic stem cell transplantation (allo-HSCT)
is a curative treatment for hematologic malignancies. Significant
efforts aim to improve the survival and quality of life of patients
suffering from acute or chronic graft-versus-host-disease
(GVHD).1-4 Lung chronic GVHD, including bronchiolitis obliter-
ans syndrome (BOS), affects about 10% of patients and is
associated with poor outcomes.5-7 Azithromycin was shown to
prevent BOS following lung transplantation.8 These observa-
tions led us to investigate if azithromycin could prevent BOS in
a multicenter, randomized, placebo-controlled, double-blind,
phase 3 study (Efficacy of Azithromycin to Prevent Bronchiolitis
Obliterans Syndrome After Allogeneic Hematopoietic Stem
Cell Transplantation [ALLOZITHRO] trial). Unexpectedly, azith-
romycin did not efficiently prevent BOS and was associated
| VOLUME 140, NUMBER 23
with higher mortality due to an increased risk of relapse (hazard
ratio [HR], 1.7; P = .002). This led to an early interruption of the
study9 and both Food and Drug Administration and European
Medicines Agency warnings about azithromycin use after allo-
HSCT.10 In a multicenter retrospective setting, azithromycin
treatment for BOS after HSCT was also associated with a higher
risk of secondary neoplasms.11

Antitumoral effects of allo-HSCT rely on immune-mediated
mechanisms by donor cells,12 and relapse is the first cause of
death after allo-HSCT.13 Relapse involves immune escape
mechanisms including down-regulation of class II major histo-
compatibility complex (MHC) and expression of coinhibitory
molecules.14-16 T cells are indeed associated with higher
expression of coinhibitory molecules, exhausted cells subsets,
and defective effector functions.15,17 Likewise, in autologous

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
http://www.clinicaltrials.gov
https://crossmark.crossref.org/dialog/?doi=10.1182/blood.2022016926&domain=pdf&date_stamp=2022-12-08


D
ow

nloaded from
 http://ashpublicatio
chimeric antigen receptor (CAR) T-cell infusions, T-cell exhaus-
tion is associated with a lower response rate.18

Analyzing biological samples of patients from the ALLOZITHRO
trial is a unique opportunity to decipher immune alterations
associated with azithromycin and relapse after allo-HSCT. We
applied mass cytometry and nontargeted metabolomics to
determine the impact of azithromycin on immune subsets and
the metabolome of patients. This approach revealed that
azithromycin treatment altered the frequency of many immune
subsets together with alteration of their functional states.
Considering that azithromycin could alter host or bacteria
metabolism, we then examined the plasma and cellular
metabolomes.19,20 Integration of biological variables associated
with azithromycin intake and clinical data highlighted an
immunometabolic network associated with tumor relapse after
allo-HSCT. We next uncovered the inhibitory properties of
azithromycin on major T-cell functions, including proliferation,
cytokine production, and cytotoxicity against leukemic targets.
Finally, we studied how azithromycin impairs T-cell metabolism
during activation through glycolysis inhibition, down-regulation
of mitochondrial and proinflammatory gene expression, and up-
regulation of immune suppressive genes.
ns.net/blood/article-pdf/140/23/2500/2055576/blood_bld-2022-016926-m
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Study design
This study was conducted with samples from patients included
in the ALLOZITHRO trial (NCT01959100)9 and approved by the
local Ethics Committee and Institutional Review Board (CPP Ile
de France IV, IRB no. 00003835, reference no. 2013-000499-
14). Samples were retrieved from the CRYOSTEM Consortium21

(project no. CS-1801, validated by IRB Sud-Méditerranée 1,
reference no. AC-2011-1420) and the Commission National
Informatique et Liberté for data protection (reference no.
nz70243374i n◦912120). All patients gave their written consent
for clinical research. This noninterventional research study was
carried out in accordance with the Declaration of Helsinki. Data
analyses were performed using databases without patient
identifiers. Healthy donor peripheral mononuclear blood cells
(PBMCs) were isolated from residual blood after apheresis
provided by Etablissement Français du Sang (18/EFS/032).

