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PLATELETS AND THROMBOPOIESIS
MAPK-interacting kinase 1 regulates platelet
production, activation, and thrombosis
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KEY PO INT S

•Mnk1 regulates mRNA
translational events in
megakaryocytes and
platelets.

•Mnk1 contributes to
megakaryopoiesis and
platelet production,
cPLA2 activity, and
thrombosis.
477/2
The MAPK-interacting kinase (Mnk) family includes Mnk1 and Mnk2, which are phos-
phorylated and activated in response to extracellular stimuli. Mnk1 contributes to cellular
responses by regulating messenger RNA (mRNA) translation, and mRNA translation
influences platelet production and function. However, the role of Mnk1 in megakaryo-
cytes and platelets has not previously been studied. The present study investigated Mnk1
in megakaryocytes and platelets using both pharmacological and genetic approaches. We
demonstrate that Mnk1, but not Mnk2, is expressed and active in human and murine
megakaryocytes and platelets. Stimulating human and murine megakaryocytes and
platelets induced Mnk1 activation and phosphorylation of eIF4E, a downstream target of
activated Mnk1 that triggers mRNA translation. Mnk1 inhibition or deletion significantly
diminished protein synthesis in megakaryocytes as measured by polysome profiling and
055544/blood_bld-2022-015568-m
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[35S]-methionine incorporation assays. Depletion of Mnk1 also reduced megakaryocyte ploidy and proplatelet forming
megakaryocytes in vitro and resulted in thrombocytopenia. However, Mnk1 deletion did not affect the half-life of
circulating platelets. Platelets from Mnk1 knockout mice exhibited reduced platelet aggregation, α granule secretion,
and integrin αIIbβ3 activation. Ribosomal footprint sequencing indicated that Mnk1 regulates the translation of
Pla2g4amRNA (which encodes cPLA2) in megakaryocytes. Consistent with this, Mnk1 ablation reduced cPLA2 activity
and thromboxane generation in platelets and megakaryocytes. In vivo, Mnk1 ablation protected against platelet-
dependent thromboembolism. These results provide previously unrecognized evidence that Mnk1 regulates mRNA
translation and cellular activation in platelets and megakaryocytes, endomitosis and thrombopoiesis, and thrombosis.
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Introduction
Megakaryocytes produce ~1 × 1011 platelets in adults daily
under physiological conditions1 by projecting proplatelets into
bone marrow sinusoidal vessels,2-4 regulating hemostasis and
thrombosis.5-7 Platelet activation is associated with a change in
platelet shape, secretion of granule contents, activation of the
fibrinogen receptor, and generation of the lipid mediator
thromboxane A2 (TxA2).8-10

MAPK-interacting kinase 1 (Mnk1) belongs to a group of serine/
threonine kinases called MAPK interacting protein kinases.11,12

In mammalian cells, there are only 2 Mnk family members:
Mnk1 and Mnk2. Both Mnk1 and Mnk2 can be activated by
either Erk or p38 MAPK.11 In other cells, Mnk1 regulates
the translation of inflammatory genes while also driving recep-
tor tyrosine kinase activity (Spry2).13-16 Mnks mediate the
pathophysiology of malignant and thrombo-inflammatory dis-
eases,17-20 but Mnk knockout (KO) mice develop normally,
suggesting Mnks may be a safe therapeutic target. Drugs tar-
geting Mnks are in clinical development.21

Translation of messenger RNAs (mRNAs) is a critical step in
proplatelet formation and platelet function.22,23 Translation
is generally divided into 3 steps: initiation, elongation, and
termination, and initiation is often the rate-limiting step. Initia-
tion begins when eukaryotic initiation factor 4F (eIF4F) binds
to the 5′ cap of mRNAs. The eIF4F protein complex comprises
3 subunits: eIF4A, which processes ATPase and RNA helicase
activities; the 5′ mRNA cap-binding protein eIF4E; and the
scaffolding protein eIF4G, which recruits other translation factors
and ribosomes to the 5′ end of mRNAs. In nucleated cells, the
activity of eIF4E is regulated via its phosphorylation by Mnks and
binding to eIF4E-binding protein repressor proteins.13,24 Mnks
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are the only known kinases that phosphorylate eIF4E, and eIF4E
is the only known Mnk substrate validated in vivo.25 Mnk1 drives
the inducible phosphorylation of eIF4E, whereas Mnk2 primarily
drives the basal constitutive phosphorylation of eIF4E.25

eIF4E is present and active in human platelets and is regulated
by outside-in signals delivered by integrins.26 However, the
expression and function of Mnk1 in megakaryocytes and
platelets remain largely unknown. In this study, we sought to
elucidate the role of Mnk1 in human and murine megakaryo-
cytes and platelets.

