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Although severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infections have spread worldwide, vaccines are
highly effective in preventing severe COVID-19 and mortality.1

The emergence of the Omicron variant with more than 30 muta-
tions in the spike protein drastically reduced the neutralizing
ability of vaccine-induced antibodies,2 leading to frequent
breakthrough infections.3 Nevertheless, vaccine-induced immu-
nity remains highly effective in preventing severe COVID-19.4

This is probably mediated by Spike-specific T cells, whose induc-
tions have been shown to correlate with onset of vaccine effi-
cacy5 and are largely unaffected by Omicron mutations.6-9

CD19-targeting chimeric antigen receptor (CAR) T-cell therapy is
a major breakthrough in the treatment of relapsed/refractory
B-lineage malignancies, whose bystander effect is long-term
B-cell aplasia.10 Consequently, these patients do not mount a
humoral response after COVID-19 vaccination.11-13 Initial data
demonstrated an induction of Spike-specific CD4 T cells in adult
patients14; however, an in-depth characterization of vaccine-
induced T-cell responses and their resistance to emerging viral
variants is lacking.

Here, we longitudinally studied anti-CD19 4-1BB-CD3z-CAR T
cell–treated patients, mostly adolescents and young adults,
before and after the first and second dose of vaccination with

BNT162b2. We analyzed the magnitude of the T-cell response,
the phenotypes of this response, their multispecificity, and their
ability to respond to SARS-CoV-2 variants B.1.617.2 (Delta) and
B.1.1.529 (Omicron).

We recruited 8 patients who had received single infusions of
anti-CD19 CAR T cells at least 6 months before 2-dose vaccina-
tion with BNT162b2 3 weeks apart (supplemental Table 1 avail-
able on the Blood Web site) and 26 healthy controls
(supplemental Table 2). None of the individuals in the study
were infected with SARS-CoV-2 before vaccination or during the
study period; none of the patients were receiving any immuno-
suppressive ,therapies and all were clinically well. Other baseline
and disease specific characteristics are described in supplemen-
tal Table 1.

All 7 adolescents and young adults, except the 1 elderly
patient in the study, experienced mild adverse events (local
and systemic) especially after the second dose (Figure 1A).
Seven of 8 patients mounted none to only minimal levels of
Spike-specific antibodies following vaccination (Figure 1B).
Only patient 9, who lost persistence of CAR T cells at
the beginning of the study period and subsequently had
detectable B cells, demonstrated an antibody response
after the second dose.
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The Spike-specific T-cell response induced by vaccination
was longitudinally analyzed at 6 different time points:
before vaccination, 10 and 21 days after the first and sec-
ond dose, and then at 90 days after vaccination. Whole
blood was stimulated with a Spike-peptide pool overnight,

and secreted interferon g (IFN-g) and interleukin-2 (IL-2)
were quantified.15

Before vaccination, supernatants of whole blood cultures
from CAR T cell–treated patients and healthy controls
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Figure 1. Enhanced vaccine-induced Spike-specific T-cell response in anti-CD19 CAR T cell–treated patients. Healthy individuals (n 5 26) and (A) anti-CD19 CAR
T cell–treated patients (n 5 8) were vaccinated on days 0 and 21 with BNT162b2 mRNA vaccine. Blood samples were taken on days 0, 11, 21, 31, 42, and 90. (B) Levels
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contained low median IFN-g (,1.7 pg/mL) and IL-2 (,1.4 pg/
mL) levels (Figure 1C-D). Ten days after the first dose,
peptide-triggered IFN-g and IL-2 clearly increased in both
groups similarly, in line with the previously demonstrated
ability of BNT162b2 to rapidly induce Spike-specific T
cells.5,16 In contrast, after the second dose, we observed that
the patients with CAR T cells produced quantities of IFN-g
(Figure 1C) and IL-2 (Figure 1D) after Spike-peptide stimula-
tion that were 1 log higher than that detected in healthy con-
trols. We followed 3 of the patients for 180 days after
vaccination, and their peptide-induced cytokine release
remained high (supplemental Figure 1).

