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THROMBOSIS AND HEMOSTASIS
Hypoxia and low temperature upregulate transferrin
to induce hypercoagulability at high altitude
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KEY PO INT S

•Harmful environmental
factors at high altitude
upregulate transferrin,
which induces
hypercoagulability and
thromboembolic
events.

• Transferrin interference
may provide a
promising strategy for
the treatment of high
altitude–induced
thromboembolic
disorders.
Studies have shown significantly increased thromboembolic events at high altitude. We
recently reported that transferrin could potentiate blood coagulation, but the underlying
mechanism for high altitude–related thromboembolism is still poorly understood. Here,
we examined the activity and concentration of plasma coagulation factors and transferrin
in plasma collected from long-term human residents and short-stay mice exposed to
varying altitudes. We found that the activities of thrombin and factor XIIa (FXIIa) along
with the concentrations of transferrin were significantly increased in the plasma of
humans and mice at high altitudes. Furthermore, both hypoxia (6% O2) and low tem-
perature (0◦C), 2 critical high-altitude factors, enhanced hypoxia-inducible factor 1α (HIF-
1α) levels to promote the expression of the transferrin gene, whose enhancer region
contains HIF-1α binding site, and consequently, to induce hypercoagulability by potenti-
ating thrombin and FXIIa. Importantly, thromboembolic disorders and pathological insults
in mouse models induced by both hypoxia and low temperature were ameliorated by
transferrin interferences, including transferrin antibody treatment, transferrin down-
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regulation, and the administration of our designed peptides that inhibit the potentiation of transferrin on thrombin
and FXIIa. Thus, low temperature and hypoxia upregulated transferrin expression–promoted hypercoagulability. Our
data suggest that targeting the transferrin-coagulation pathway is a novel and potentially powerful strategy against
thromboembolic events caused by harmful environmental factors under high-altitude conditions.
Introduction
Life at high altitude is physiologically challenging for animals.
There are 3 major high-altitude regions in the world, including
the Himalayas (average altitude, 4500 m), Andes (average
altitude, 4000 m), and East African Plateau (average altitude,
2400-3700 m).1,2 Low environmental O2 availability (hypoxia),
dehydration, and low temperature are critical environmental
challenges for vertebrates residing in these high-altitude
regions.3 Hypoxia-induced erythropoiesis can occur in
response to decreasing inspiratory O2 partial pressure, which
requires more iron and may lead to progressive reductions in
iron status and deficiency.4,5 Indeed, previous studies have
reported low serum iron levels and bioavailability at high alti-
tudes.6-10 Therefore, iron deficiency may increase health risks
for residents at high altitude and can lead to the upregulation of
transferrin, an endogenous plasma protein that binds to and
transports iron.11
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Inherited or acquired thromboembolic disorders are major
causes of disability and death worldwide.12-15 High-altitude
exposure is an important risk factor of thromboembolic disor-
ders,16-19 such as venous thrombosis,20-23 pulmonary thrombo-
embolism, mesenteric vein thrombosis, cerebral vein thrombosis,
and deep vein thrombosis (DVT),16,24-26 due to blood hyper-
coagulation. Previous research has reported that a 1-year stay at
high altitude is associated with a 30-times higher risk of throm-
boembolic events, including DVT and pulmonary embolism.19

Compared with low-altitude regions, long-term exposure to
high altitudes is also associated with greater risk of stroke and
associated hospitalization (1.05 in 1000 vs 13.7 in 1000 people,
respectively).26 In addition, the incidence of venous thromboem-
bolism is significantly higher in lowlanders exposed to high-
altitude conditions,27 and according to a 5-year retrospective
study of the US military academies, the incidence of thrombo-
embolic events is 2 times higher at elevated altitudes (2210 m)
than at sea level.28