Experimental procedures
Details on experimental assays are described in the supplemental
Methods, available on the Blood website.
ay 2024
Results
Cohort description
Samples from azithromycin (n = 123) and placebo (n = 117)
patients were collected at median times of 85 and 84 days after
allo-HSCT, respectively (Figure 1).21 Characteristics of patients’
subsets within omics cohorts were similar between the azith-
romycin and placebo groups (supplemental Table 1). There was
no major disparity in comedication received by both groups,
and azithromycin levels in metabolomics were not influenced by
other drugs (supplemental Methods). Consistent with the find-
ings of the ALLOZITHRO trial, a higher risk of relapse with
azithromycin was observed in the patients studied herein
(supplemental Figure 1).
AZITHROMYCIN INHIBITS ANTITUMOR IMMUNE RESPONSE
Patients treated with azithromycin exhibit reduced
circulating T cells and higher antiinflammatory
subsets
We first ruled out that azithromycin could increase tumor cell
proliferation or survival. Fourteen AML cell lines and primary
leukemic cells from 8 patients were cultured with azithromycin.
Regardless of azithromycin concentration, azithromycin was not
associated with an effect on cell expansion (supplemental Fig-
ures 2 and 3).

We then focused on circulating immune cells in patients’ samples.
To identify main PBMC cell subsets, the FlowSOM algorithm22

was performed on CD45+ living cells with the use of 31 pheno-
typical markers (Figure 2A). Antigen expressions in the 55
phenotypical clusters were then manually checked to identify the
corresponding cells subsets (Figure 2B-C, supplemental Figure 4,
and supplemental Table 2).We found that patients included in the
azithromycin arm were associated with a lower abundance of
T cells (P = .024), whereas no difference was observed for B,
natural killer (NK), or myeloid lineage (Figure 2D). Next, we
compared the frequency of phenotypic clusters among these
subsets. Azithromycin-treated patients were characterized by
higher central memory (CM) and effector memory CD4+ T cells
with a TH2 profile defined by CXCR3−CCR4+ (P = .045 and P =
.010, respectively). A higher frequency of CCR5−FoxP3lo regula-
tory T cells (Tregs) also was found in azithromycin-treated patients
(P = .003). Azithromycin treatment was associated with a higher
frequency of activated CMCD8+ cells characterized by high HLA-
DR, CD38, and PD-1 expression, suggesting an exhausted
phenotype (P = .033). Finally, azithromycin intake was associated
with lower switched memory CD5‒CXCR3−CCR7+ B cells (P =
.033), with a higher abundance of immature CD56hiCCR5loNK cells
(P = .003) and a lower frequency of cluster 40 among unidentified
cells (P = .016) (Figure 2E-F, supplemental Figures 5 and 6).

Azithromycin intake is associated with exhausted
T-cell phenotypes
We then studied T-cell functional profiles with 14 additional
functional markers by means of the FlowSOM algorithm. We
identified 25 clusters representing activation or functional states
of cells (Figure 3A). Three main profiles emerged: (1) activated
cells characterized by the expression of granzyme B, Eomes, or
T-bet; (2) naïve cells characterized by low levels of expression of
most functional markers; and (3) exhausted cells characterized
by higher levels of TOX, PD-1, ICOS, CTLA-4, 4-1BB, LAG-3,
and TIM-3 (Figure 3A).

We next compared abundances of functional clusters among
phenotypic clusters in azithromycin and placebo patients. We
identified 4 T-cell subsets significantly increased in azithromycin
patients: TIGIT+ (functional state 16) in regulatory T-cell
CCR5−FOXP3lo (cluster 3) (P = .033) and in CM TH2
CD4+PD1−CD25+ (cluster 2) (P = .034), KLRG1+2B4+TIGIT+

(functional state 8) in CM CD8+PD1+CD38− (cluster 28) (P =
.048), and TIGIT+KLRG1+2B4loPD-1loTOXloEomes+ (functional
state 6) in CM double-negative subset (cluster 21) (P = .029).
Activated cytotoxic granzymeB+PD-1lo (functional state 10) in
CM CD8+PD-1+CD38+ cell (cluster 36) was found to be
decreased in azithromycin patients (P = .039) (Figure 3A-B).

Together these results highlight that patients treated with azith-
romycin were characterized by lower T-cell abundance and
8 DECEMBER 2022 | VOLUME 140, NUMBER 23 2501
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Figure 1. Overview of the samples studied according to omics assays. Frozen peripheral mononuclear blood cells, plasma and cell pellets from patients included in the
double-blinded ALLOZITHRO study were retrieved from the national CRYOSTEM biobank. All samples were collected after allogeneic hematopoietic stem cell trans-
plantation, either at the time of acute graft vs host disease or at the nearest visit by day 100. Patients’ characteristics and outcomes are depicted in supplemental Table 1 and
supplemental Figure 2.
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were biased toward immunomodulatory TH2 response, with
increased FoxP3+ regulatory T cells and exhausted phenotypes
characterized by the expression of TOX, PD-1, and TIGIT.

