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Graft-versus-host disease (GVHD) is a major cause of morbidity-
and treatment-related mortality1 after allogeneic hematopoietic
stem cell transplantation (HSCT), affecting 40% to 60% of
patients.2 GVHD is associated withmicrobiota disruptions, which
occur with prophylactic antibiotic therapy, chemotherapy, and
radiation given as part of HSCT.3-5Microbiota-directed therapies
such as prebiotics (microbially accessible dietary fibers) may
provide a safe approach to reduce GVHD severity.6

Galactooligosaccharide (GOS) is a well-studied prebiotic avail-
able as a dietary supplement, which reduces inflammatory GI
symptoms,7 promotes intestinal barrier function,8 improves NK
cell activity,9 and modulates cytokine activity.9 We conducted
an interventional study in an established major histocompati-
bility complex–mismatched bone marrow transplantation model
to assess whether GOS supplementation impacts the microbiome
and improves GVHD and survival.

Starting 7 days prior to transplant (Day 7) and continuing until
death or Day-100 post-HSCT (Day 100), whichever occurred
first, BALB/c recipient mice (Taconic Biosciences No. BALB)
received 4% of daily calorie requirements as GOS, supple-
mented in drinking water; control mice received regular drink-
ing water. Starting 3 days prior to transplant (Day 3), all mice
were treated with imipenem–cilastatin to mimic antibiotics’
disruptive effects on microbial community10 (supplemental
Methods, available on the Blood Web site). On transplant day
(Day 0), mice received 8.5 Gy total body irradiation, followed by
infusion of purified bone marrow and T-cells harvested from
C57BL/6J donor mice (Jackson Laboratories no. 000664).11

GOS-supplemented mice demonstrated improved survival
comparedwith un-supplementedmice (P= .0087; Figure 1A). The
survival improvement did not appear to be related to the poten-
tially increased caloric intake from GOS, as body weight did not
differ between the groups at any timepoint (supplemental
Figure 1). Rather, GOS supplementation was linked to decreased
GVHD severity, despite mice consuming GOS ad libitum (sup-
plemental Methods), which could have contributed to individual
variability in the results. First, the observed GVHD clinical score
was lower in GOS mice than in control mice on Day-14 post-
transplant (ANOVA P value = .0005, Tukey honestly significant
difference P-value Day 14 = .0001; Figure 1B). Second, histologic
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examination of mice sacrificed at Day 14 showed decreased
GVHD-specific pathologic changes of skin in GOS-treated mice
(P= .0012, t-test; Figure 1C); no differencewas observed inGVHD
of gut (supplemental Figure 2) or liver (data not shown). Interest-
ingly, GOS only improved HSCT outcomes in antibiotic-treated
mice (supplemental Figure 3), which suggests prebiotics may
counter antibiotics’ deleterious effects on commensal gut micro-
biota and clinical outcomes.5,10

When we analyzed gut microbial community composition in
recipient mice, we observed community structure changes
attributable to GOS supplementation (P = .04, R2 = 0.08;
Figure 2A). In GOS-treated mice, we identified two families with
lower abundance (Bacteroidaceae and Bacteroidales_S24-
7_group) and one (Porphyromonadaceae) with higher abun-
dance (supplemental Figure 4A-B). Porphyromonadaceae is
linked to butyrate production,12 and one member is associated
with reduced GVHD severity.13 Reduced Bacteroidales_S24-
7_group abundance is consistent with evidence that this
group specializes in non-GOS type fiber degradation.14

We next examined if GOS altered microbiota metabolic
capacity. Bacterial metabolites, including short chain fatty acids
(SCFAs) such as butyrate, are associated with GVHD protection
in patients,15 and butyrate supplementation ameliorated GVHD
in mice.16 To evaluate effects of GOS on fecal microbiota SCFA
production, we used an in vitro fermentation model17 (supple-
mental Methods). GOS-supplemented mice exhibited modified
gut microbial metabolic capacity by transplant day (Day 0),
characterized by increased butyrate production (P = .0082;
Figure 2B) and total SCFA production (P = .024; Figure 2C).
Increased butyrate production persisted to Day 3 post-
transplant in the GOS-supplemented group compared with
the un-supplemented group (P = .014; supplemental
Figure 5A). Total SCFA production was lower in the GOS-
supplemented group than in the un-supplemented group at
Day 3 (P = .002; supplemental Figure 5B), but both butyrate
and total SCFA production in GOS-supplemented mice
remained elevated relative to Day 0 (P < .001, P = .001,
respectively; t-tests; supplemental Figure 5C-D). The elevated
levels of total SCFA production in un-supplemented mice may
reflect rapid expansion in microbiome metabolism following
release from antibiotic pressure18 on transplant day (Day 0).
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Figure 1. Survival (A), GVHD clinical score (B), and histopathological score of skin (C) in imipenem-treated mice following HSCT, with and without GOS supple-
mentation. GOS supplementation significantly improved survival (n = 12 mice per treatment group, n = 5 in “No Tcell control,” P = .0087, log-rank test; hazard ratio = .224, Cox
regression, A). GVHD clinical score, an observational indicator of GVHD severity, was assessed weekly following transplantation for eachmouse (n = 15 per group, B). Presence of
GVHD and its severity was calculated out of six categories: body weight, skin, fur, posture, and activity as well as diarrhea (supplemental Table 1). This combined score was lower
on Day 14 in GOS-supplementedmice (P < .0001, Tukey’s honestly significant difference post-hoc test following significant ANOVA, P = .0005). Tissue samples of skin were taken
from the back of the neck and scored with a semiquantitative system for documenting GVHD damage with criteria as outlined in supplemental Table 2.25 Total skin score (a
histological indicator of GVHD-mediated tissue damage in skin, graded by a blinded and independent pathologist) was assessed at Day 14 post-transplant in all surviving mice
(three of 15 in GOS-free group, 10 of 15 in GOS group, C, P values calculated with Wilcoxon tests). Mean and standard error are depicted by larger points and error bars (B-C).
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The protective effects of prebiotic treatment prior to transplant
may have limited such expansion in the GOS-supplemented
group. These findings suggest that prebiotic supplementation
enhanced the ability of the antibiotic-impacted murine micro-
biota to produce beneficial SCFAs from GOS, which may then
have contributed to protection from transplant-associated
mortality.16