To better define whether the enhanced response to Spike pepti-
des observed after the second dose was derived from Spike-
specific CD4 or CD8 T cells, we stimulated peripheral blood
mononuclear cells (PBMCs) collected on days 0 and 42 with the
Spike-peptide pool for expression of activation markers on gated
nonnaïve CD41 and CD81 T cells (supplemental Figure 2). We
visualized higher frequencies of Spike-specific CD4 T cells in all
patients with CAR T cells (median 5 4.4%) compared with healthy
controls (median 5 2.0%; Figure 1E). Similarly, higher median
levels of Spike-specific CD8 T cells were also detected in
patients with CAR T-cells (healthy median 5 0.12%; CAR T cells
median 5 0.26%), with 3 of 8 showing frequencies that were
above that of healthy controls (Figure 1F).

The emergence of highly mutated variants of concern (VOCs)
has highlighted that vaccine-induced humoral immunity cannot
prevent infection.2,3 Yet, vaccines are still able to provide effec-
tive protection from severe COVID-19.4 This can be explained
by the ability of cellular immunity to target numerous epitopes
along the whole Spike protein and therefore remains largely
intact against emerging VOCs.6-9 We thus tested whether
vaccine-induced T cells in patients with CAR T cells were also
directed against multiple Spike regions.

PBMCs were stimulated with 7 Spike-peptide pools, each cover-
ing about 180 amino acids of the Spike protein and analyzed by
IFN-g-ELISpot assay. Figure 2A-C shows the ability of vaccine-
induced T cells present in patients with CAR T cells to recognize
multiple Spike regions, similar to those in healthy controls. Sub-
sequently, we tested their capacity to respond to SARS-CoV-2
variants B.1.617.2 (Delta) and B.1.1.529 (Omicron). PBMCs were
stimulated with 5 peptide pools covering the entire Spike (253
peptides) of the ancestral SARS-CoV-2 and the mutated regions
in the Delta (30 peptides) and Omicron (68 peptides) variants,
with and without the amino acid substitutions/deletions charac-
teristic for these 2 VOCs. The calculated frequencies of IFN-
g-spot forming cells in response to Spike peptides of the VOCs
was compared with the ancestral strain (Figure 2D). Vaccine-
induced T-cell immunity was almost completely preserved
against Delta in all patients, except in 1 where we detected a
reduction of nearly 50% (mean 5 9.7% inhibition; Figure 2Ei).
Unsurprisingly, the higher mutated Omicron variant did impact
the T-cell response more (mean 5 20.8% inhibition), yet only in
1 patient did we observe a strong reduction in the T-cell
response of nearly 80% (Figure 2Eii). Investigations are under-
way to identify which T-cell epitopes are affected by Omicron
mutations in this individual, who is characterized by the HLA-
type A*11:01, A*33:03, B*40:01, B*58:01, C*03:02, C*07:02,
DRB1*03:01, and DRB1*11:01.

Although our study is limited by its small sample size and the
use of a single vaccine platform (BNT162b2), our results are
reassuring that a stronger induction of Spike-specific T cells after
vaccination in patients with anti-CD19 CAR T-cells is seen com-
pared with healthy individuals. Interestingly, this augmented
response was only evident after the second dose, similar to
observations in vaccinated anti-CD20–treated patients.17 In the
absence of vaccine-induced antibody, mRNA-derived Spike anti-
gens might persist longer and were more efficiently presented,
resulting in a more robust T-cell response. This hypothesis is
consistent with recent data in healthy individuals where low anti-
body titers were correlated with an enhanced boosting effect
from the third vaccine dose.18 This observed enhanced cellular
immunity, comprised of both CD4 and CD8 T cells and further
characterized by broad specificity against various regions of
Spike and its ability to tolerate mutations present in VOCs, might
offer some protective efficacy.19 Our results support the clinical
utility and importance of COVID-19 vaccination in patients after
anti-CD19 CAR T-cell therapy despite B-cell aplasia.
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