Although many studies have investigated the causes of high
altitude–induced thromboembolic disorders, reports are con-
tradictory, and the underlying mechanisms remain poorly
understood.16 Our group recently identified transferrin, an iron
transport protein in plasma, as a prothrombotic protein that
promotes blood coagulation.29,30 Our previous work shows that
transferrin is sequestered by binding with fibrinogen at a molar
ratio of 4:1 in normal conditions, whereas abnormally up-
regulated transferrin potentiates thrombin/factor XIIa (FXIIa)
and inhibits antithrombin, thus inducing hypercoagulability.29

However, whether the upregulation of transferrin promotes
hypercoagulability at high altitudes is unclear. In this study, we
compared the concentration and activity of coagulation factors
in plasma collected from both humans and mice exposed
to different altitudes. Results showed that the activities of
thrombin and FXIIa were significantly increased in the plasma of
long-term human residents and short-stay mice at high altitude,
although their concentrations did not change significantly.
The increase in these activities coincided with the promotion
of expression of the transferrin gene and an increase in the
concentrations of transferrin in plasma. In mouse models, hyp-
oxia- and low temperature–induced hypercoagulability and
thrombosis aggravation were reversed by transferrin knock-
down (RNR-Tf), transferrin antibody (Tf-AB) treatment, and
peptide interference, which inhibited the potentiation of
transferrin on thrombin and FXIIa. Thus, our study demon-
strated that transferrin was upregulated by hypoxia and low
temperature and acts as a key etiological factor in high altitude–
induced thromboembolic disorders.

Materials and methods
Ethics statement and animals
All human samples were approved by the institutional review
boards of the Kunming Institute of Zoology, Kunming, China;
Second Affiliated Hospital of Guangxi Medical University, Nan-
ning, China; First Affiliated Hospital of Kunming Medical Univer-
sity, Kunming, China; and People’s Hospital of Diqing Tibetan
Autonomous Prefecture, Shangri-La, China (SMKX-20190115-09,
2019-KY [0118], 2022 Ethical Review L #13, and 2019 Ethical
Review L #2, respectively) and were performed in accordance
with the Declaration of Helsinki. Native, permanent residents
who had lived locally for at least 5 years were included in this
2064 10 NOVEMBER 2022 | VOLUME 140, NUMBER 19
study. All specimenswere collectedbetween 2019 and 2020, with
informedconsent obtained from theparticipants before the study.
All animal experiments were approved by the Animal Care and
Use Committee at the Kunming Institute of Zoology (SMKX-TZ-
2019.9.28-32-01) and conformed to the US National Institutes of
Health Guide for the Care and Use of Laboratory Animals
(National Academies Press, Eighth Edition, 2011). BALB/c mice
(male, aged 7 weeks) were purchased from Vital River Experiment
Animal Company (Beijing, China) and housed in a pathogen-free
environment. Mice were kept in a sterile isolator and reared with
autoclaved food and water at 24◦C under a 12-hour light/dark
cycle. Mice were anesthetized with pentobarbital sodium (60 mg/
kg) via intraperitoneal injection. After recovery from anesthesia,
the animals were given a standard diet and water ad libitum.
Euthanasia was performed by cervical disarticulation while the
mice were under a surgical plane of anesthesia. The animals were
randomly assigned to operators by independent personnel not
involved in data collection or analysis. The experimental group
was blindly subjected to surgery, and all readout parameters were
evaluated.

Collection of blood samples
Plasma samples at low (n = 111; males, 54; females, 57; age,
18-90 years), mid (n = 115; males, 66; females, 49; age,
16-87 years), and high (n = 128; males, 67; females, 61; age,
17-85 years) altitudes were collected from healthy volunteers at
the Second Affiliated Hospital of Guangxi Medical University
(~79 m), First Affiliated Hospital of Kunming Medical University
(~1891 m), and People’s Hospital of Diqing Tibetan Autono-
mous Prefecture (~3459 m), respectively. Mice (n = 90) were
first kept at low altitude (~79 m, Nanning, China) for 10 days.31