Azithromycin is associated with variations in cell
energy metabolism metabolites
We then explored if azithromycin intake could affect the plasma
metabolome, considering that azithromycin could alter host- or
microbiota-related metabolism.19,23 We studied metabolites
from frozen plasma and dried white blood cell pellets to
uncover both circulating and intracellular metabolomic profiles.
Totals of 853 and 352 metabolites were studied in plasma and
dried cell pellets, respectively (supplemental Figure 7).

In plasma, 73 metabolites were significantly different between
patients who received azithromycin and those from the placebo
group. The most statistically significant changes were observed
for (1) imidazole propionate, a microbial histidine-derived
metabolite and precursor of glutamate,24 lowered in the azith-
romycin group; and (2) plasmalogen metabolites, with higher
levels in the azithromycin group compared with placebo
(Figure 4A and supplemental Table 3). Imidazole propionate is a
key regulator of glucose metabolism and an activator of the
mammalian target of rapamycin (mTOR) pathway.24 Enrichment
analysis of the significant metabolites revealed an over-
representation of plasmalogen and acyl-carnitine (poly-
unsaturated) pathways. Oxidative phosphorylation (OXPHOS),
pantothenate, and purine metabolism pathways were the most
enriched but not statistically significant (Figure 4A and sup-
plemental Table 4).

We then explored the intracellular metabolome and identified
10 significantly different metabolites between the 2 groups
(Figure 4B and supplemental Table 5). Heptanoate was the
2502 8 DECEMBER 2022 | VOLUME 140, NUMBER 23
most significantly lowered metabolite in the azithromycin
group. This metabolite is a medium-chain fatty acid (MC-FA)
involved in the tricarboxylic acid cycle (TCA) by acetyl–
coenzyme A (CoA) and succinyl-CoA biosynthesis through
mitochondrial beta-oxidation of long-chain fatty acid.25 The
MC-FA pathway was significantly enriched (Figure 4B and
supplemental Table 6).

Altogether these results underline changes in pathways
converging to acetyl-CoA synthesis from mitochondrial beta-
oxidation through enrichment in acyl-carnitine and MC-FA
pathways for its use in OXPHOS. CoA was recently found to
enhance CD8+ Tc22 antitumoral functions.26 Here, the pre-
cursor of CoA, pantothenate, was increased in the azithromycin
group. This may be related to the metabolite accumulation
owing to lower incorporation in CoA as reported when inhib-
iting pantothenate kinase (PANK).27 Supporting this hypothe-
sis, acyl-carnitine metabolites were higher in azithromycin
patients, as observed within PANK-inhibited hepatocytes
(supplemental Table 3).27 In addition, the enrichment in plas-
malogens suggests that immune-regulatory pathways are
involved in the azithromycin effect, because higher levels of
plasmalogens are associated with post-transplantation immune
tolerance.28

Variables associated with azithromycin intake are
also associated with relapse
To study the interactions between variables significantly asso-
ciated with treatment groups and determine whether these
variables were also associated with relapse, we studied patients
with malignancies for which we had all biological data (multi-
omics cohort) (Figure 1 and supplemental Table 1). In these
patients, sample collection preceded relapse at a median time
of 6.36 months (interquartile range, 1.92-12.03 months) in the
VALLET et al
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transformation was applied on the y-axis. All P values were calculated by means of 2-sided Wilcoxon signed rank test.
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azithromycin group and 16.58 months (5.14-25.05 months) in
the placebo group, and azithromycin intake was associated with
a higher cumulative incidence of relapse (HR, 1.81, 95% CI,
1.10-3.02; P = .02). We first determined if differences associ-
ated with azithromycin intake were more pronounced in
patients who relapsed (supplemental Figure 8). Immune subsets
and metabolites whose variations were associated with azith-
romycin intake were also analyzed individually for their associ-
ation with relapse (supplemental Table 7).
Figure 2 (continued) used to cluster cells according to their phenotype and T-cell func
normalize data across batches and then identify singlet CD45+ living cells. Fifty-five ce
FlowSOM algorithm. (B) Circular dendrogram showing the 55 cell-subset hierarchy colo
cells. (C) Uniform manifold approximation and projection, depicting cell clustering color
subsets among living CD45+ cells according to sample groups. (E) Heatmap representin
and annotated for visualization purposes. Targeted antigens are ordered by hierarchic
changes of immune subsets in AZM group compared with PLA are summarized with a b
significant difference. (F) Boxplots of statistically different subsets between AZM and PLA
y-axis. All P values were calculated by means of 2-sided Wilcoxon signed rank test. DN, d
nonconventional; MAIT, mucosal-associated invariant T cells; NK, natural killer.
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Because these variables may be associated with relapse in a
multivariate manner, we used principal component analysis to
perform dimension reduction (Figure 4C and supplemental
Figure 9A). Then, tomeasure the association of these components
with relapse, we used amultivariate competing Fine and Gray risk
model that included treatment groups as covariate. Three com-
ponents (#7, #13, and #25) were significantly associated with
relapse (Figure 4D and supplemental Table 8), and all omics layers
contributed to these components (Figure 4E).
tional state (naïve, activated, or exhausted). A preprocessing pipeline was used to
ll-phenotypic subsets were identified with the use of 31 phenotype antigens and
red according to the corresponding subsets and sized by frequency among CD45+