Methods
Platelets and murine megakaryocytes were prepared from
healthy donors, C57BL/6 wild-type (WT) or global Mnk1 KO
mice.25,27-33 Human megakaryocytes were transfected with
MKNK1 clustered regularly interspaced short palindromic
repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) (Alt-R
CRISPR/Cas9 RNAs with >65% on-target score or nontargeting
control) on culture day 5.34

For polyploidy assays, bone-marrow murine megakaryocytes
(culture day 5) were isolated, stained with CD41 antibody, fixed
(paraformaldehyde), and incubated with propidium iodide
(50 μg/mL, 1 hour) and RNAase A (300 μg/mL), and flow
cytometry was performed.

For ribosome footprint profiling, megakaryocytes were treated
with cycloheximide to preserve ribosomes natively attached
to mRNAs (ARTseq-Ribosome Profiling Kit). Sequencing was
done using Illumina HiSeq. Significantly differentially expressed
ribosome-protected RNAs (RPRs) were those with a false discov-
ery rate < 0.05 and a log2 fold change ≥ 1.5 in Mnk1 KO mice.

Platelet aggregation to various agonists was measured using a
lumi-aggregometer (37◦C stirring). In select experiments, plate-
lets were preincubated with CGP 57380, a Mnk inhibitor. cPLA2
activity was assessed in murine platelets using the Cytosolic
Phospholipase A2 assay kit (Abcam; ab133090). Levels of TxB2

were determined using a Correlate-EIA thromboxane B2 enzyme
immunoassay kit (Assay Designs, Inc., Ann Arbor, MI).

The inferior vena cava (IVC) venous thrombosis stasis model was
performed as described.35,36 Following sterile laparotomy, the
IVC was dissected bluntly, and side branches were ligated with
8-0 Prolenesuture, and lumbar branches were closed. The IVC
was separated from the aorta and completely ligated with 8-0 Pro-
lene suture. After 48 hours, thrombi were collected and weighed.

For the pulmonary embolism model, collagen (0.2 mg/kg) and
epinephrine (15 mg/kg) were administered through retro-orbital
injection, and time to cessation of respiration was recorded.

For polysome profiling assays, sucrose gradients (2-6x, 10%-
50%, 12%-50%, or 15%-50%) were prepared, and cells were
pretreated with 100 μg/mL cycloheximide (5 minutes). Cells
were collected by centrifugation for 2 minutes at 2000g, and
the cell pellet was washed with 1x phosphate-buffered saline
with 100 μg/mL cycloheximide, collected by centrifugation
(2 minutes, 2000g), and resuspended in laemmlie sample buffer
supplemented with ribonuclease and cycloheximide. Gradients
2478 8 DECEMBER 2022 | VOLUME 140, NUMBER 23
were analyzed on a UV reader and collected into tubes con-
taining TRIzol LS.

For the [35S]-Methionine incorporation assay, megakaryocytes
(culture day 5) were suspended in Dulbecco’s modified Eagle
medium that lacked methionine and cysteine. EasyTag
EXPRESS [35S] protein labeling mix was added to the mega-
karyocytes (15 minutes). Megakaryocytes were adhered on a
fibrinogen-coated plate (10 mg/mL). The cell pellets and
supernatants were collected, washed, and lysed in aadioim-
munoprecipitation assay buffer, precipitated (20% trichloro-
acetic acid), loaded onto a Whatman grade GF/C glass
microfiber filter, and read using a liquid scintillation counter.

Each experiment was repeated at least 3 independent times.
Data were analyzed using Prism software. Significant differ-
ences were determined using Student t test, analysis of vari-
ance, and Kaplan-Meier survival analyses as appropriate. A
2-tailed P value < .05 was considered significant.

Please also see supplemental Materials (available on the Blood
website).

Results
Mnk1 is functionally active in megakaryocytes
and platelets
Mnk1 protein, but not Mnk2, is basally expressed in both human
and mouse megakaryocytes and platelets comparable to white
blood cells (Figure 1A). Mnk1 is rapidly phosphorylated in acti-
vated megakaryocytes and platelets (Figure 1B-C). One agonist
that induced phosphorylation of Mnk1 was thrombopoietin
(TPO), which also regulates platelet production. Agonists that
phosphorylated Mnk1 also phosphorylated eIF4E (Figure 1B-C).