Thereafter, 30 mice were anesthetized with pentobarbital
sodium (60 mg/kg) via an intraperitoneal injection for blood
collection, with the remaining 60 mice moved to mid-altitude
(~1891 m, Kunming, China) and high-altitude (~3459 m,
Diqing, China) regions for 10 days, followed by blood collec-
tion. The plasma was obtained by centrifugation immediately
after blood collection (using 3.8% sodium citrate as an anti-
coagulant), and then the plasma was aliquoted and stored
at −80◦C for further experiments, as described previously.29,30

O2 content and ambient temperature at different altitudes
were determined by using an O2 detector (AS8801, SMART
SENSOR, Dongguan, China) and a thermometer (TH702F, Any-
metre, Guangzhou, China), respectively.

Concentrations of iron and proteins in plasma
The concentrations of iron and plasma proteins, including
transferrin, prothrombin, fibrinogen, and FXII, were determined
using a serum iron assay kit (ab83366, Abcam, Cambridge, MA)
and enzyme-linked immunosorbent assay (ELISA) kits
(SEC036Hu and CEC036Mu for human and mouse transferrin,
respectively, CLOUD-CLONE, Wuhan, China; SEA710Hu and
SEA710Mu for human and mouse prothrombin, respectively,
CLOUD-CLONE, Wuhan, China; ab241383 and ab213478 for
human and mouse fibrinogen, respectively, Abcam, Cam-
bridge, MA; SEA677Hu and SEA677Mu for human and mouse
FXII, respectively, CLOUD-CLONE, Wuhan, China), in accor-
dance with the manufacturer’s instructions. Thrombin and FXIIa
enzymatic activity assays were performed using the method
described in supplemental Methods (available on the Blood
website).
LI et al
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Mouse models induced by hypoxia or low
temperature
BALB/c mice (male, aged 7 weeks) were randomly exposed to
either hypoxia at 6% O2 in a hypoxic chamber (A-15274-P, Bio-
spherix, Lacona, NY) for 3 days or low temperature at 0◦C in a
low-temperature incubator (ICP750, Memmert, Germany) for
10 days. The hypoxia- and low temperature–exposed mice were
then further treated (through the caudal vein) with transferrin-
depleting antibodies (once per day; 50 μg per injection), iso-
type control immunoglobulin G (IgG) (once per day, 50 μg per
injection), RNR-Tf virus, blank (RNR) virus, hypoxia-inducible
factor 1α (HIF-1α) inhibitor (LW6 [CAY10585]; once per day,
15mg/kg injection; S8441, Selleck, Houston, TX), and the TH16or
FX18 peptide, which inhibits transferrin-thrombin/FXIIa interac-
tions (once per day, 5 mg/kg).29,30 After 3 or 10 days of induction
by hypoxia or low temperature, blood was collected (anticoagu-
lant, 3.8% sodium citrate), and plasma was obtained by centrifu-
gation for further assay. Bleeding time, carotid artery thrombosis
model, DVT model, and stroke model were analyzed in normal
environment after induction by hypoxia or low temperature.

FeCl3-induced carotid artery thrombosis
Mice were anesthetized by isoflurane inhalation with an anes-
thesia respirator (R540IP, RWDLife Science, Shenzhen, China), as
described previously.29,30,32-34 The carotid artery was separated
to induce thrombosis using 10% iron (III) chloride (FeCl3) soaked
into a filter-paper disc (diameter = 2 mm). Blood flow was
measured by laser speckle perfusion imaging (PeriCam PSI,
Sweden) at 5 and 10minutes after FeCl3 induction. The perfusion
unit was recorded to quantify blood flow.