ed according to their subsets. (D) Boxplots representing percentage of main PBMC
g scaled expression of phenotype antigen across the cell subsets manually ordered
clustering, and unidentified cell subsets are shown in supplemental Figure 4. Fold
ar plot (*P < .05; **P < .01; P values are shown in F). Bold names of subsets indicate
cohorts. For visualization purposes, square root transformation was applied on the

ouble negative; EM, effector memory; EMRA, effector memory CD45RA+; Non-conv,
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Figure 4. Azithromycin (AZM) treatment and relapse are associated with changes in cell energy metabolism pathways. (A-B) Metabolomic analyses in (A) plasma and
(B) dried cell pellet samples. Volcano plots and dot plots illustrate metabolite individual changes and pathway enrichment in patients treated with AZM compared with
placebo (PLA). Volcano plot P values were calculated by means of 2-sided Wilcoxon signed rank test; enrichment P values were computed by means of hypergeometric test.
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Variables that contributed to at least 1% of components were
considered as significant contributors and thus associated with
relapse (supplemental Figure 9B-D). Among the 94 variables that
differed between azithromycin and placebo patients, 59
contributed significantly. Cell subsets were PD1+CM CD4+ TH2
(cluster 4), CD56hiCCR5lo NK cells (cluster 38), switched memory
B cells (cluster 34), CM CD8+ T cells PD1+CD38+ (cluster 36), and
TIGIT+ (state 16) in PD1−CM TH2 (cluster 2), KLRG1+2B4+TIGIT+

(state 8) in CM CD8+PD1+CD38− (cluster 28), and granzyme B+

and PD1lo (state 10) in CM CD8+ (cluster 36). Interestingly, one of
the first contributors was white blood cell intracellular 2,3-
diphosphoglycerate, a metabolite involved in glycolysis.
Enriched plasmatic pathways included the following: (1) energy
metabolism: fatty acid dicarboxylate, CoA metabolism; (2)
immunomodulator mechanisms: pregnenolone steroids, primary
bile acid, plasmalogen; and (3) purine and pyrimidine meta-
bolism (supplemental Figure 10A). In cells, most enriched
metabolomic pathways also encompassed energy metabolism:
MC-FA and dinucleotides (supplemental Figure 10B).

To highlight inter-omics relationships, we next performed cor-
relations analyses. The distribution of significant correlations
across omics and variables correlations are depicted in
Figure 4F-G. The correlation network identified different clus-
ters of variables in which at least 1 variable contributed to
relapse. State 8 (TIGIT+KLRG1+2B4+) in CM CD8+ PD1+CD38−

(cluster 28) were correlated with 3-carboxy-4-methyl-5-propyl-2-
furanpropionic acid, a uremic toxin known to inhibit mito-
chondrial respiration (Figure 4G).

Altogether, these results illustrate that among variables asso-
ciated with azithromycin intake, TH2 and exhausted T cells and
energy metabolism pathways, notably glycolysis-derived
metabolites, contributed specifically to relapse.

Azithromycin intake is associated with
transcriptional changes in energy metabolism,
cell cycle, and inflammation pathways
We then performed single-cell RNA sequencing coupled with
cellular indexing of epitopes (CITE-seq) on 31 patients’ samples
(Figure 5A and supplemental Table 9). Clustering 65,382 cells
with the use of cell surface antigen expression allowed the
identification of 23 immune subsets (Figure 5B-C).