To determine whether Mnk1 was necessary for eIF4E phos-
phorylation, we adopted complementary pharmacological and
genetic approaches in human and murine platelets. An inhibitor
of Mnk1, CGP 57380, abolished agonist-stimulated phosphor-
ylation of eIF4E in platelets in a dose-dependent fashion and
without significant off-target effects (Figure 1D-E and not
shown). Similar results were observed in platelets activated with
collagen and 2MesADP (Figure 1F-G). As expected, CGP 57380
had no significant effect on phosphorylation of eIF4E-binding
protein 1 (Figure 1D), which is upstream of Mnk1.

We next used mice where MKNK1 (the gene name for Mnk1)
was globally ablated. We confirmed that in these mice (termed
Mnk1 KO mice herein), Mnk1 protein is absent in platelets and
megakaryocytes (Figure 1H and not shown). Deletion of
MKNK1 eliminated phosphorylation of Mnk1 and eIF4E in
activated murine megakaryocytes and platelets (Figure 1I-K).
Total eIF4E protein levels were not significantly altered in Mnk1
KO mice (supplemental Figure 1A-B). These results show that
Mnk1 is expressed and activatable in megakaryocytes and
platelets and, once activated, has the potential to associate with
downstream eIF4E phosphorylation.

Mnk1 regulates mRNA translation in
megakaryocytes
eIF4E initiates mRNA translation, and, in other cells, Mnk1 regu-
lates mRNA translation.37-39 Whether Mnk1 regulates mRNA
MANNE et al
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translation in megakaryocytes and platelets, however, has not
been previously established. Therefore, we next evaluated the
role of Mnk1 on mRNA translation and de novo protein synthesis
in CD34+, cord-blood derived, cultured human megakaryocytes
by using polysome profiling and [35S]-methionine incorporation
assays. In the polysome profiling assay, megakaryocytes are
activated on adherent fibrinogen and then separated on sucrose
gradients and fractionated to identify peaks corresponding to
ribosomal monosomes (subunits 40S, 60S, and 80S) and poly-
somes. A shift into the monosome fraction with an accompanying
decrease in the polysome fraction is consistent with repressed
mRNA translation. As shown in Figure 2A, inhibiting Mnk1 with
CGP 57380 resulted in a higher monosome peak and lower
polysome peak, suggesting Mnk1 regulates mRNA translation in
megakaryocytes.

We next performed an [35S]-methionine incorporation assay in
human megakaryocytes to quantify changes in mRNA trans-
lation. Inhibiting Mnk1 with CGP 57380 modestly, but sig-
nificantly, reduced the incorporation of [35S]-methionine
into newly synthesized proteins (Figure 2B). We observed a
similar reduction in protein synthesis in fibrinogen-activated
megakaryocytes from Mnk1 KO mice (Figure 2C). These
results indicate that Mnk1 regulates mRNA translation and
de novo protein synthesis in activated human and murine
megakaryocytes.
/article-pdf/140/23/2477/2055544/blood_bld-2022-015568-m
ain.pdf by
Mnk1 regulates megakaryocyte endomitosis
and platelet production
Previous studies have shown that Mnk1 is vital for cell devel-
opment.39-41 It remains unknown whether Mnk1 regulates
megakaryopoiesis and thrombopoiesis. We leveraged data
from PRAX1,42 which includes 154 healthy donors, to evaluate
any association between Mnk1 RNA expression and platelet
count or size. We observed a significant positive association
between platelet Mnk1 RNA expression and platelet counts and
a significant negative association between Mnk1 RNA expres-
sion and mean platelet volume (MPV; Figure 3A). In contrast,
Mnk1 RNA expression did not correlate with leukocyte counts
(supplemental Figure 2A). Consistent with this human associa-
tive data, platelet counts were significantly decreased and the
MPV significantly increased in Mnk1 KO mice compared with
Figure 1. Megakaryocytes and platelets express Mnk1 protein. (A) Washed platelets
human donors and WT C57Bl/6 mice were lysed and analyzed for total Mnk1 and Mnk2 p
representative of n ≥ 3 independent experiments. (B) CD34+ megakaryocytes derived an
(100 ng/mL) on culture day 13 for 15 minutes. Lysates were analyzed for phosphorylated
β-Actin was used as a loading control. Images representative of n ≥ 3 independent expe
AYPGKF (100 μM), collagen (5 μg/mL), or 2MeSADP (50 nM) for 5 and 10 minutes. Sample
used as a loading control. Images representative of n ≥ 3 independent experiments. (D-
treated with different concentrations of the Mnk1 inhibitor CGP 57380 for 5 minutes. The
and analyzed for p-eIF4E and p-4EBP1 by western blotting. β-Actin was used as a loadi
shown in the bar graphs to the right. Western blot images are representative of n ≥ 3 ind
CGP 57380 (10 μM) for 5 minutes. The cells were then left alone in DMSO (Veh) or stimulat
probed for p-eIF4E by western blotting. β-Actin was used as a loading control. Quantitativ
.05). Western blot images are representative of n ≥ 3 independent experiments. (H) The
analyzed by western blotting. β-Actin was used as a loading control. Western blot imag
megakaryocytes from either WT or Mnk1 KO mice were left alone or stimulated with TPO
western blotting. β-Actin was used as a loading control. Western blot images are repres
Mnk1 KO mice were left unstimulated or stimulated with AYPGKF (100 μM) or collagen (5
(bottom) by western blotting. β-Actin was used as a loading control. Images are representa
p-EIF4E (bottom) normalized to β-actin (*P < .05). M, marker; NS, not significant.
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WT controls (Figure 3B). There were no differences in leukocyte
counts in Mnk1 KO mice (supplemental Figure 2B-C).

