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account for all factors biasing transplant
referral.

Hematologists caring for adults with Ph+

ALL are hungry for data to guide prac-
tice. The findings of this study are sig-
nificant, but the conclusions must be
limited to comparable patients: those
with newly diagnosed, de novo Ph+ ALL
who achieve a deep remission (BCR-
ABL1 transcript level <0.01%) within
90 days of treatment being managed with
an intensive induction and consolidation
chemotherapy regimen. This study does
not address the role of allo-HCT in
patients with chronic myeloid leukemia
(CML) in lymphoid blast crisis, therapy-
related ALL (an increasingly recognized
entity), or Ph+ ALL that responds more
slowly to therapy. It also does not apply
to those treated with a chemotherapy-free
or chemotherapy-light approach. Indeed,
a recent report from the ongoing GRAAPH
2014 study revealed inferior outcomes in
patients who did not receive either inten-
sive (cytarabine-based) consolidation or
allo-HCT.8 Finally, this study does not
address the need for allo-HCT in patients
treated with novel chemotherapy-free
regimens such TKI plus blinatumomab.9

Perhaps the biggest challenge of
applying the findings of this study to
current practice is the rapid expansion of
knowledge and improvements in clinical
practice in both Ph+ ALL and allo-HCT.
Thus, the risk-benefit ratio of allo-HCT
overall, and particularly within specific
patient subgroups, is likely to continually
evolve. Will patients with additional
high-risk genetic features such as IKZF1
plus other copy number abnormalities
be found to benefit from allo-HCT?10

Will use of measurable residual disease
(MRD) assays more specific for the
lymphoblastic disease compartment
better identify patients needing
therapeutic intensification with allo-
HCT? Will advances in prevention and
management of graft-versus-host dis-
ease, and development of non-TBI allo-
HCT conditioning decrease toxicity and
treatment-related mortality after allo-HCT?
Will availability of more effective salvage
therapies (TKI and non-TKI based) ensure
that allo-HCT inCR2canbe reliably realized
so that we do not need to “get it right the
first time”? Will advances in chimeric anti-
gen receptor therapy (CAR-T) make it the
preferred and definitive salvage option in
relapsed or refractory disease?
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Themanagement of Ph+ ALL is evolving at
lightning speed, and it is imperative that
prospective, randomized trials of trans-
plant and nontransplant approaches be
conducted to obtain the necessary high-
quality data to rationally advance the
field. In the meantime, the study by Gho-
badi et al suggests that allo-HCT may be
reasonably deferred in transplant-eligible
patients who respond rapidly and deeply
to a TKI plus intensive chemotherapy. Still,
given the complexity of the disease and
treatment landscape, as recommended by
the authors, “early referral to a high-
volume transplant center to evaluate
transplant eligibility, identify potential
allogeneic donors, and discuss the
risks and benefits of allogeneic transplant
as a therapeutic option remains an essen-
tial component of management in Ph+

ALL.” Until all the cards have been dealt,
transplant colleagues: we still need you!
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Mechanisms of resistance
to venetoclax
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In this issue of Blood, complementary manuscripts by Thomalla et al1 and
Thijssen et al2 expand our understanding of the adaptive mechanisms
associated with resistance to venetoclax (see figure). Venetoclax blocks
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the ability of BCL2 to inhibit proapoptotic proteins such as BAX, leading in
turn to permeabilization of the mitochondrial outer membrane and
committing the cell to apoptosis.3,4 Like BCL2, the antiapoptotic protein
MCL1 also interacts with proapoptotic BAX proteins to block their
function, but MCL1 is not affected by venetoclax. PUMA and NOXA
interact with BCL2, thus freeing BAX, which is then able to signal
apoptosis to the mitochondria.5
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The mechanisms that block or blunt
the activity of venetoclax are unex-
pectedly heterogeneous.6-11 Recurrent
mutations in BCL2 lead to resistance
due to decreased affinity of BCL2 for
venetoclax.6-8 Upon treatment with
venetoclax, BAX mutation can occur in
the myeloid compartment.9 BAX
mutations abrogate the outer
mitochondrial membrane localization
of BAX, thus keeping it in its inactive
form, and are associated with the
development of lineage-specific clonal
hematopoiesis. Beside mutations,
upregulation of MCL1 due to amplifi-
cation of chromosome 1 is associated
with resistance to venetoclax.10,11

