
TO THE EDITOR:
Hybrid immunity in immunocompromised patients
with CLL after SARS-CoV-2 infection followed by
booster mRNA vaccination
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Patients with chronic lymphocytic leukemia (CLL) are immuno-
compromised.1 They are at high risk for developing severe
COVID-192-4 and mount suboptimal immunity after messenger
RNA (mRNA) vaccination,5,6 but they have slightly conflicting
results regarding cellular immunity.7,8 In a “hybrid immunity”
setting, immune protection is influenced by prior infection
status and vaccination. Here, we studied humoral and cellular
hybrid immunity in a CLL cohort of 29 patients with a history of
COVID-192 and 3 consecutive mRNA vaccinations against
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
(2 patients received 2 doses).

The study was approved by Swedish Ethical Review Authority
(www.etikprovningsmyndigheten.se). Written informed consent
was obtained before sampling. Serum and saliva antibodies
were measured prevaccination, after dose 2, and before and
after dose 3 vaccinations. SARS-CoV-2 immunoglobulin G (IgG)
antibodies in serum were analyzed using Roche Elecsys quali-
tative anti-SARS-CoV-2 and quantitative anti-SARS-CoV-2
immunoassays as described elsewhere.2,5 Saliva was collected
using a self-sampling technique, and SARS-CoV-2 IgG anti-
bodies were analyzed as described elsewhere.9-11 T-cell
responses were analyzed by activation-induced marker assay as
described elsewhere12 before vaccination and before and after
dose 3. We also applied the interferon gamma (IFN-γ) ELISpot
as described elsewhere.2,7 Experimental methods are
described in the supplemental Methods, available on the Blood
website.

Twenty-nine patients from a previous COVID-19 study were
included.2 Patient characteristics and mRNA vaccinations are
summarized in Table 1 and supplemental Table 1. Twenty-one
patients were untreated, 6 had received CD20 monoclonal
antibody–containing treatment >12 months before, and
2 received BTK inhibitor (BTKi) therapy. The variability in time
since recovery from COVID-19 and between vaccinations and
tests is depicted in Table 1. Breakthrough infections were not
observed during the study (until 21 December 2021). Immune
responses are shown in Figure 1 (entire cohort) and supple-
mental Figure 1 (patients without missing data points). Serology
results are shown in Figure 1A. Ninety-three percent of patients
(26/28) were seropositive before the first vaccination with titer
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levels available in 25 patients (Figure 1A). The median spike-
specific antibody titer was 47 U/mL (range <0.8-911),
including 3 seronegative patients. After 2 doses, 96% (24/25)
were seropositive and the median antibody titer had increased
to 17 208 U/mL (range <0.8 to >25 000, interquartile range
[IQR] 2793 to >25 000) (P < .0001). This titer fell to a median of
6825 U/mL (range <0.8 to >25 000, IQR 2532 to >25 000) prior
to dose 3 and then increased to a median of 24 956 U/mL
following dose 3 (range <0.8 to >25 000 U/mL, IQR 4219 to
>25 000) (P < .0001) (upper detection limit 25 000 U/mL).
Nucleocapsid-specific antibody levels tended to decline over
time (Figure 1A).

Next, we analyzed salivary IgG, and 95% of patients (19/20) had
spike-specific IgG prior to dose 3 (Figure 1B), with a moderate
correlation between spike antibodies in serum and saliva
(r = 0.4622, P < .0006) (supplemental Figure 2A). Salivary spike
IgG levels appeared with slower kinetics and increased before
dose 3 (P < .05) (Figure 1B). The average level before and after
dose 3 was comparable to naive healthy controls after 2 vaccine
doses.10 Nucleocapsid reactivities were stable with a transient
rise before dose 3 (P < .05) (Figure 1B).

Thereafter, we analyzed T-cell responses against wild-type Wu-
Hu1 and Omicron (BA.1) as described elsewhere.12 Thirteen
patients were included, with memory responses shown in
Figure 1C. After dose 3, the spike-specific CD4+ T cells (P < .05)
(Figure 1D) and CD8+ T cells (P < .01) increased (Figure 1E) with
a similar magnitude for Wu-Hu1 (wild-type) and Omicron (BA.1).