We next evaluated whether the reduced platelet count in Mnk1
KO mice was due to defects in platelet production or clearance.
We first examined whether megakaryopoiesis was altered in
Mnk1 KO mice. Megakaryocytes progress through development
to an endomitotic phase, where cytokinesis is arrested and DNA
accumulates in a single polylobed nucleus before a final matu-
ration state that is characterized by proplatelet formation and
release.43 Accordingly, we examined endomitosis (polyploidiza-
tion) in megakaryocytes from Mnk1 KO mice and WT controls.
The absence of Mnk1 significantly increased the proportion of
2N megakaryocytes and decreased the proportion of 4N-32N
megakaryocytes (Figure 3C). Megakaryocyte maturation as
assessed by surface expression markers (eg, CD41) was not
significantly altered in Mnk1 KO mice (data not shown).

We next examined proplatelet formation by megakaryocytes. In
Mnk1 KO mice, in vitro proplatelet production by megakaryo-
cytes was significantly reduced (Figure 3D). We injected mice
with an anti-GP1bα antibody, resulting in near-identical platelet
nadirs in WT and Mnk1 KO mice by 48 hours postinjection
(Figure 3E; supplemental Figure 3A). Consistent with impaired
in vitro platelet production by Mnk1 KO megakaryocytes,
in vivo platelet production (measured as the percentage of
platelet recovery following platelet nadir at 48 hours) was also
significantly lower in Mnk1 KO mice (Figure 3E). Reduced
platelet production in Mnk1 KO mice was accompanied by
increased platelet size (supplemental Figure 3B). In comparison,
platelet half-life did not significantly differ between Mnk1 KO
mice and WT control mice (Figure 3F). Collectively, these data
indicate that Mnk1 regulates megakaryopoiesis, platelet pro-
duction, and circulating platelet counts.

To establish whether Mnk1 translational regulation controls
platelet production in human cells, we used CRISPR/Cas9 to
selectively delete the MKNK1 gene from CD34+, cord-blood
derived, cultured human megakaryocytes (supplemental
Figure 4A). Similar to our findings in murine bone marrow
megakaryocytes (Figure 3D), ablating Mnk1 in human cultured
megakaryocytes significantly reduced proplatelet formation
(supplemental Figure 4B-C).
(Plts), megakaryocytes (Megs), and white blood cells (as a control) from both healthy
rotein expression by western blotting. β-Actin was used as a loading control. Images
d cultured from human cord blood were lysed after stimulation with or without TPO
Mnk1 (p-Mnk1, left) and phosphorylated eIF4E (p-eIF4E, right) by western blotting.
riments. (C) Washed human platelets were left alone (0 minutes) or stimulated with
s were analyzed for p-Mnk1 (left) and p-EIF4E (right) by western blotting. β-Actin was
E) Washed human platelets were left unstimulated (US) in DMSO vehicle control or
n, platelets were stimulated with AYPGKF (100 μM, 5 minutes). Cells were then lysed
ng control. Quantitative analysis of p-eIF4E and p-4EBP1 normalized to β-actin are
ependent experiments. (F-G) Washed human platelets were left US or treated with

