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Sickle cell disease (SCD) is the most common hemoglobinop-
athy and is caused by a point mutation in the β-globin chain that
is susceptible to polymerization, giving red blood cells (RBCs) a
rigid sickle shape and causing vaso-occlusion.1 Several factors
enhance vaso-occlusion,2,3 which lead to a vaso-occlusive
crisis (VOC) that is accompanied by severe acute pain often
requiring hospitalization and opioid treatment.4 Because pain
itself maintains VOC,2,3 effective pain management is of
particular importance for the relief of VOC. To better
understand the mechanisms underlying acute pain during
VOC, a model is needed that mirrors the clinical features of
VOC. Considering that low ambient temperature can be a
trigger for painful VOC,3 we developed a model of acute
painful VOC caused by exposure to cold in mice with SCD.
We investigated whether exposure to cold causes acute pain
in mice with SCD and whether this reflects the clinical
features of VOC.

Male and female transgenic Berkeley mice5 (5-9 months old)
that express human sickle hemoglobin S (HbSS) or normal
human hemoglobin A (HbAA) were used. Mechanical
hyperalgesia was defined as a decrease in paw withdrawal
threshold using calibrated von Frey monofilaments according
to the up-down method.6 Heat hyperalgesia was defined as a
decrease in paw withdrawal latency in response to a radiant
heat stimulus.7,8 Deep tissue hyperalgesia was defined as a
decrease in grip force measured by a grip force meter.7,9

Baseline (BL) measurements were taken over 3 days before
each experiment. Paw withdrawal threshold and paw
withdrawal latency were measured for both hind paws and
averaged. Different modalities of hyperalgesia were studied in
different groups of mice. HbSS mice that exhibited BL
mechanical threshold and withdrawal latency less than 2
standard deviations (SDs) and grip force less than 1 SD of the
average value for HbAA mice were considered
nonhyperalgesic HbSS (HbSS[nh]). Consistent with our
previous report,10 the number of HbSS(nh) mice was ~15% of
all HbSS mice, and this decreased with age. HbSS(nh) mice
were exposed to cold to evoke acute hyperalgesia, an
experimental analogue of pain in patients.

For exposure to cold, mice were placed in a plastic cage
without bedding in a room with a controlled ambient temper-
ature of 10◦C (50◦F) for 1 hour and then returned to room
temperature (22◦C). Hyperalgesia and measures of blood
oxygen saturation (SpO2) were determined before, immediately
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Figure 1. Exposure to cold induced painful VOC in nonhyperalgesic HbSS mice. (A) Mechanical hyperalgesia appeared in HbSS(nh), but not in HbAA mice, 1 hour after
exposure to cold and persisted for at least 24 hours. *Different from BL at P = .002 (F[3,40] = 3916) and #different from HbAA mice at P = .002 (F[1,40] = 18.1), 2-way repeated-
measures ANOVA with Bonferroni t test, n = 5 to 7 mice/group. (B) Unlike HbAA mice, HbSS(nh) mice exhibited heat hyperalgesia, which began 1 hour after exposure to cold
and disappeared by 24 hours. *Different from BL at P = .004 (F[4,44] = 4.57) and #different from HbAA mice at P = .002 (F[1,44] = 15.5, 2-way repeated-measures ANOVA with
Bonferroni t test, n = 6 to 7 mice/group). (C) Exposure to cold caused prolonged deep tissue hyperalgesia in both sexes of HbSS(nh) mice. Because means of grip force were
lower in female mice compared with male mice in both groups (†different from female of the same genotype at P < .05, Kruskal–Wallis ANOVA on ranks test with Dunn’s
method), the data for each sex were analyzed separately. *Different from BL in HbSS(nh) mice of both sexes at P < .001 (F[4,132] = 15.2) and #different from HbAA mice in both
sexes at P < .001 (F[3,132] = 18.2), 2-way repeated-measures ANOVA with Bonferroni t test, n = 6 to 12 mice/group. (D) Cold-induced hyperalgesia was accompanied by an
increase in heart rate in HbSS mice (F[1,44] = 10.5, P = .008, 2-way repeated-measures ANOVA). HbAA mice had no changes in heart rate (P = 1.0). *Different from BL at P < .01
and #different from HbAA mice at P < .01, Bonferroni t test, n = 6 to 7 mice/group. (E) Exposure to cold produced microvascular stasis that was greater in HbSS(nh) mice.
*Different from HbAA mice at P < .001 (F[1,24] = 240.4), 2-way repeated-measures ANOVA with Bonferroni t test, n = 4 mice/group. (F) Exposure to cold caused transient
hypoxia in HbSS(nh), but not HbAA, mice. Hypoxia (hypoxemia) was defined as a decrease in SpO2 in blood. *Different from BL at P < .001 (F[4,44] = 9.39) and #different from
HbAA mice at P = .016 (F[1,44] = 8.00), 2-way repeated-measures ANOVA with Bonferroni t test, n = 6 to 7 mice/group. (G) Exposure to cold did not produce hypothermia in
HbSS or HbAA mice at any time (F[4,44] = 0.177, P = .949, 2-way repeated-measures ANOVA with Bonferroni t test, n = 6 to 7 mice/group).
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after, and 1, 2, and 24 hours after exposure to cold. Blood
SpO2 was determined using a pulse oximeter (Kent Scientific,
Torrington, CT) applied to the hind paw with simultaneous
measurement of heart rate and core temperature in anes-
thetized mice (1.8%-2% isoflurane). A decrease in SpO2 in
blood was an indication of hypoxia (hypoxemia). Stasis
measurements were performed in 20 to 25 flowing venules
through implanted dorsal skin fold chambers.11 The same
venules were reexamined for stasis (no flow) every hour for
4 hours after exposure to cold. Percent of static venules was
calculated as static venules/total venules × 100. For all
experiments, the experimenter was blind to the genotype and
treatment.