Using functional genomic screens
followed by validation in primary tumor
samples, Thomalla et al identify an
epigenetic mechanism of adaptation of
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The high granularity of the approach used
by Thijssen et al also demonstrated large
intra- and inter-patient heterogeneity.
Multiple mechanisms of escape (eg,
1q24 amplification, BCL2 mutations,
BAX mutations, and altered transcript of
proapoptotic NOXA) may coexist in the
same tumor, usually restricted to different
subclones. While some of these escape
mechanisms are unique, others are found
in multiple patients, indicating that tumor
cells intrinsically adapt in multiple ways
to selection pressure on cell survival exer-
ted by venetoclax treatment.

The articles by Thijssen et al and Thomalla
et al provide two translational implications.
Epigenetic changes of resistance (ie, NF-
κB–promoted upregulation of MCL1) are
driven and sustained by ongoing ven-
etoclax therapy. Indeed, they disappear
oncevenetoclax therapy is stopped.Hence,
limited duration venetoclax therapy is
an appealing strategy to prevent the
emergence of resistance. Mechanisms
of resistance to venetoclax use the regula-
tors of the intrinsic apoptotic pathway.
Hence, therapeutic approaches that induce
apoptosis through the extrinsic pathway
(ie, tumornecrosis factor–relatedapoptosis-
inducing ligandTRAIL-mediated apoptosis)
can be effective in resistant cells.
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Cardiotoxicity in patients
treated with acalabrutinib
Petra Langerbeins | University Hospital Cologne

In this issue of Blood, Bhat et al systematically evaluated the rate of incident
symptomatic ventricular arrhythmias (VAs) in a large case series of patients
treated with acalabrutinib.1 Although the observed cardiotoxic adverse
events in nearly 3% of patients treated with acalabrutinib was lower than
that reported in patients treated with ibrutinib, the percentage was
eightfold higher than that in similar untreated control patients. These data
indicate that VAs may be a class-specific effect of Bruton tyrosine kinase
inhibitors (BTKi’s).
BTKi treatment… 

Cardiac monitoring!
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The BTKi ibrutinib was approved by the
US Food and Drug Administration for
treating B-cell lymphoproliferative disor-
ders almost 10 years ago. Just recently,
the second-generation BTKi acalabrutinib
was granted approval for treating chronic
lymphocytic leukemia (CLL).

Cardiac toxicity is a recognized treatment-
limiting adverse effect of BTKi’s. The
mechanism of this toxicity is hypothesized
to be on-target inhibition of BTK and
related kinases such as tec protein kinase,
which results in reduced PI3K-Akt activity
in cardiac cells thus decreasing its car-
dioprotective role under conditions of
stress.2

fibrillation, whichmight lead to subsequent
use of anticoagulation therapy to reduce
the risk of thromboembolism. Because
BTKi’s selectively also inhibit platelet
signaling and function downstream of the
collagen receptor glycoprotein VI,3 their
use is associated with an increased risk of
bleeding, which usually manifests as
minor bruising. However, concomitant
use of anticoagulants significantly
increases the risk for major hemorrhage.4

In clinical practice, the onset of atrial
fibrillation often mandates that treatment
with BTKi’s be terminated because of the
increased risk of bleeding.

In clinical trials, ibrutinib (a first-generation
BTKi) led to cardiac arrhythmias in up to
20% of patients,5 including 12% of
patients with atrial fibrillation, compared
with 8% of patients with cardiac
arrhythmias and 1.2% of patients with
atrial fibrillation in the untreated
population. With longer follow-up, case
series of VAs and sudden cardiac deaths
that have been described in patients
treated with ibrutinib6,7 further raises
awareness of the potential for severe
cardiotoxicity.

Second-generation BTKi’s demonstrate
greater BTK selectivity and less off-target
inhibition compared with ibrutinib. The
first direct comparison of themore selective
acalabrutinib vs the less selective ibrutinib
demonstrated noninferior progression-free
survival with fewer cardiovascular events.
The adverse event of atrial fibrillation was
prospectively assessed as a secondary end
point and was significantly lower in the
acalabrutinib treatment arm than in the
ibrutinib arm (9% vs 15.6%, respectively).8
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