ed with AYPGKF (100 μM), collagen (5 μg/mL), or 2MeSADP (50 nM) for 5 minutes and
e analysis of p-eIF4E normalized to β-actin is shown in the bar graph to the right (*P <
expression of total Mnk1 protein in platelets from either WT or Mnk1 KO mice was
es are representative of n ≥ 3 independent experiments. (I) Cultured bone marrow
(100 μM) for 15 minutes and then analyzed for p-Mnk1 (top) and p-eIF4E (bottom) by
entative of n ≥ 3 independent experiments. (J) Washed platelets from either WT or
μg/mL) for 5 and 10 minutes. Platelets were analyzed for p-Mnk1 (top) and p-eIF4E
tive of n ≥ 3 independent experiments. (K) Quantitative analyses of p-Mnk1 (top) and
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Figure 2. Mnk1 regulates mRNA translation and de novo protein synthesis in
human and murine megakaryocytes. (A) Human, cord blood–derived, CD34+

megakaryocytes were left alone with vehicle control (DMSO, blue line) or treated
with CGP 57380 (10 μM, red line) on culture day 13 and then allowed to adhere
on fibrinogen-coated plates for 2 hours. Megakaryocytes were then lysed and
sedimented by centrifugation on a 5% to 50% sucrose gradient. Isolated
monosome and polysome fractions are indicated. Graphs are representative of
n = 3 independent experiments. (B) Human, cord blood–derived, CD34+

megakaryocytes were cultured in the presence of CGP 57380 (10 μM) or vehicle
control (DMSO) on culture day 13. Megakaryocytes were then resuspended in
[35S]-methionine media and allowed to adhere on fibrinogen-coated plates for
2 hours. Protein synthesis was quantified using a scintillation counter (*P < .05;
n = 5 independent experiments). (C) Bone marrow–derived megakaryocytes
from either WT or Mnk1 KO mice were resuspended in [35S]-methionine media
and allowed to adhere on fibrinogen-coated plates for 2 hours. Protein synthesis
was quantified using a scintillation counter (*P < .05; n = 6 independent
experiments).
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Mnk1 alters platelet activation responses
mRNA translation impacts platelet functional responses.26,44,45

In platelets and megakaryocytes, cellular activation signals
may induce mRNA translation.26,46,47 Moreover, impaired meg-
akaryopoiesis and thrombopoiesis can alter platelet activation.
Therefore, we next examined whether Mnk1 regulates platelet
functional responses. Platelets from Mnk1 KO mice stimulated
with submaximal thrombin, collagen, and 2MeSADP displayed
reduced aggregation, integrin αIIbβ3 activation, and surface
P-selectin responses (Figure 4A-D). In activated, human-cultured
megakaryocytes where Mnk1 was ablated using CRISPR/Cas9,
surface P-selectin was also significantly reduced (supplemental
Figure 4A,D). Endogenous surface expression of major platelet
receptors CD41a, CD42d, and GPVI were similar between WT
and Mnk1 KO mice (supplemental Figure 5A-C).

Mnk1 controls the translation of the
PLA2G4A gene
In megakaryocytes and platelets, mRNA is translated and pro-
teins are synthesized in regulated, signal-dependent mecha-
nisms.48,49 Our data suggest that Mnk1 controls activation of
eIF4E (Figure 1), which initiates mRNA translation in eukaryotic
cells. Therefore, to identify which mRNAs are translationally
regulated by Mnk1, we employed ribosome footprint profiling
of primary murine bone marrow megakaryocytes adherent to
fibrinogen in vitro from WT and Mnk1 KO mice. Ribosome
footprint profiling enables the global quantification of RNAs
with ≥1 ribosomes attached (RPRs).47,50 RPRs identify RNAs
undergoing active translation. We have successfully used this
technique in platelets and megakaryocytes.46,47,51 By perform-
ing differential expression analyses of RPRs on megakaryocytes
from WT or Mnk1 KO mice, we identified significantly upre-
gulated RPRs (ie, more ribosomes attached to RNAs) and
downregulated RPRs (ie, fewer ribosomes attached to RNAs)
(Figure 5A-C). There were minimal changes in total RNA
expression, as assessed by RNA sequencing, between Mnk1
KO and WT mice (supplemental Figure 6).

Reactome and Wiki pathway analyses suggested that Mnk1
controlled the translation of mRNAs encoding proteins in-
volved in platelet activation and eicosanoid lipid synthesis
(supplemental Figure 7A-B). Interferon signaling was also
significantly altered (supplemental Figure 7A), consistent with
published data demonstrating that in other cells, Mnk kinases
control translation of interferon-sensitive genes.52 Indeed, the
ribosomal occupancy of a number of interferon-sensitive genes
was significantly downregulated in platelets from Mnk1 KO
mice, including interferon-inducible transmembrane protein 3
(IFITM3, supplemental Figure 8). We recently described the
regulated expression and function of IFITM3 in platelets and
megakaryocytes during viral infections,53 and these data sug-
gest that IFITM3 may be partly under Mnk1-dependent trans-
lational control in platelets.