APTT and PT assays
To test the activated partial thromboplastin time (APTT), 50 μL
of plasma was incubated with 50 μL of APTT reagent (F008-1,
Nanjing Jiancheng Bioengineering Institute, Nanjing, China) for
3 minutes at 37◦C; next, 50 μL of calcium chloride (25 mM) pre-
heated at 37◦C was added to test clotting time. Absorbance was
monitored at 650 nm using a semiautomatic coagulation
analyzer (Thrombo Screen 400c, Pacific Hemostasis, Hunters-
ville, NC), as described previously.29,30 A prothrombin time (PT)
assay kit (F007, Nanjing Jiancheng Bioengineering Institute,
Nanjing, China) was used following our previous research.29,30

Mouse stroke model
A transient middle cerebral artery occlusion (tMCAO) model was
applied to induce focal cerebral ischemia according to previous
research.30,35 A servo-controlled heating blanket was used to
maintain a core body temperature close to 37◦C throughout
surgery. Briefly, mice were anesthetized with pentobarbital
sodium (60 mg/kg) via intraperitoneal injection. After a midline
skin incision in the neck, the proximal common carotid artery and
external carotid artery were ligated, and a standardized silicon
rubber-coated nylon monofilament (6023910PK10, Doccol,
Sharon, MA) was inserted and advanced through the right internal
carotid artery to occlude the origin of the right middle cerebral
artery. After 30 minutes, the mice were reanesthetized, and the
occluding filament was removed to allow reperfusion. To deter-
mine ischemic brain volume, the mice were sacrificed 24 hours
after tMCAO induction, and their brains were quickly removed
using a mouse brain slice matrix (Harvard Apparatus, Holliston,
MA), cut into 2-mm-thick coronal slices, and stained with 2%
TRANSFERRIN MEDIATES THROMBOSIS AT HIGH ALTITUDE
2,3,5-triphenyltetrazolium chloride (TTC, Sigma, St Louis, MO).
Bederson and grip test scores were used to monitor neurological
and motor function, respectively. Certain mice were excluded
from end point analysis based on previously reported criteria.30

Statistical analysis
The normal distributions of all data were assessed using the
Kolmogorov-Smirnov test, with values expressed as means ±
standard deviation (SD). All statistical analyses were 2-tailed
with 95% confidence intervals. Nonparametric data were
compared using the Mann-Whitney U test. If only 2 groups were
compared, unpaired t test was applied. GraphPad Prism 9
(GraphPad Software, San Diego, CA) and SPSS (SPSS Inc, Chi-
cago, IL) were used for statistical analysis. P < .05 was consid-
ered statistically significant.
Results
Increased plasma thrombin and FXIIa activities are
associated with altitude in both long-term human
residents and short-stay mice
To investigate the mechanism responsible for altitude-associated
hypercoagulability, enzymatic activities of coagulation factors,
including FXIIa and thrombin, were determined in human and
mouse plasma collected at different altitudes (Figure 1A). In
comparison with low altitude, the average enzymatic activity of
thrombin in plasma from long-term human residents at mid and
high altitudes increased 0.13- and 0.54-fold and in short-staymice
increased 0.15- and 0.74-fold, respectively. Similarly, the enzy-
matic activity of FXIIa in human plasma at mid and high altitudes
increased 0.14- and 0.5-fold and inmouse plasma increased 0.16-
and 0.47-fold, respectively (Figure 1B-E). These findings indicate
that increasing altitude is associated with enhanced plasma
enzymatic activities of thrombin and FXIIa.