Gene set enrichment score was calculated in each subset after
differential gene expression analyses. Consistent with our
metabolomic results, metabolism pathways were enriched in
immune cells, including OXPHOS, glycolysis, cholesterol, and
fatty acid metabolism. Immune functions were also influenced by
azithromycin exposure, including interferon (IFN) ⍺ and IFN-γ
responses, complement pathway, inflammatory response, and
cytokine signaling pathways. Signaling pathways involved in
Figure 4 (continued) results. (D) Forest plot representing the hazard ratio of relapse w
including each component and treatment group as covariates with death as the competin
(E) Stacked bar plot depicting percentage of contribution of variables from each omic
variables are shown in Extended Data Figure 1. (F) Chord diagram showing statistically sig
multi-omics analyses. Node coordinates were calculated by means of a multidimension
(nodes) that significantly contributed to relapse are illustrated by the blue color, and size
Areas where nodes overlaid are zoomed and highlighted in yellow for visualization purpo
rank correlation. Correlations were considered statistically significant if adjusted P values
peripheral mononuclear blood cell.
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immune response, such as mTORC1, STAT3, STAT5, and NFκB
signaling pathways were enriched. Finally, cell cycle–related
pathways (E2F, mitotic spindle, G2M checkpoint, MYC) were
enriched in various cell subsets (Figure 5D). Because T-cell fre-
quency was lowered in azithromycin patients, we calculated cell
cycle score in the main subsets of T cells. We found higher fre-
quencies of CD4+ T cells in G2M phases (P = .032) (Figure 5E).

Azithromycin exposure does not affect class II
MHC expression by antigen presenting cell or
tumor cell
Down-regulation of class II HLA has been previously involved in
post-transplantation relapses.14 Azithromycin was not associ-
ated with down-regulation of HLA-DR expression on antigen-
presenting cells (APCs) from ALLOZITHRO trial samples.
Transcriptomic assays did not reveal a down-regulation of class
II gene expression. In vitro, APCs exposed to azithromycin did
not lower HLA-DR DQ DP protein expression. Primary leukemic
cells exposed to azithromycin were not associated with
lower expression of HLA-DR DQ DP proteins (supplemental
Figure 11).

Azithromycin modulates T-cell functions by
inhibiting glycolysis during activation
To evaluate if azithromycin may have a direct impact on PBMCs
and because azithromycin was associated with a lower abun-
dance of T cells and higher frequency of G2M CD4+ T cells, we
studied the effects of azithromycin on T-cell proliferative func-
tions in vitro. CD3+-sorted cells from HD were incubated for
24 hours with azithromycin at 10 mg/L and 20 mg/L before
activation with anti-CD3/CD28 beads to mimic the azithromycin
intake before allo-HSCT. After 48 hours of culture, we observed
a dose-dependent inhibition of CD4+ and CD8+ T-cell prolifer-
ation (Figure 6A). Cell viability was not affected by azithromycin
(supplemental Figure 12A-B). The effect of azithromycin on
proliferation was reversible after a washout of 24 hours before
activation (supplemental Figure 13). This result confirms a spe-
cific effect of azithromycin on T cells and is not in favor of a
nonspecific toxic effect.

We then treated the cells with cyclosporine A to mimic the
effect of GVHD prophylaxis. This revealed that effects of azith-
romycin and cyclosporine A were additive in CD8+ T cells and
that azithromycin at 10 mg/L had an inhibitory effect similar to
that of cyclosporine at a usual dose of 150 ng/mL (supplemental
Figure 14).

