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Loss of COP9 signalosome genes at 2q37 is associated
with IMiD resistance in multiple myeloma
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• 2q37 copy loss enriches
significantly between
newly diagnosed (~5%),
LEN-resistant (10%)
and POM-resistant
(16.4%) myeloma.

• 2q37 carries COPS7B
and COPS8, required
for CRBN stability; their
partial loss leads to
CRBN partial loss,
which may blunt LEN/
POM efficacy.
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The acquisition of a multidrug refractory state is a major cause of mortality in myeloma.
Myeloma drugs that target the cereblon (CRBN) protein include widely used immuno-
modulatory drugs (IMiDs), and newer CRBN E3 ligase modulator drugs (CELMoDs), in
clinical trials. CRBN genetic disruption causes resistance and poor outcomes with IMiDs.
Here, we investigate alternative genomic associations of IMiD resistance, using large
whole-genome sequencing patient datasets (n = 522 cases) at newly diagnosed, lenali-
domide (LEN)-refractory and lenalidomide-then-pomalidomide (LEN-then-POM)-
refractory timepoints. Selecting gene targets reproducibly identified by published
CRISPR/shRNA IMiD resistance screens, we found little evidence of genetic disruption by
mutation associated with IMiD resistance. However, we identified a chromosome region,
2q37, containing COP9 signalosome members COPS7B and COPS8, copy loss of which
significantly enriches between newly diagnosed (incidence 5.5%), LEN-refractory (10.0%),
and LEN-then-POM-refractory states (16.4%), and may adversely affect outcomes when
clonal fraction is high. In a separate dataset (50 patients) with sequential samples taken
015909-m
ain.p
throughout treatment, we identified acquisition of 2q37 loss in 16% cases with IMiD exposure, but none in cases
without IMiD exposure. The COP9 signalosome is essential for maintenance of the CUL4-DDB1-CRBN E3 ubiquitin
ligase. This region may represent a novel marker of IMiD resistance with clinical utility.
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Introduction
Identification of causes and biomarkers of drug resistance in
myeloma guides understanding of treatment failures, and
development of targeted therapeutics. Genetic changes
driving myeloma development are well described, including
structural variants, copy number aberrations (CNAs), and gene
mutations. Tumor genetic/epigenetic changes conferring sur-
vival advantage during drug exposure, and their contribution
to drug-resistant tumor clones, are less understood.1,2 We
previously reported genetic aberrations in cereblon (CRBN),
the target of immunomodulatory (IMiD), and CRBN E3 ligase
modulator (CELMoD) drugs, associated with IMiD resistance.
These include mutations, high levels of a splice variant skipping
exon 10, CRBN structural variants, and heterozygous loss of
the CRBN-containing 3p region; they exhibit strong thera-
peutic selection on lenalidomide (LEN) and/or pomalidomide
(POM) treatment.3 We hypothesized that homozygous or
| VOLUME 140, NUMBER 16
heterozygous genetic alterations in additional genes required
for CRBN-targeting drug activity may be clinically relevant.
Pharmacogenetic screens identifying genes essential for IMiD
agent sensitivity in vitro have recurrently identified COP9 sig-
nalosome (CSN) complex genes4-9 (supplemental Tables 1 and
2 on the Blood Web site), required for maintenance of the
CUL4-DDB1-CRBN E3 ubiquitin ligase. Although pharmaco-
logical CSN inhibition is toxic to many cancer cell lines,10 in
myeloma decrease in even 1 CSN subunit results in decreased
CRBN protein levels and reduced LEN efficacy, because the
CSN acts as a deneddylating “off switch” for the CUL4-DDB1-
CRBN E3 ubiquitin ligase. If deneddylating activity falls, CRBN
protein is autoubiquitinated and degraded.4,5 All CSN subunits
1 through 9 are required for deneddylating activity, although
only 1 of COPS7A or COPS7B.11

We asked whether disruption of any genes identified by in vitro
IMiD agent-essential genetic screens bear relevance to IMiD
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agent resistance in the clinic. Because of the dominance of
CNAs in myeloma,12 we interrogated association of screen-
identified gene deletion in the IMiD-response pathway, with
selection during IMiD agent exposure. These results assign
novel significance to genomic regions in relapsed/refractory
multiple myeloma patients, specifically regarding therapy
acquired-resistance to IMiDs and potentially CELMoDs.