IFN-γ ELISpot analysis showed no significant differences
following dose 3 (Figure 1F), although spike-specific responses
tended to increase and non-spike-specific membrane, enve-
lope, and nucleocapsid responses declined over time.

Additionally, we also made paired analyses of results in patients
without missing data points (supplemental Figure 1). Almost
identical and statistically significant changes over time were
observed in this group compared with the entire cohort for
spike antibodies in serum (n = 19, supplemental Figure 1A) and
saliva (n = 14, supplemental Figure 1B) and for CD8+ T cells
(n = 7, supplemental Figure 1D). The change in CD4+ T cells
1 DECEMBER 2022 | VOLUME 140, NUMBER 22 2403
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Table 1. Clinical characteristics at start of mRNA
vaccination against SARS-CoV-2 as well as timepoints
of vaccination and tests in patients with CLL (n = 29) with
a prior history of COVID-19 infection

All patients

Median age, y (range) 65 (47-83)

Male/female 20/9

CLL treatment status

Never treated 72% (21/29)

Previously treated* 21% (6/29)

Time (mo) since last treatment 45.5 (15-70)

Ongoing therapy† 7% (2/29)

Ongoing Ig supplement 10% (3/29)

CLL stage (by Rai)

0 83% (24/29)

I-II 17% (5/29)

III-IV 0% (0/29)

CLL remission status (by iwCLL)

SD 0% (0/29)

PD 0% (0/29)

PR/CR 34% (10/29)

Not applicable (never treated, early-stage) 62% (18/29)

Not applicable (never treated, progressive
disease)

3% (1/29)

Time (mo) since COVID-19 diagnosis to
vaccination, median (range)

Dose 1 (n = 29) 5.75 (1.75-13.75)

Interquartile range 4.00-11.25

Dose 3 (n = 27)‡ 12 (7.75-19.75)

Interquartile range 9.75-17.75

Time (mo) since pretest to vaccination, median
(range)

Dose 1 (n = 28)‡ 0.25 (0-4.25)

Interquartile range 0-1.00

Dose 3 (n = 25)‡ 1.25 (0.25-2.75)

Interquartile range 1.00-1.75

Time (mo) since vaccination to test, median
(range)

Dose 2 (n = 25)‡ 0.75 (0.25-2.5)

Interquartile range 0.51-1.00

Dose 3 (n = 27)‡ 0.75 (0.5-1.5)

Interquartile range 0.75-1.00

Time (mo) between vaccine doses, median
(range)

Dose 1-2 (n = 29) 1.5 (0.75-2.0)

Interquartile range 1.37-1.50

Dose 2-3 (n = 27) 5 (2.75-8.25)

Interquartile range 4.25-5.75

Table 1 (continued)

All patients

Type of vaccine§

Dose 1 (n = 29) C = 25, S = 4

Dose 2 (n = 29) C = 25, S = 4

Dose 3 (n = 27) C = 25, S = 2

COVID-19 management‖
Hospital admission 66% (19/29)

ICU admission 7% (2/29)

Supplemental oxygen 48% (14/29)

Corticosteroids 31% (9/29)

Antiviral therapy (Remdesivir) 14% (4/29)

Anticoagulation 59% (17/29)

IvIg 3% (1/29)

Convalescent plasma 0% (0/29)

BTKi 3% (1/29)

Tocilizumab 0% (0/29)

Hydroxychloroquine 3% (1/29)

C, Comirnaty; ICU, intensive care unit; IvIg, intravenous immunoglobulin; iwCLL, Interna-
tional Workshop on Chronic Lymphocytic Leukemia; PD, progressive disease; PR/CR,
partial remission/complete remission; S, Spikevax; SD, stable disease.

*With no current treatment. All with anti-CD20 monoclonal antibody–containing immu-
nochemotherapy (bendamustine-rituximab/fludarabine-cyclophosphamide-rituximab) and
all >12 months prior to vaccination.

†Both with BTKi (ibrutinib). One was previously treated with immunochemotherapy >12
months ago and stopped ibrutinib therapy shortly after the second vaccine dose.