Next, to assess if azithromycin might also affect cytokine pro-
duction functions, we studied cytokine levels on T-cell super-
nate by means of multiplex immunoassays. After 2 days of
activation, all evaluated cytokines except interleukin (IL) 4 and
IL-13 were dose-dependently reduced in supernatants from
ith the corresponding 95% confidence interval of a multivariate Fine-Gray model
g event. Blue dots indicate principal components statistically associated with relapse.
s layers in the 3 components associated with relapse. Top contributing individual
nificant inter-omic correlations. (G) Correlation networks of variables included in the
al scaling algorithm, and edges are drawn between correlated variables. Variables
is correlated with the corresponding sum of contribution in significant dimensions.
ses. P value and correlation and coefficients were computed according to Spearman
with false discovery rate were <.05 and Spearman’s absolute rho value >0.3. PBMC,
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Figure 5. Azithromycin treatment is associated with enrichment of energy metabolism, cell cycle, and immune response pathways. (A) Frozen peripheral mononuclear
blood cells (PBMCs) from patients (placebo, n = 14; and azithromycin, n = 17) were thawed and analyzed by means of cellular indexing of transcriptomes and epitopes by
sequencing (CITE-Seq). Cells were clustered according to cell surface antigen expression. (B) Uniform manifold approximation and projection (UMAP) describing cell clus-
tering. (C) Heatmap depicting scaled cell surface antigen expression in cell subsets. (D) Dot plot depicting enrichment analysis within each subset of cells with the use of
hallmark gene sets. Only immune cells with at least 1 enriched pathway are depicted. P values were computed with adaptive multilevel split Monte-Carlo and adjusted with
false discovery rate. (E) Cell cycle analysis from CITE-Seq with cell cycle score. P values were computed by means of 2-sided matched-pair Wilcoxon rank test. Clas., classical;
DN, double negative; EM, effector memory; EMRA, effector memory CD45RA+; Int., intermediate; MAIT, mucosal associated invariant T cells; NK, natural killer.
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Figure 6. Azithromycin (AZM) inhibits T-cell proliferative and cytotoxic functions by impeding energetic boost from glycolysis. (A) Sorted CD3+ cells from healthy-
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azithromycin-treated cells. After 5 days of activation, IL-13 levels
were increased with azithromycin exposure (supplemental Fig-
ures 15-17). These results revealed that azithromycin inhibited
the secretion of proinflammatory and antitumoral cytokines
such as IL-2, IL-15, IL17, IFN-γ, IFN-⍺, and tumor necrosis
factor–related apoptosis-inducing ligand (TRAIL). Consistent
with a higher abundance of TH2 subsets in patients from the
clinical trial, azithromycin promoted the TH2 pathway in vitro, as
illustrated by a higher IL-13 level.

To unravel whether azithromycin could inhibit antitumoral T-cell
cytotoxic functions, anti-CD19 CAR T cells were cultured for
24 hours with azithromycin and then incubated with CD19+

NALM6 lymphoblastic leukemia cell line. The percentage of
specific lysis was dose dependent and reduced by azithromycin
(Figure 6B). Treatment did not affect CAR T-cell viability (sup-
plemental Figure 12C).

Metabolomic analyses revealed enrichment in energy meta-
bolism pathways in azithromycin-treated patients and in relapsed
patients. We therefore hypothesized that azithromycin exposure
could impair energy metabolism in T cells during the immune
response. Because glycolysis plays a central role in ATP synthesis
during T-cell activation,29 we studied energy metabolism after
anti-CD3/CD28 activation in T cells from healthy donors (HDs).
To characterize the impact of azithromycin on the CD3+ sub-
types, CD4+ and CD8+ T cells were sorted and incubated for
24 hours in 10 mg/L azithromycin. Glycolytic activity as measured
by extracellular acidification rate after T-cell activation was
reduced in CD4+ and CD8+ cells treated with azithromycin
(Figure 6C). Mitochondrial oxidative phosphorylation measured
by oxygen consumption rate (OCR) was not different between
the 2 groups (Figure 6C). Our results argue that azithromycin
dampens immune cell functions by inhibiting glycolysis during
activation, while not affecting OXPHOS metabolism. This
mechanism could impair normal T-cell activation and differenti-
ation during immune response after allo-HSCT.
d-2022-016926-m
ain.pdf by guest on 08 M

ay 2024
Azithromycin inhibits T-cell receptor signaling
pathways after activation
With the use of mass cytometry, we studied signaling pathways
to evaluate if their inhibition may drive the dampening of
glycolysis and effector functions. At 5 time points after anti-
CD3/CD28 activation, we measured 14 signaling proteins
among 23 PBMC subsets from 8 HDs (Figure 7A and supple-
mental Figures 18-19). Analysis disclosed an inhibition of T-cell
receptor (TCR) signaling in CD4+ Tregs and double-negative
subsets and in CM and EMRA CD8+ subsets. Additional inhi-
bition of pAkt, pmTOR, and pERK also was found in
CD4+ subsets (Figure 7B and supplemental Figure 20).
Figure 7 (continued) antibodies and then pooled before mass cytometry staining proced
phenotype antiges expression. Area under the receiver operating characteristic curve
presented in supplemental Figure 18. (B) Dot plot depicting statistically significant differe
points are presented in supplemental Figure 20. P values were computed by means of m
statistically different. (C) CD3+-sorted cells from 10 HDs were treated with AZM or CTRL
activation. The pie chart illustrates the number of living cells retrieved at the end of the s
Next, using cell surface antigen expression, 26 phenotypic cell clusters were identifie
(D) UMAP highlighting retrieved cells from activated conditions. (E) Heatmap representing
antigen expression. Abundances of clusters in cells treated with AZM or CTRL are depicte
the x-axis. P values were computed by means of matched-paired Wilcoxon rank sum te
volcano plots is shown in supplemental Figure 21. Only statistically significant changes
adjusted with false discovery rate.
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Azithromycin promotes immunomodulatory gene
expression and disrupts mitochondrial mRNA
synthesis
To explore whether azithromycin’s impact on T cells was asso-
ciated with phenotypic and transcriptional changes in CD4+ and
CD8+ T cells, we performed CITE-seq on T cells from HDs 48
hours after anti-CD3/CD28 activation. Cells were clustered
according to cell surface antigen expression (Figure 7C-D).
Cluster abundance did not differ between treated and
untreated conditions (Figure 7E).