Iron and its transporter transferrin are decreased
and increased, respectively, in plasma of human or
mice plasma at mid and high altitudes
Decreased iron levels were observed in all mid- and high-
altitude plasma samples (Figure 1F-G), suggesting reduced
iron bioavailability at mid and high altitude, as reported in earlier
studies.4,5 As a main iron transporter in plasma, transferrin has
been found to potentiate the enzymatic activities of thrombin
and FXIIa.29,30 Here, compared with the plasma transferrin con-
centration in healthy participants at low altitude (1.64 mg/mL
[SD, 0.24]; n = 111; males, 54; females, 57; age, 18-90 years), the
concentration at mid (n = 115; males, 66; females, 49; age, 16-87
years) and high (n = 128;males, 67; females, 61; age, 17-85 years)
altitudes increased by 41.4% (2.32 mg/mL [SD, 0.31]) and 47.6%
(2.42 mg/mL [SD, 0.50]), respectively. There was no correlation
between age and transferrin level (supplemental Figure 1).
Similarly, in comparison with the plasma concentration of trans-
ferrin in short-stay mice at low altitude (3.3 mg/mL; n = 30; SD,
1.24), the concentrations at mid and high altitudes increased
by 9% and 78.8%, respectively, to 3.6 mg/mL (n = 30; SD, 1.33)
and 5.8 mg/mL (n = 30; SD, 1.94), respectively. Elevated plasma
transferrin levels at mid and high altitudes were further con-
firmed by western blot analysis (supplemental Figure 2A-B,E-F).
The upregulation of transferrin appeared to be feedback on
decreased iron availability.
10 NOVEMBER 2022 | VOLUME 140, NUMBER 19 2065
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Figure 1. Enhanced thrombin and FXIIa activities, decreased iron levels, and elevated transferrin levels in plasma of long-term human residents and short-stay mice.
(A) Graphical representation of plasma collection from long-term human residents and short-stay mice at different altitudes. (B-C) Relative enzymatic activity of thrombin in
human (n = 20) (B) and mouse (n = 30) (C) plasma at different altitudes. (D-E) Relative enzymatic activity of FXIIa in human (n = 30) (D) and mouse (n = 30) (E) plasma at different
altitudes. (F-G) Iron level in human (n = 111-128) (F) and mouse (n = 30) (G) plasma at different altitudes. (H-I) Transferrin concentration in human (n = 111-128) (H) and mouse
(n = 30) (I) plasma at different altitudes. (J-K) Fibrinogen concentration in human (n = 20) (J) and mouse (n = 30) (K) plasma at different altitudes. Each experiment was
independently repeated in triplicate. Data represent mean ± SD. Panels B, G, J, and K, *P < .05, **P < .01 by unpaired t test; panels C-F, H, and I, *P < .05, **P < .01 by
Mann-Whitney U test.
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Because transferrin (typically ~40 μM) is primarily sequestered
by binding with fibrinogen (normally ~10 μM) at a molar ratio of
4:1,29 we tested the effects of altitude on the concentration of
fibrinogen in plasma. The average plasma fibrinogen concen-
trations in long-term human residents at low, mid, and high
altitudes were 2.6 mg/mL (SD, 0.40), 2.8 mg/mL (SD, 0.40), and
3.1 mg/mL (SD, 0.43), respectively. No significant changes were
observed in the short-stay mice. The increase in transferrin
(48%-79%) was much greater than that of fibrinogen (2%-20%)
at high altitude. Other plasma proteins, including prothrombin
and FXII, showed no significant change with the increase in
altitude (supplemental Figure 2C-D,G-L).

Increased transferrin expression under both
hypoxia and cold temperature at high altitudes
Exposure to the cold can induce tissue hypoxia and is consid-
ered one of the most damaging environmental factors at high
altitude.36-38 Therefore, we investigated the effects of hypoxia
on transferrin expression using a normal mouse liver cell line
(BNL CL.2, Conservation Genetics CAS Kunming Cell Bank,
China). Results showed that hypoxia upregulated the expres-
sion of both HIF-1α and transferrin in vitro (Figure 2A-C). To
further elucidate the effects of high altitude on transferrin
expression, BALB/c mice were subjected to hypoxia and low
temperature stress. After either 3 days of hypoxia (6% O2) in a
hypoxic chamber (Figure 2D-F) or 10 days of low-temperature
exposure (0◦C) in a low-temperature incubator (Figure 2G-I),
substantial upregulation in transferrin and increase in HIF-1α
were observed in the mouse liver in vivo, indicating that
both hypoxia and low-temperature exposure can upregulate
transferrin. Similar results were also reproduced at 8% O2

(supplemental Figure 3A-C). We previously reported that HIF-
1α promotes transferrin gene expression by interacting with the
enhancer region of the transferrin gene.30 In this study, muta-
tion at the enhancer region hindered the effects of hypoxia on
transferrin expression, as illustrated in Figure 2J-L. These results
suggest that hypoxia and cold temperature at high altitude can
increase the expression of transferrin.