In a candidate-gene approach, we noted that RPRs for PLA2G4A
(the gene encoding cytosolic phospholipase A1 or cPLA2)
were downregulated in megakaryocytes from Mnk1 KO mice
(Figure 5B; supplemental Figure 9). cPLA2 is a calcium-
dependent enzyme phosphorylated upon platelet activation
that releases arachidonic acid, a precursor to the synthesis of
eicosanoids, from membrane phospholipids.54 In other cells,
8 DECEMBER 2022 | VOLUME 140, NUMBER 23 2481
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Mnk1 activates cPLA214.55 Therefore, we chose to establish
whether or not Mnk1 regulates cPLA2 expression.

In an independent set of experiments, we probed isolated bone
marrow megakaryocytes fromMnk1 KOmice and WT controls for
cPLA2 protein levels. Expression of cPLA2 protein was signifi-
cantly reduced in megakaryocytes lacking Mnk1 (Figure 5D).
Human platelets are not readily amenable to genetic manipula-
tion. To circumvent this limitation, we have used CRISPR/Cas9
to edit genes in human megakaryocytes.34,53,56 Megakaryocytes
possess many of the functional responses of platelets, including
translational changes47,53 and signal-dependent activation,34,56
2482 8 DECEMBER 2022 | VOLUME 140, NUMBER 23
and can be used as model cells to study genes regulating
platelet responses. Consistent with our findings in murine sys-
tems, ablating Mnk1 in human megakaryocytes significantly
reduced cPLA2 protein levels (Figure 5E).

Mnk1 regulates cPLA2 expression and
thromboxane production in platelets
Platelet aggregation relies on the generation of secondary
mediators such as thromboxane A2 (TxA2), and cPLA2 regulates
TxA2 production. In other cells, Mnk1 is known to phosphory-
late cPLA2, and our data indicate that Mnk1 regulates PLA2G4A
mRNA translation and cPLA2 protein levels in megakaryocytes
MANNE et al
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(Figure 5). Therefore, we next evaluated cPLA2 mRNA transla-
tion and protein expression in platelets from Mnk1 KO mice.
Consistent with our data in human and murine megakaryocytes,
total cPLA2 protein expression was modestly, but significantly,
reduced in platelets from Mnk1 KO mice compared with WT
littermate controls (Figure 6A). Activation of platelets results in
phosphorylation of cPLA2 on Ser505 and Ser727.57 Mnk1
phosphorylates cPLA2 at the Ser727 residue that subsequently
regulates arachidonic acid release in CHO cells.58 Therefore, we
next tested whether Mnk1 controls cPLA2 activation and TxA2
generation by platelets. As shown in Figure 6B-C; supplemental
Figure 10, both cPLA2 phosphorylation and activity were signif-
icantly reduced in activated platelets from Mnk1 KO mice. We
next evaluated whether Mnk1 controlled the accumulation of
TxB2, a stable metabolite of TxA2. In activated platelets from
Mnk1 KO mice, TxB2 production was significantly reduced
(Figure 6D). Signal transduction pathways downstream of
thrombin/PAR4 and 2MesADP/P2Y12 and collagen/GPVI
were similar between WT and Mnk1 KO mice (supplemental
Figure 11A-D). Stimulating platelets with arachidonic acid, which
is downstream of cPLA2, rescued the defects in aggregation in
Mnk1 KOmice (Figure 4A-B; supplemental Figure 12A-B).
Mnk1 IN MEGAKARYOCYTE AND PLATELET FUNCTION
Mnk1 regulates platelet-dependent thrombosis
Given our findings that Mnk1 regulates platelet activation
responses in vitro, we next evaluated the effects of Mnk1 on
thrombosis in vivo. In a model of thrombosis due to venous
stasis, we found that Mnk1 KO mice develop significantly fewer
thrombi and that formed thrombi are significantly smaller
(Figure 7A-D). We also examined the effects of Mnk1 deficiency
in a collagen-/epinephrine-induced pulmonary thromboembo-
lism model; a thrombosis model in which platelet activation is
the most prominent feature.27 Consistent with our ex vivo data,
Mnk1 KO mice were significantly protected from death due to
pulmonary thromboembolism (Figure 7E). Interestingly, in a
cerebral ischemia-reperfusion model, where cerebral injury is
due to filament-induced ischemia and subsequent reperfusion,
Mnk1 deficiency did not reduce infarct size or outcomes (sup-
plemental Figure 13A-D).