‡Number of patients at each time point is shown in Figure 1 and supplemental Figure 1.

§Comirnaty (BNT162b2, Pfizer BioNTech), Spikevax (mRNA-1273, Moderna). Two patients
did not receive dose 3.

‖March 2020 to March 2021.
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(n = 7, supplemental Figure 1C) no longer reached statistical
significance. In contrast, the change in nucleocapsid antibody
levels was more pronounced than in the entire cohort,
decreasing in serum (n = 13, supplemental Figure 1A) and
increasing in saliva (n = 14, supplemental Figure 1B).

Patients with CLL have shown low anti-spike titers following
mRNA vaccination against SARS-CoV-25,6 even after 3 doses.13

Primary COVID-19 infection resulted in higher titers and T-cell
responses,2 although, as shown here, at low levels at the time of
first vaccination. The present results mimic those observed of
hybrid immunity in otherwise healthy individuals that a com-
bined effect of infection and vaccination results in robust
humoral and cellular anti-SARS-CoV-2 immunity.14

To the best of our knowledge, the present study is the first to
report on hybrid immunity in patients with CLL. The median
serology titers of 17 208 to 24 956 U/mL after 2 and 3 doses
were not affected by the analytical range of the assay even
though several patients had serology titers above the upper
level 25.000 U/mL (Figure 1A). Titers are markedly higher than
the median of <100 U/mL that were found after 2 vaccine doses
in non-COVID patients with CLL who participated in an earlier
prospective vaccine trial.5 This includes abundant local immu-
nity in saliva.5 The plateau at dose 3 in the present study is in
LETTERS TO BLOOD
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Figure 1. Time kinetics of humoral and cellular responses against spike and nonspike epitopes of SARS-CoV-2 in CLL patients after COVID-19 infection followed by 3
mRNA vaccination doses. (A) Serum and (B) salivary levels of S (spike)-receptor-binding domain (RBD) and N (nucleocapsid)-specific antibody responses in patients post–
COVID-19 and pre- (pre vacc) and postvaccination (dose 2 [d2]) and pre- (dose 3) and postvaccination (dose 3) with indicated median values. (C) Spike-specific CD4+

(CD69+CD154+) and CD8+ (CD69+CD137+) T cells were detected by flow cytometry (activation-induced marker assay). Spike-specific CD4+ (D) and CD8+ (E) T-cell response
against Wu-Hu1 (wild-type) and Omicron (BA.1) post–COVID-19 and prevaccination, prevaccination (dose 3), and postvaccination (dose 3). (F) ELISpot IFN-γ-specific T-cell
responses to spike and membrane, envelope, and nucleocapsid (M + E + N) peptide pools post–COVID-19 and prevaccination, prevaccination (dose 3), and postvaccination
(dose 3). White dots represent patients on BTKi treatment in the respective analysis. Number (n) of patients tested at each time point is indicated below graph. Assay upper
limit of detection of 25 000 U/mL is shown as dotted line (A). Dashed line represents positive threshold for each assay: (A) 0.8 U/mL and 1 cutoff index (COI) respectively; (B)
median fluorescence intensity (MFI) of 59 and 100 for S and N, respectively; (D-E) 0.05% and (F) 80 spot-forming units (SFU)/106 cells. Error bars represent the median (red line)
and interquartile range. Kruskal-Wallis test with Dunn multiple comparison correction was used. *P < .05, **P < .01, ****P < .0001. ns, not significant.
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line with 4 vaccine doses in healthy individuals.15 Saliva
antibodies followed a slower time kinetics compared with
serum, not being significantly increased until predose 3.
Whether this is due to rebound infection limited to the oral
LETTERS TO BLOOD
cavity16 is unknown but partly supported by the increase in
nucleocapsid-specific IgG. Robust spike-specific CD8+ T-cell
responses occurred after vaccine dose 3, in line with a report on
patients with multiple sclerosis receiving 3 vaccine doses.17
1 DECEMBER 2022 | VOLUME 140, NUMBER 22 2405
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T-cell immunity was also assessed against Omicron (BA.1), with
higher CD8+ T-cell magnitudes after 3 doses in the CLL cohort
than in healthy non-COVID-19 individuals after 2 mRNA vaccine
doses.12