Increased transferrin induced by hypoxia and low
temperature potentiates thrombin/FXIIa in vivo
As illustrated in Figure 3A-D,G-J, the levels of both transferrin and
HIF-1α in the liver of BALB/c mice were upregulated when
exposed to hypoxia and low temperature, as revealed by western
blot analysis. The ELISA results also demonstrated that plasma
levels of transferrin were upregulated under hypoxic and low-
temperature conditions. Tf-AB, RNR-Tf, and HIF-1α inhibitor
LW6 reversed both hypoxia- and low temperature–induced
transferrin upregulation. Interestingly, HIF-1α upregulation was
also reversed by the aforementioned treatments, suggesting
potential reciprocal interactions between HIF-1α and transferrin
expression. As expected, the isotype IgG and blank virus controls
(with empty knockdown [RNR] vector) showed no effects. As
illustrated in Figure 3E-F,K-L, with the increase in transferrin and
HIF-1α, the enzymatic activities of thrombin and FXIIa in the
plasma of hypoxia-induced mice also significantly increased.
However, the increase in enzymatic activities was reversed by
Tf-AB, RNR-Tf, and LW6 treatment, with the IgG and blank
virus controls showing no significant effects. As illustrated in
supplemental Figure 4, there was no significant difference in iron
level in the different groups of mice described earlier.
TRANSFERRIN MEDIATES THROMBOSIS AT HIGH ALTITUDE
Reversal of hypercoagulability induced by hypoxia
and low temperature by RNR-Tf and functional
interference
Hypoxia and low temperature increased the enzymatic activities
of thrombin and FXIIa in plasma, suggesting that they may
induce hypercoagulability. This was confirmed by the reductions
in APTT, PT, and bleeding time in mice subjected to hypoxia
(Figure 4A-C). Importantly, Tf-AB, RNR-Tf, LW6, and the peptides
TH16 and FX18, which interfere with transferrin-thrombin/
FXIIa interactions,29,30 reversed the reductions in APTT, PT,
and bleeding time, whereas the IgG and blank virus controls
showed no effects (Figure 4A-C). Consistent with the reductions
in APTT, PT, and bleeding time, decreased blood flow and
aggravated thrombus formation were also observed in the
carotid arteries and deep vein of hypoxia-induced mice. Notably,
Tf-AB, RNR-Tf, LW6, TH16, and FX18 reversed the reduction in
blood flow and aggravation of thrombus in hypoxia-treated mice
(Figure 4D-G). Moreover, the effects of RNR-Tf and functional
interference on thrombosis and ischemic stroke (IS) aggravated
by hypoxia were investigated using the tMCAO mouse model.
As illustrated in Figure 4H, hypoxia induced a significant increase
in infarct volume (Figure 4H-I) and severe functional outcomes, as
represented by an increased Bederson score and decreased grip
scores (Figure 4J-K). Transferrin functional interference by Tf-AB,
RNR-Tf, LW6, TH16, and FX18 inhibited thrombosis and IS
aggravation induced by hypoxia in the tMCAO mouse model,
whereas the IgG and blank virus controls had no effects
(Figure 4H-K). Similarly, thrombosis and IS aggravation induced
by low temperature were reversed by RNR-Tf and functional
interference (Figure 5A-K). Importantly, on day 9 after low-
temperature exposure, mice that received RNR-Tf or functional
interference showed higher survival trends than the controls
(60%), with survival rates of 90%, 90%, 80%, and 80% in the Tf-
AB–, RNR-Tf–, Th16-, and FX18-treated groups, respectively
(Figure 5L). Notably, combined hypoxia and low-temperature
condition induced hypercoagulability and thrombosis forma-
tion, which was more severe than hypoxia induction alone. Tf-AB
reversed the prothrombotic tendency in this combined condition
(supplemental Figure 5). As illustrated in supplemental Figure 6A,
although transferrin was elevated by combined hypoxia with low-
temperature induction, thrombin-specific inhibitor dabigatran or
FXIIa antibody intervention alleviated hypercoagulability and
thrombus formation (supplemental Figure 6B-E). All these data
suggest that RNR-Tf and functional interference provide consid-