Transcriptomic analysis disclosed down-regulation of proin-
flammatory genes: (1) IFNG in CD4+, in double-positive CM
(cluster 25) and TH1 (cluster 0) cells; and (2) MIF in mostly all
clusters (Figure 7F and supplemental Figure 21). SOCS1 was
up-regulated in most clusters (Figure 7F). Because SOCS1 was
recently found to impair antitumor response in TH1 cells,30 we
measured SOCS1 expression 6 days after activation by flow
cytometry. We identified that SOCS1 expression was signifi-
cantly higher in azithromycin-treated CD4+ (P = .020) but not in
CD8+ (P = .074) T cells (supplemental Figure 22).

Down-regulation of genes implicated in ATP biosynthesis also
was observed with azithromycin: (1) mitochondrial mRNA
involved in the synthesis of mitochondrial complexes I (MT-ND4,
MT-ND5), IV (MT-CO3), and V (MT-ATP6); and (2) NAMPT,
involved in NAD synthesis, a required metabolite for mitochon-
drial complex I function (Figure 7D). Considering this impact
of genes of the mitochondrial complex, we measured mito-
chondrial mass and function with the use of flow cytometry.
Although we did not identify an impact of azithromycin on
mitochondrial mass in CD4+ and CD8+ cells, lower mitochondrial
respiratory chain function was identified with tetramethylrhod-
amine, methyl ester, perchlorate assays in CD4+ and CD8+

T cells (supplemental Figure 23). Likewise, in resting T cells, basal
and maximum mitochondrial respiration assessed by OCR was
reduced after 5 days of exposure to azithromycin in vitro (sup-
plemental Figure 24).

Altogether, these results showed that azithromycin impairs
lymphocyte effector functions through down-regulation of mito-
chondrial complex I, IV, and V genes and functions, and of genes
with proinflammatory function while it up-regulates SOCS1
expression, a negative regulator of the immune response.

Discussion
Understanding mechanisms of relapse after allo-HSCT is
mandatory to improve our comprehension of antitumor immune
response and to develop new therapeutic approaches. We took
ure. Single cells were then clustered by means of FlowSOM algorithm according to
(AUC) of signaling mean signal intensity was computed. Cluster phenotypes are
nce in AUC between CTRL and AZM conditions. Individual differences at the 5 time
atched-paired Wilcoxon Rank Sum test. pSTAT6 is not depicted, because it was not
for 24 hours before CD3/CD28 activation. Analysis was performed 2 days after cells
ingle-cell RNA sequencing with the use of cell surface antigen embedding pipeline.
d as illustrated with the uniform manifold approximation and projection (UMAP).
manually ordered and annotated cell clusters with the corresponding scaled surface
d on boxplots. For visualization purposes, square root transformation was applied on
st. (F) Dot plot showing differentially expressed genes in each T-cell clusters from
are depicted. P values were computed by means of Wilcoxon rank sum test and
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advantage of samples from patients included in a randomized
study to decipher how azithromycin promoted relapse in
patients. To gain mechanistic insight, we performed in vitro
experiments that highlighted that azithromycin promotes
immunomodulatory mechanisms, notably through inhibiting
main antitumoral T-cell functions.

We first identified immune changes associated with azith-
romycin intake in patients, including lower total T cells, a higher
proportion of TH2-biased T cells, and an increased proportion
of naïve FoxP3+ regulatory T cells. Functional states of immune
cells revealed increased proportion of exhausted lymphocytes,
notably expressing inhibitory receptors TIGIT and PD-1 with
TOX,31 associated with azithromycin treatment. Exhaustion
mechanisms had been previously reported to be associated
with relapse.17,32,33 Interestingly, similarly to what has been
reported in nonresponders to immune checkpoint inhibitors,
we observed lower switched memory B cells characterized by
lower CXCR3 expression being associated with azithromycin
intake.34

To decipher azithromycin effects on antitumor response, we
explored T-cell functions after azithromycin exposure in vitro. It
highlighted how azithromycin inhibits the proliferation of both
CD4+ and CD8+ T cells after activation without an impact on
their survival. Azithromycin inhibited antitumor cytotoxicity
functions of T cells and cytokine production, notably antitumor
cytokines such as type 1 and 2 IFNs and TRAIL.35-37 In addition,
a higher level of IL-13, which suppresses type I responses in
tumor environment,38 was consistent with TH2-biased cells
subsets after azithromycin exposure.