There are limitations with the present study. The cohort is
limited, most patients had early-stage CLL, and few had
ongoing therapy, which may affect immune responses favor-
ably. The variation in time between COVID-19 and the start of
vaccination and between vaccinations may affect the magni-
tude of the immune responses. Neutralizing antibodies were
not measured even though we found a strong correlation
between serum and saliva IgG levels with neutralization in the
same patients earlier2 and confirmed by others.18 Finally, there
was no control group tested in parallel with this real-world
cohort, and the groups studied (healthy donors and CLL
patients) were not COVID-19 convalescents and received only 2
vaccine doses at the time of reporting.5,7,10,12

Hybrid immunity was recently reported to confer long-lasting
protection from severe disease in healthy persons19-21 even
though not preventive against Omicron.22 The serial mea-
surement of systemic B- and T-cell responses were spike
restricted. Nucleocapsid-directed immune responses
were relatively stable over time, albeit with a slow decline,
9 to 20 months after COVID-19. Also, nucleocapsid antibody
levels were stable or showed a slight increase in saliva, which
may serve as a first-level defense barrier against reinfection
by ancestral SARS-CoV-2 strains.16,23 In conclusion, we
demonstrate robust hybrid immunity in serum, saliva, and the
T-cell compartment in patients with CLL who received
3 doses of mRNA vaccine following COVID-19 infection. The
results are encouraging in the context of immunocompro-
mised patients who have recovered after COVID-19 and need
continuous protection against new SARS-CoV-2 variants of
concern. To obtain protection, patients who remain sero-
negative shall be offered available anti-SARS-CoV-2 preven-
tive therapies.
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FMS-like tyrosine kinase-3 internal tandem duplication (FLT3-ITD)
is identified in ~25% of patients with acute myeloid leukemia
(AML), making it one of the most common variants identified in
this disease.1 Although frontline incorporation of the FLT3
inhibitor midostaurin has been shown to improve survival of
patients with FLT3 mutant AML, it is broadly accepted that allo-
geneic hematopoietic cell transplant (allo-HCT), performed in
approximately 25% to 30% of patients in first remission, is a key
contributor to enhanced outcomes.2 Two studies have shown that
detection of FLT3-ITD before transplant in morphologic remission
using conventional fluorescence-based polymerase chain reac-
tion (PCR) techniques with 1% to 5% sensitivity was associated
with higher post-HCT relapse risk (39%-59%), compared with
patients “negative” for FLT3-ITD (relapse risk 23%-41%).3,4

Assessment of FLT3-ITD by capillary electrophoresis (CE)-based
approaches, however, has low sensitivity (~1%), in contrast to
high-coverage PCR and next-generation sequencing (NGS),
which enables detection of FLT3-ITD with 100- to 1000-fold
greater sensitivity.5-7 By using NGS to assess FLT3-ITD with a
limit of detection of 10−4 to 10−5, the proportion of patients
whose measurable residual disease (MRD) was negative after
2 cycles of intensive chemotherapy combined with midostaurin
was 67%.8 Currently, it is not known whether detection of FLT3-
ITD clones below the sensitivity of CE-based methods has clinical
relevance in forecasting post-HCT relapse risk, especially if
myeloablative conditioning (MAC) is administered. One study
incorporating peripheral blood (PB) detection of FLT3-ITD before
MAC or reduced-intensity conditioning HCT found that 9 of
10 patients positive for FLT3-ITD MRD (variant allele frequency
[VAF], 0.03%-3.97%) relapsed, compared with 1 of 7 patients
relapsing if FLT3-ITD MRD was negative pre-HCT.9

We sought to evaluate the prognostic impact of MRD assess-
ment by PCR-NGS to detect FLT3-ITD with high sensitivity prior
to allo-HCT and to determine the added value of this approach
compared with CE. The study was approved by Alfred Health,
Peter MacCallum Cancer Centre, Royal Melbourne Hospital
(181/21), and All-Wales (08/MRE09/29) ethics committees. All
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