erable protection against the insults caused by hypoxia or low
temperature.
Discussion
O2 and iron are essential for most organisms. In response to
decreased inspiratory O2 partial pressure at high altitudes,
erythropoiesis occurs to increase O2 availability and enhance
iron consumption, which can lead to iron deficiency.6-10 In this
study, the physiological mechanisms underlying the replen-
ishment of iron and O2 and the association with high altitude–
induced thromboembolic disorders were investigated. We
report that the plasma concentration of transferrin, a known iron
transporter, was significantly elevated in human plasma at
high altitude (Figure 1H). Both hypoxia and low-temperature
stimulation in vitro and in vivo increased HIF-1α levels and
promoted the expression of the transferrin gene, which
10 NOVEMBER 2022 | VOLUME 140, NUMBER 19 2067
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contains HIF-1α binding sites in its enhancer region. Consis-
tent with the upregulation of transferrin, thrombotic compli-
cations were induced in mice stimulated by hypoxia or low
temperature. Transferrin depletion via antibody treatment,
RNR-Tf, and interference of transferrin potentiation of
thrombin and FXIIa enzymatic activities inhibited hypoxia-
and low temperature–augmented thrombosis in FeCl3, DVT,
and tMCAO mouse models. Our results revealed that trans-
ferrin upregulation, which appears to be a physiological
compensation mechanism to replenish iron and O2 at high
altitude, plays a key role in high altitude–induced thromboem-
bolic disorders.
2068 10 NOVEMBER 2022 | VOLUME 140, NUMBER 19
As the principal iron transporter, the concentration of transferrin
in plasma of healthy humans is usually ~40 μM.29 We recently
reported that transferrin interacts with fibrinogen, thrombin,
and FXIIa with different affinities to maintain coagulation bal-
ance.29,30 Transferrin is primarily sequestered by binding to
fibrinogen (normal plasma concentration, ~10 μM) at a molar
ratio of 4:1.29,30 In this study, although plasma fibrinogen
increased at high altitude, its increase (2%-20%) was signifi-
cantly less than that of transferrin (48%-79%) (Figure 1H-K).
Transferrin potentiated the enzymatic activities of thrombin/
FXIIa, thereby inducing hypercoagulability and increasing sus-
ceptibility to thromboembolic disorders. These results further
LI et al
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confirmed the upregulation of transferrin with altitude and its
important role in regulating coagulation as a moonlighting pro-
tein in the mediation of multiple protein-protein interactions.
2070 10 NOVEMBER 2022 | VOLUME 140, NUMBER 19
Blood coagulation and platelet activation are complementary
and mutually dependent processes in vivo. Thrombin is a
potent platelet agonist, which acts on proteinase-activated
LI et al
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receptors in platelets. The generation or activation of thrombin
by the coagulation cascade can activate platelets, which, in turn,
secrete coagulation factors and provide negatively charged
surfaces to support cell-based thrombin generation and coagu-
lation.39-41 Although coagulation may activate platelets, previ-
ous research has reported that increased thrombin generation
caused by high altitude is balanced by reduced platelet activ-
ity.42,43 Some authors have reported a decrease in platelet
number when exposed to high altitude.44,45 Although a previous
report showed that platelet activity was decreased by hypo-
thermia,46 more studies reported that platelet function and
number were elevated by low temperature.47-49 Although
beyond the scope of this study, systematic research on the
relationship between platelets, including these platelets in aged
populations,50-52 and thromboembolic disorders at high altitude
would be worthwhile. Furthermore, studying the dynamic
changes in transferrin and coagulation activities in travelers who
havemoved from sea level to high-altitude regions (or vice versa)
would be interesting.