By integrating biological variables associated with azith-
romycin intake, we identified the PD1+ TH2 CD4+ cells,
exhausted PD1+CD8+ T cells, and NK cells subsets as main
contributors to subsequent relapse, as well as pathways
involving energy metabolism and CoA biosynthesis. Imid-
azole propionate was lower in azithromycin patients. This
histidine-derived metabolite activates mTOR-S6K pathway,27

and its absence in hepatocyte cultures is similar to the effect
of rapamycin treatment, suggesting its importance in cell
signaling.24 Coenzyme A has a central role in enhancing
antitumor cytotoxicity by promoting oxidative phosphoryla-
tion in CD8+ T cells.26 In addition, 2,3-diphosphoglycerate
involved in glycolysis was one of the first intracellular
metabolite found to contribute to relapse. Metabolomics
may be influenced by gut microbiota changes under azith-
romycin treatment or by changes in host metabolism that are
not directly related to immune cells. Gene set enrichment
from single-cell transcriptomic analyses on PBMCs from
patients revealed that azithromycin was associated with
enrichment in energy metabolism pathways, such as glycol-
ysis, OXPHOS, and fatty acid–related pathways in immune
cells. Direct effect on T-cell metabolism was next confirmed
in vitro, in which azithromycin exposure inhibited glycolysis
in both CD4+ and CD8+ subsets after activation. Glycolysis
in T cells mobilizes ATP to gain effector functions after
activation.29 Previous studies have demonstrated that
glycolysis inhibition could induce T-cell exhaustion.39,40 In
addition, metabolically unfit T cells were found to be asso-
ciated with lower antitumor activity.41 Glycolysis is known
to be regulated by the mTORC1-HIF1 pathway.42,43 We
AZITHROMYCIN INHIBITS ANTITUMOR IMMUNE RESPONSE
mainly found inhibition of TCR signaling pathway in T cells.
mTOR signaling was inhibited in CD4+ subsets but not in
CD8+. This may explain the higher inhibitory effect of azith-
romycin on CD4+ compared with that on CD8+ cells. This also
suggests that glycolysis inhibition may not be ascribed
uniquely to mTOR pathway but also to upstream TCR
signaling.

Single-cell analysis of gene expression after azithromycin
exposure revealed down-regulation of mitochondrial genes
that was associated with impaired respiratory chain functions.
Mitochondrial metabolism produces ATP through oxidative
phosphorylation and metabolites involved in the TCA and
fatty acid oxidation.40 Others have already reported that
blocking mitochondrial protein translation leads to
decreased cytotoxic and effector functions in T cells.44,45

Because azithromycin is known to inhibit the bacterial
ribosomal 50S subunit, azithromycin may thus also alter
transcription of proteins involved in antitumor response, such
as IFN or TRAIL.23 We identified SOCS1 as the most signifi-
cantly up-regulated gene, with higher protein expression
after azithromycin exposure. SOCS1 was recently shown to
abrogate TH1 responses, notably IFN-⍺ and IL-2 synthesis.30

In a mouse model, SOCS1 was shown to inhibit glycolysis
through STAT3/HIF1a pathway.46 This mechanism may also
explain glycolysis inhibition observed in T cells treated with
azithromycin.

In conclusion, studying samples from patients included in the
ALLOZITHRO trial allowed us to decipher how azithromycin
promotes relapse. There is currently extensive literature sug-
gesting that antibiotics affect alloreactivity, demonstrated by
GVHD-related mortality through gut microbiota changes.47 Our
results highlight that azithromycin directly affects immune cells
and that these biological changes are associated with relapse
after allo-HSCT. Knowing that GVHD incidence was not modi-
fied by azithromycin intake in the trial, the features identified in
our study (and in others) include that TH2

48 and exhausted
cells,17,32,33 or metabolically unfit T cells,41 may be more
broadly associated with post-transplantation relapse mecha-
nisms. Beyond the context of allo-HSCT, azithromycin is widely
used in chronic respiratory diseases.23 Our results raise the
question of the safety of using this treatment in patients at risk
of cancer, such as patients with chronic obstructive pulmonary
disease.49
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