Blood collection and isolation of plasma and blood cells10 were
performed at 2 hours after exposure to cold. The levels of
LETTERS TO BLOOD
cyclooxygenase-2 (COX-2) and diacylglycerol lipase β (DAGLβ)
proteins in blood cell lysates were determined by western
blotting (45 μg of protein per sample), defined as the density of
the immunoreactivity of the protein of interest/total protein
within each sample (Revert 700 Total Protein Stain, LI-COR)
and expressed as a percent of the corresponding average
amount in HbAA mice. Specificity of the DAGLβ and COX-2
antibodies was confirmed.10 The level of endocannabinoid
2-arachidonoylglycerol (2-AG) was analyzed in plasma by
liquid chromatography with tandem mass spectrometer and
quantified against deuterated internal standard.10

Data are presented as mean ± standard error of the mean and
were analyzed by 1- or 2-way analysis of variance (ANOVA)
with repeated measures followed by Bonferroni’s post hoc test.
P < .05 was considered significant.
20 OCTOBER 2022 | VOLUME 140, NUMBER 16 1827
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Figure 2. An increase in the amount of DAGLβ in blood
cells and the accumulation of 2-AG in plasma contrib-
utes to cold-evoked hyperalgesia in HbSS(nh) mice.
Data for biochemical studies were collected 2 hours after
exposure to cold. (A) In contrast to HbAA mice, the level of
2-AG increased in plasma of HbSS(nh) mice exposed to
cold. Numbers inside bars indicate group size. *Different
from other groups (F[3,12] = 8.564, P = .003, 1-way ANOVA
with Bonferroni t test. (B) The accumulation of 2-AG in the
plasma of HbSS(nh) mice was associated with an increased
level of DAGLβ in blood cells. The relative level of DAGLβ
protein was defined as the amount of immunoreactivity in
the HbSS(nh) sample/average amount of immunoreactivity
in the HbAA sample × 100%. *Different from other groups
(F[3,12] = 7.401, P = .005, 1-way ANOVA with Bonferroni
t test). (C) Representative images of immunoreactive bands
corresponding to DAGLβ isolated from blood cells [top,
HbSS(nh) mice (a,d) and HbSS+cold mice (b,c,e)] and the
total protein stain for loading control (bottom). DAGLβ was
detected with rabbit anti-DAGLβ (1:500, Abcam). The sec-
ondary antibody was IRDye 800CW goat anti-rabbit
(1:15 000; LI-COR). (D) The basal level of COX-2 protein
in blood cells was higher in HbSS(nh) compared with HbAA
mice. *Different from HbAA and HbAA+cold groups
(F[3,16] = 20.530, P < .001, 1-way ANOVA with Bonferroni
t test). Exposure to cold did not cause additional changes
in HbSS(nh) mice. There was no difference in the level of
COX-2 between naïve HbAA mice and HbAA mice
exposed to cold. COX-2 was detected with rabbit anti-
COX-2 (1:500, ABclonal). The secondary antibody was
IRDye 800CW goat anti-rabbit (1:15 000; LI-COR). Numbers
inside bars indicate group size. (E) Unlike vehicle, systemic
administration of KT109, an inhibitor of DAGLβ, prevented
acute mechanical hyperalgesia in HbSS mice. KT109 (30 μg)
or vehicle (dimethyl sulfoxide: Tween 80:Saline [30:1:69])
was administered by intraperitoneal injection 1 hour before
exposure to cold. *Different from BL at P = .002 (F[4,36] =
5.187) and #different from vehicle at P = .007 (F[1,36] =
11 852), 2-way repeated-measures ANOVA with Bonferroni
t test, n = 5 to 6 mice/group.