Hypoxia and low temperature are detrimental environmental
factors at high altitude. Previous studies have demonstrated
that cold temperature exposure can induce tissue hypoxia,
resulting in the upregulation of HIF expression.36-38 Under
hypoxic conditions, HIF is rapidly stabilized in cells, thus
allowing it to regulate the expression of hundreds of genes that
promote adaptive responses to hypoxia.53,54 Hypoxia is a state
in which the body or tissue is deprived of an adequate
O2 supply. O2 metabolism and iron homeostasis are closely
linked, with iron facilitating the O2-carrying capacity of blood.55

Exposure to low atmospheric O2 at high altitude can lead to
TRANSFERRIN MEDIATES THROMBOSIS AT HIGH ALTITUDE
erythropoietin synthesis for red blood cell production, which in
turn increases the demand for iron to synthesize hemoglobin.56

HIF activation under low cellular iron concentrations, hypoxia,
and low temperature regulates the transcription of genes
involved in iron utilization, such as transferrin54 and its receptor
TFR1.57,58 Our recent work indicated that transferrin expression
is promoted by HIF.29,30 In this study, as illustrated in
Figure 2D,G, transferrin was significantly upregulated in
response to hypoxia or low-temperature stimulation. Previous
reports showed a significant increase in plasma transferrin
concentrations in the blood of winter swimmers.59 On the one
hand, increased transferrin carries iron to various tissues and
cells for red blood cell production to compensate for the
reduced availability of O2 at high altitudes. On the other hand,
elevated transferrin in plasma promotes hypercoagulability by
acting as a prothrombotic factor, thereby suggesting a physi-
ological trade-off strategy.

Increased thromboembolic events occur at high altitude, which
is of importance from both a scientific and clinical standpoint.
Previous studies reported that increase of HIF-1α was associ-
ated with reduced protein S expression and HIF-1α–dependent
increases in tissue factor–triggered thrombus formation by
hypoxia.60-62 Here, transferrin was identified as a key etiological
factor involved in these events. As illustrated in Figures 4 and 5,
hypoxia and low temperature promoted hypercoagulability, as
characterized by decreased blood flow, aggravated thrombus
formation, ischemia, APTT, and PT, as well as increased plasma
transferrin levels. These characterizations were reversed by
functionally blocking the interactions of transferrin with other
coagulation factors. Furthermore, functional blockages of
10 NOVEMBER 2022 | VOLUME 140, NUMBER 19 2071
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transferrin or RNR-Tf significantly decreased mice mortality
induced by low temperature. Taken collectively, our results
indicate that transferrin is upregulated by hypoxia and low
temperature and acts as a key mediator to promote hyperco-
agulability at high altitude. Harmful environmental factors under
high-altitude conditions upregulate transferrin to carry more
iron to compensate for erythropoiesis and O2 supply. Simulta-
neously, the abnormally upregulated transferrin causes
2072 10 NOVEMBER 2022 | VOLUME 140, NUMBER 19
hypercoagulability by potentiating thrombin and FXIIa and
inhibiting antithrombin. Notably, anti–Tf-AB, RNR-Tf, and
TH16 peptide treatment almost completely inhibited the
hypercoagulability induced by low temperature and hypoxia.
These treatments showed considerable protective effects and
provide a potential therapeutic target and promising strategy
for the treatment of high altitude–induced thromboembolic
disorders.
LI et al
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