Study design
Illumina whole-genome sequencing (WGS; coverage 60/30×
tumor/germline) from 522 cases and RNA-sequencing data
from 189 cases was analyzed as reported,3 although sample size
was increased (supplemental Figure 1; supplemental Table 3).
DNA was extracted from germline peripheral blood and base-
line/relapse timepoint bead-enriched CD138+ myeloma cells,
from patients in CC4074-MM010 (STRATUS; NCT0171278913),
CC-4047-MM-007 (OPTIMISMM; NCT0173492814), CC-4047-
MM-014-B (NCT01946477), CC220-MM001 (NCT0277303015),
and CC122-ST-001-MM2 (NCT01421524) trials. Newly diag-
nosed (ND) patient data from IFM/DFCI-2009 (NCT0119106016)
were also used.

Separately, clinically annotated sequential myeloma patient
samples from 2 UK biobanks (supplemental Table 4) were
analyzed. Patients consented to research use of bone marrow
aspirates from sequential disease timepoints. WGS was per-
formed as previously, although in certain instances the CD138−

bone marrow fraction was used for germline DNA.

Results and discussion
We adopted a hypothesis-driven approach identifying candi-
date genes whose loss may favor IMiD drug resistance from
published pharmacogenetic screens (n = 5 screens; supple-
mental Table 1). We shortlisted 23 genes essential for LEN/
POM activity in ≥2 screens (Figure 1A; supplemental Table 2). In
each WGS cohort (ND, n = 198; LEN-refractory, n = 269; LEN-
then-POM-refractory, n = 55, defined in supplemental
Methods), incidence of LEN/POM-essential gene mutation in
drug-refractory cohorts was rare, as previously found with
CRBN.3 Copy loss was more frequent (Figure 1B), although not
uniformly increased across all genes and timepoints. We iden-
tified regions containing any of these 23 genes with a trend in
enrichment of copy loss between ND, LEN, and LEN-then-
POM-refractory states, using criteria of an overall incidence of
>10% copy loss at the LEN-then-POM-refractory state, and
incidence of copy loss that increased from ND to LEN-then-
POM-refractory states by ≥1.5-fold (supplemental Figure 2).
These criteria delivered 3 regions demonstrating enrichment:
(1) 3p (CRBN locus as reported previously3); (2) 17p (reported to
be selected during myeloma progression17 as site of TP53, in
Figure 1. Loss of COPS7B and COPS8 genes on chromosome 2q37 increases in inci
chromosome location, identified from ≥2 published pharmacogenetic screens (n = 5 scre
cases with copy neutral LOH) in the 23 genes listed in (A) in 3 patient datasets: NDMM
(CDKN2C), and 17p loss (TP53) across the 3 patient datasets are provided for context. (C) P
neutral LOH) (LH y-axis) and their CCFs (RH y-axis) at NDMM, LEN-, and POM-refractory
rate correction (when compared with all 23 genes; for other genes see supplemental Fig
Arrow in (C)ii marks a narrow point in CCF distribution taken as cutoff to divide high CCF
COPS7B and COPS8 gene expression (mRNA expression by TPM) with presence or ab
viations: LOH, loss of heterozygosity; NDMM, newly diagnosed multiple myeloma; TPM
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addition to 3 of the shortlisted IMiD response-essential genes:
UBE2G1, NCOR1 and COPS3; enrichment of loss may be
driven by shared loss of TP53); and (3) 2q37, previously
unidentified as relevant in myeloma, but which contains 2 CSN
members (COPS7B, COPS8) (Figure 1C; supplemental Fig-
ures 3 and 4). The proportion of cases with COPS8 loss signif-
icantly increased from 11/198 (5.5%, ND), to 27/269 (10.0%,
LEN-refractory), and 9/55 (16.4%, LEN-then-POM-refractory),
P = .028. COPS7B loss increased from 8/198 (4.0%, ND), to
21/269 (7.8%, LEN-refractory) and 7/55 (12.7%, LEN-then-
POM-refractory), P = .034 (false discovery rate-corrected χ2

proportion trend tests). The proportion of cases where the copy
loss was clonal also increased, between ND (36.4% COPS8,
50.0% COPS7B) and LEN-then-POM-refractory states (77.8%
COPS8, 85.7% COPS7B) (Figure 1C). Patients who lost a copy
of COPS7B/COPS8 also demonstrated variable but significant
reduction in their gene expression (P < .01 both genes, 2-tailed
t test) (Figure 1D).