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/140/16/1826/2049426/blood_bld-2022-017309-m

ain.pdf by guest on 07 M
ay 2024
Because pain associated with VOC can be severe, we first
determined if exposure to cold produced acute mechanical,
heat, and deep tissue hyperalgesia. Unlike in HbAA mice,
mechanical, heat, and deep tissue hyperalgesia developed in
nonhyperalgesic HbSS mice (Figure 1A-C). Mechanical and
deep tissue hyperalgesia persisted for 24 hours. In some
mice, hyperalgesia did not disappear during the entire test
period, which may indicate a possible transition from acute to
chronic hyperalgesia. Because there were no sex differences
in mechanical and heat hyperalgesia at any time, data for
male and female mice were combined. BL measures of grip
force were lower in female mice compared with male mice in
both groups. Therefore, data for each sex were analyzed
separately. Exposure to cold caused deep tissue hyperalgesia
in both sexes. Hyperalgesia was accompanied by an increase
in heart rate in HbSS mice, but not in HbAA mice (Figure 1D),
suggesting the presence of pain-related stress.2,3,12,13

Exposure to cold produced vascular stasis in both HbSS and
HbAA mice; however, the magnitude and duration of stasis
were greater in HbSS mice (Figure 1E). Because changes in
peripheral blood flow are mediated by the autonomic
nervous system, it is likely that autonomic dysregulation,
also observed in patients with SCD,3,13 contributes to the
increased and prolonged stasis in HbSS mice. We have
shown in earlier studies that stasis caused by hypoxia-
1828 20 OCTOBER 2022 | VOLUME 140, NUMBER 16
reoxygenation in sickle mice is characterized by vaso-
constriction, endothelial cell activation, inflammation, and
leukocyte adhesion to the vessel wall.11,14 These factors
contribute to the increase in the transit time of RBCs
through capillary beds, prolonging RBC exposure to
hypoxia, measured as a decrease in SpO2 (Figure 1F). A
high incidence of hypoxia has been reported among
patients with SCD, which increases significantly during
VOC.15 Additionally, no changes in core temperature were
observed after exposure to cold in both groups of mice
(Figure 1G).

Recently, we showed that an increased level of the endo-
cannabinoid 2-AG in plasma due to an increase in its synthe-
sizing enzyme DAGLβ in blood cells contributes to chronic
hyperalgesia in HbSS mice.10 Likewise, acute hyperalgesia after
exposure to cold was accompanied by an increase in these
indicators in HbSS mice (Figure 2A-C). An increase in DAGLβ
protein may be associated with an overall increase in the
number of immune cells16,17 expressing DAGLβ.18,19 2-AG is
oxidized by COX-2 to form pronociceptive derivatives, and
high levels of COX-2 were observed in the blood cells of HbSS
mice regardless of hyperalgesia status10 and exposure to cold
(Figure 2D). We postulate that DAGLβ-mediated accumulation
of 2-AG in the presence of high COX-2 level potentiates
the formation of pronociceptive metabolites that contribute
LETTERS TO BLOOD
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to acute hyperalgesia.10,20 Administration of KT109, which
blocks DAGLβ activity,18,21 1 hour before exposure to cold
blocked the development of mechanical hyperalgesia
(Figure 2E).

We have developed a model of cold-induced VOC similar to
that in patients with SCD to investigate the mechanisms
underlying the induction of VOC and associated pain to
develop effective approaches for prevention. Because elevated
levels of 2-AG contribute to both acute and chronic hyper-
algesia, controlling the level of this endocannabinoid may be a
promising target for pain relief in SCD.
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