Discussion
Regulation of mRNA translation mediates key aspects of mega-
karyocyte and platelet biology,22,59 although the regulatory steps
involved remain largely unknown. Although recent studies have
8 DECEMBER 2022 | VOLUME 140, NUMBER 23 2483
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identified Mnk as regulating the translation of a subset of mRNAs
in other cells,60-62 the expression and function of Mnk in mega-
karyocytes and platelets have not previously been reported. In
this study, we demonstrate that Mnk1 (but not Mnk2) is selectively
expressed and functionally active in human and murine mega-
karyocytes and platelets to regulate platelet production, platelet
activation, and thrombosis. Mnk kinases are active in many cells,
especially in cancer and tumor cell lines,63-69 and Mnk1 influences
myeloid cell functions.70,71 Prior elegant work dissecting phos-
phorylation pathways of cPLA2 also found that Mnk1 was present
and functionally active in human platelets,58 consistent with our
current study. These authors also demonstrated that Mnk1
phosphorylates cPLA2 at Ser727. Our findings suggest that in
platelets, Mnk1 also phosphorylates cPLA2 at Ser505.

We also observed that stimulating megakaryocytes and platelets
with a variety of agonists (eg, collagen, 2MeSADP, AYPGKF,
2484 8 DECEMBER 2022 | VOLUME 140, NUMBER 23
TPO) activated Mnk1 and triggered the phosphorylation of its
dedicated substrate eIF4E. Ablating Mnk1 in platelets and mega-
karyocytes completely blocked signal-dependent phosphorylation
of eIF4E. In other cells, eIF4E is phosphorylated at a single site,
Ser209,72 upon stimulation,68,73 and Mnk1 is the only serine/thre-
onine kinase that phosphorylates eIF4E in mice.25 Interestingly, in
some settings, eIF4E may act as a protooncogene.74,75

Our studies build upon and extend these observations by
showing that eIF4E phosphorylation in activated megakaryo-
cytes and platelets is also controlled by Mnk1. Interestingly,
prior studies in murine embryonic fibroblasts suggest that
deletion of Mnk1 does not impair cap-dependent mRNA
translation or general protein synthesis.25 In contrast, we
observed that de novo protein synthesis was significantly
reduced in human and murine megakaryocytes where Mnk1
was either pharmacologically inhibited or genetically ablated.
MANNE et al
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This suggests that Mnk1-dependent translational control may
differ in megakaryocytes relative to other cells.

Translation of mRNAs is regulated by multiple checkpoints that
allow cells to control protein synthesis. Eukaryotic initiation
factors regulate the association of ribosomes with mRNAs and
subsequent scanning to find the start codon. eIF4E forms a
translation initiation complex with eIF4G that also includes
Mnk1 and, thus, regulates the initial steps of mRNA trans-
lation.24,76,77 Functionally inactive eIF4E or genetic deletion of
eIF4E stalls mRNA translation in other nucleated cells.77-80

Regulated mRNA translation orchestrates platelet production
and function.22,81,82 However, the checkpoints that regulate
mRNA translation remain poorly understood. Using polysome
profiling and [35S]-methionine incorporation assays, we found
that Mnk1 promotes the translation of a subset of RNAs. One of
these identified by ribosomal footprint profiling was activating
transcription factor 4 (supplemental Figures 8B and 14), a
widely expressed transcription factor previously linked to Mnk1
Mnk1 IN MEGAKARYOCYTE AND PLATELET FUNCTION
signaling in cancer cells.83 Interestingly, interferon-sensitive
genes, including IFITM3, also appeared to be under Mnk1-
dependent translational control in platelets (supplemental
Figure 8A). Further investigation of Mnk1 as a translational
checkpoint in megakaryocytes and platelets is warranted.

To decipher the role of Mnk1 in megakaryocyte and platelet
development, we employed complementary human and murine
studies. We leveraged the available PRAX dataset,42,84 which
includes transcriptomic, demographic, and platelet phenotyping
data on 154 healthy male and female donors from various
backgrounds to examine correlations between MKNK1 mRNA
expression in platelets and circulating platelet counts and the
MPV (an index of platelet size). We observed a modest, but
significant, positive association between Mnk1 mRNA expression
and platelet counts and a modest, but significant, negative
association betweenMnk1 mRNA expression and MPV in healthy
human donors. Interestingly, the effect size of the association
between Mnk1 mRNA expression and platelet counts or MPV in
8 DECEMBER 2022 | VOLUME 140, NUMBER 23 2485
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humans appeared to be greater than the effect size observed in
Mnk1 KO mice. Although our data support Mnk1 as influencing
platelet count and size in humans and mice, we speculate that
there may be other factors that influence Mnk1-associated
changes in platelet number and size. To mechanistically estab-
lish whether Mnk1 regulates platelet production, we employed a
mouse model where Mnk1 was globally ablated. Consistent with
our associative data in humans, the ablation of Mnk1 in mice
significantly reduced circulating platelet counts and increased
the platelet MPV. In vitro, megakaryopoiesis and proplatelet
production was also impaired in mice lacking platelet Mnk1. This
was accompanied by impaired platelet production in vivo
without any differences in platelet clearance.