Outcome data with subsequent POM treatment were available
in the LEN-refractory STRATUS cohort (n = 188)13 and with RVd
induction in the ND cohort.16 Although underpowered, when all
2q37 clonal fraction sizes were considered there was no dif-
ference in either cohort progression-free survival (PFS; supple-
mental Figure 5A,C) or overall response rate (ORR, 31.5% vs
32.6%, STRATUS only) between cases with 2q37 loss and those
without. In STRATUS, median PFS was 4.6 months and median
POM-based treatment duration 4.9 months,13 likely inadequate
time for small clones to drive a PFS different from the back-
ground rate. We therefore next confined analysis to 2q37-loss
cases with cancer clonal fraction (CCF) > 0.75 (following an
approximated bimodal split of CCF distribution; Figure 1C,
arrow). Small cohort size (7/188) hindered power, but in CCF >
0.75 cases a trend to lower PFS was noted (P = .09) (supple-
mental Figure 5B), and ORR was 25% (two of 8 responded). This
association, including CCF > 0.75 cutoff validation, will need
confirming with larger cohorts.

In a separate cohort of myeloma patients (n = 50) with
sequential WGS analysis before and after treatment (total, n =
127 tumors; ND, n = 32; non-LEN/POM exposure, n = 42; LEN-
exposed/refractory, n = 41; LEN-then-POM-refractory, n = 12;
Figure 2A), we traced acquisition and/or expansion of CNA-
defined subclones after LEN/POM therapy vs timepoints after
non-IMiD therapies (Figure 2A-C). Five of 31 (16%) patients who
had a LEN/POM-exposed timepoint acquired either clonal or
subclonal loss of the 2q37 region containing COPS7B and
COPS8 at their LEN/POM-exposed timepoint. In 4 cases, this
CNA had been either absent or below limit of detection pre-
LEN/POM exposure. In 1 case, it was present at a low level
before LEN/POM exposure, but the patient had previous
thalidomide-based therapy. In this case, when LEN-based
dence at LEN and LEN-then-POM refractory states. (A) Genes (n = 23) and their
ens; supplemental Tables 1 and 2). (B) Incidence of mutation or deletion (excluding
, LEN-refractory, and POM-refractory. Incidence of 1q21 gain/amp (CKS1B), 1p loss
roportion of samples with COPS7B and COPS8 copy loss (excluding cases with copy
states. Significance detected by χ2 test for trend in proportions with false discovery
ure 2). Note: no instances of homozygous COPS7B or COPS8 loss were identified.
(>0.75) from low CCF (<0.75) cases (used in supplemental Figure 5). (D) Difference in
sence of gene copy loss. Significance detected by unpaired 2-sided t test. Abbre-
, transcripts per million reads mapped.
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treatment ceased, the clone disappeared again (Figure 2C,
panel v). In contrast to the LEN/POM-exposed timepoints, in the
42 timepoints without prior LEN/POM exposure, and the 32 ND
timepoints, the only incidence of COPS7B/COPS8-containing
regional 2q37 loss was the case who had had thalidomide-based
prior therapy. In 2 cases, sequential histological material was
available; plasma cell CRBN protein levels fell after 2q37 loss
emergence, although variably on a per-cell basis (Figure 2D).
We performed correlatory in vitro modeling of partial COPS7B
or COPS8 loss, which led to CRBN protein loss and reduced
LEN-induced growth arrest (supplemental Figure 6).

Although not previously shown to confer therapy-specific clonal
advantages in clinical myeloma, CNAs may represent bio-
markers of drug resistance. We demonstrated the contribution
of CRBN copy loss in LEN/POM-refractory patients, and now
identify a second therapy-related CNA, 2q37 loss, whose inci-
dence increases through LEN- and POM-refractory states,
emerging as a marker of dominant clones in IMiD-resistant
disease. CRBN is critical to IMiD function, but whether these
CNAs will mark resistance to novel CELMoD agents,18 or the
kinetics of CELMoD-CRBN binding are as sensitive to relative
CRBN protein loss or mutation, remains unaddressed. Both
CRBN and CSN-member CNAs may be cost-effectively detec-
ted by additions to targeted sequencing approaches,19 which
may prove useful in future therapeutic decision-making.
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