Given that GOS-mediated microbiota changes were associated
with improved treatment outcomes, we wondered whether
differences in baseline gut microbiota community composition
might influence GOS therapeutic efficacy. Using genetically
identical mice from a different vendor, Jackson Laboratories, we
found that GOS-supplemented Jackson BALB/c recipient mice
also showed improved survival (P = .058), with GOS supple-
mentation providing a hazard ratio of 0.449 compared with un-
supplemented mice (Figure 2D). However, this effect was not as
strong in Jackson mice when compared with Taconic mice
(hazard ratio 0.224). Further, the observed GVHD clinical score
LETTER TO BLOOD
was not lower in GOS-supplemented Jackson mice compared
with un-supplemented Jackson mice (Figure 2E).

We then probed the microbiota composition of the two
genetically identical sets of mice. As expected, at baseline,
stool microbiota of Taconic and Jackson mice were distinct
(R2 = 0.18, P = .002; Figure 2F). We identified 84 of 319 ASVs
as specifically differentially abundant between the sets of mice
(q < 0.05), and 23 of 42 genera (q < 0.05; Figure 2G, supple-
mental Methods). Of these 23 genera, Bacteroides, Para-
bacteroides, and Prevotellaceae_UCG-001 were the most
differentially abundant and uniformly increased in Taconic mice
relative to Jackson, and each has a potential role in GOS utiliza-
tion or gut health maintenance.19-22 Interestingly, Porphyr-
omonadaceae members, which were enriched in GOS-treated
Taconic mice (supplemental Figure 5B), were also enriched in
mice treated with imipenem alone (supplemental Figure 5B) and
were more abundant in untreated Taconic than Jackson mice at
baseline (Figure 2G). Together, these observations suggest that
24 NOVEMBER 2022 | VOLUME 140, NUMBER 21 2301
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Figure 2. Efficacy of GOS in ameliorating GVHD is dependent on the starting community composition and metabolic capacity of the gut microbiota. Principal
component analysis of microbiota community composition in mice on the day prior to transplantation (A), in vitro SCFA production capacity of mouse stool prior to
transplant (B-C), survival and clinical score of treatment and control BALB/c mice sourced from Jackson Laboratories (D-E), and gut microbiota among BALB/c mice
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Porphyromonadaceae may be required at higher abundances in
order to mediate the positive outcomes observed with GOS
supplementation.

We then compared the in vitro fecal microbiota metabolic
activity from Jackson and Taconic mice collected prior to GOS
supplementation. We found that stool microbiota from Taconic
mice (which showed a greater therapeutic response to GOS)
produced more total SCFA from GOS fermentation than did
those from Jackson mice (P = .034, paired t-test; Figure 2H,
supplemental Methods). Together, these data support the
hypothesis that GOS supplementation is differentially effica-
cious across mice harboring distinct microbiota.

The observation that prebiotic efficacy depends on baseline
microbiota community composition suggests that prebiotic
therapies could be optimally adapted to individual patients.
Studies have found that individuals non-responsive to one
prebiotic may be more responsive to a chemically distinct
prebiotic.17,23,24 Alternatively, patients could be stratified as
prebiotic responders and non-responders according to habitual
dietary fiber consumption24 or fecal SCFA concentration mea-
surement.24 Future studies may pave the way for personalized
prebiotics, or combinations of prebiotics and/or probiotics, to
improve microbiota health and HCT outcomes.

To our knowledge, this is among the first published instances of
prebiotics improving HSCT outcome in a murine model and
supports previous work showing the importance of the SCFA
butyrate in mitigating GVHD.16 A phase-1 dose escalation study
of GOS in HSCT patients is currently underway (ClinicalTrials ID
NCT04373057). If therapeutic benefits of prebiotic treatment in
HSCT are seen in patients, prebiotics may become a powerful
adjunctive therapy for preventing GVHD.
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