Pathways and proteins regulating platelet production may also
control platelet functional responses. In mice lacking Mnk1, we
2486 8 DECEMBER 2022 | VOLUME 140, NUMBER 23
observed reductions in agonist-induced platelet aggregation,
integrin αIIbβ3 activation, and α granule release. These changes
were similar across various agonists, suggesting a common
upstream mediator. Although eIF4E is involved in the process
of mRNA translation, there remains uncertainty as to which
specific mRNAs are translated when eIF4E is phosphorylated
and Mnk1 is activated. mRibosomal footprint profiling enabled
us to identify some mRNAs that were under Mnk1-dependent
translational control, including mRNAs known to regulate
platelet activation. We noted that the eicosanoid lipid synthesis
pathway in platelets was altered in the absence of Mnk1. One
protein crucial for this pathway is cPLA2, which is also necessary
for the generation of TxA2.85-88 TxA2 is produced when
arachidonic acid is released from platelet membrane phos-
pholipids via the activation of cPLA2.55,89,90 cPLA2 has a MAPK
consensus phosphorylation motif at Ser-505, which is phos-
phorylated by the MAPK family. ERK and p38 MAPK regulate
Ser-505 phosphorylation of cPLA2 in platelets stimulated with
thrombin or collagen.57,91 We identified that the expression of
cPLA2 protein was significantly reduced in platelets and
megakaryocytes lacking Mnk1, and this was accompanied by
reduced cPLA2 phosphorylation and activity. Concordantly, in
the absence of Mnk1, TxB2 production by platelets was also
significantly reduced. To evaluate the functional consequences
of Mnk1 deletion, we employed complementary ex vivo and
in vivo thrombosis models. Consistent with decreased platelet
activation responses, we found that in the absence of platelet
Mnk1, venous thrombosis formation and mortality from pul-
monary thromboembolism were reduced. We did not observe
any protection from Mnk1 deficiency in a stroke model of
cerebral injury due to transient ischemia and subsequent
reperfusion, suggesting that Mnk1-regulated platelet activation
differs in this vascular bed and/or under these experimental
conditions.

Although the pharmacologic Mnk1 inhibitor CGP 57380 may
have off-target effects in some cells, our observations using
CGP 57380 were similar to those made in Mnk1 KO mice and in
human megakaryocytes where Mnk1 was selectively ablated by
CRISRP/Cas9. Moreover, CGP57380 has not demonstrated
any evidence of cellular toxicity, even at high concentrations.
Therefore, we do not believe our findings can be attributed to
nonspecific pharmacologic effects. Other strengths of our study
include the use of human and murine platelets and megakar-
yocytes and leveraging larger datasets (eg, PRAX1) for asso-
ciative clinical analyses.

Limitations of our study include use of a mouse model where
Mnk1 was globally ablated rather than specifically ablated in
platelets and megakaryocytes. As such, we cannot completely
exclude the possibility that the absence of Mnk1 in other cells
mediates platelet count and size. However, our studies in iso-
lated platelets and megakaryocytes support the role of Mnk1
on platelet production, activation, and thrombosis. We also
recognize that although our data indicate that Mnk1 controls
platelet count by regulating de novo protein synthesis and
endomitosis in megakaryocytes, we have not yet identified the
specific molecule(s) that Mnk1 regulates. Finally, although we
did not observe differences in signaling pathways downstream
of PAR4, P2Y12, or GPVI, we cannot completely exclude the
possibility that other signal transduction pathways are altered
by Mnk1 deficiency.
MANNE et al
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In conclusion, we provide new evidence that Mnk1 in platelets
and megakaryocytes regulates mRNA translation, cellular
development, and function. These findings have implications
for clinical arenas where Mnk1 inhibitors are being developed.
Further, this study deepens our understanding of the role of
translation control pathways in platelets and megakaryocytes in
platelet production and thrombosis.
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