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Lenalidomide promotes the development of
TP53-mutated therapy-related myeloid neoplasms
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KEY PO INT S

• Exposure to
thalidomide analogs,
particularly
lenalidomide, is
associated with
increased risk of TP53-
mutated myeloid
neoplasms.

• Treatment with
lenalidomide but not
pomalidomide leads to
expansion of
preleukemic Trp53-
mutant HSPCs due to
selective degradation
of Ck1α.
df 
There is a growing body of evidence that therapy-related myeloid neoplasms (t-MNs) with
driver gene mutations arise in the background of clonal hematopoiesis (CH) under the
positive selective pressure of chemo- and radiation therapies. Uncovering the exposure
relationships that provide selective advantage to specific CH mutations is critical to
understanding the pathogenesis and etiology of t-MNs. In a systematic analysis of
416 patients with t-MN and detailed prior exposure history, we found that TP53 muta-
tions were significantly associated with prior treatment with thalidomide analogs, spe-
cifically lenalidomide. We demonstrated experimentally that lenalidomide treatment
provides a selective advantage to Trp53-mutant hematopoietic stem and progenitor cells
(HSPCs) in vitro and in vivo, the effect of which was specific to Trp53-mutant HSPCs and
was not observed in HSPCs with other CH mutations. Because of the differences in CK1α
degradation, pomalidomide treatment did not provide an equivalent level of selective
advantage to Trp53-mutant HSPCs, providing a biological rationale for its use in patients
at high risk for t-MN. These findings highlight the role of lenalidomide treatment in
promoting TP53-mutated t-MNs and offer a potential alternative strategy to mitigate the
risk of t-MN development.
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Introduction
Therapy-related myeloid neoplasms (t-MNs) represent one of
the most devastating consequences of cancer therapy. These
cancers arise from selective pressure introduced by chemo- and
radiation therapies (CRTs) and are often treatment resistant with
a median overall survival of 7 to 14 months and a 5-year overall
survival of 10% to 20%.1-3 They typically present in a form of
acute myeloid leukemia (t-AML) or myelodysplastic syndromes
(t-MDS) and develop 3 to 7 years after treatment with CRTs.
t-MNs are frequently associated with poor prognostic features,
such as complex karyotypes.1 Exposure to certain types of
chemotherapy has been associated with specific chromosomal
alterations. For instance, prior exposures to topoisomerase II
inhibitors have been linked to the development of t-MNs with
KMT2A gene rearrangements at 11q23, whereas alkylating
agents have been associated with chromosomes 5 and/or
7 abnormalities.4 With the advent of DNA sequencing tech-
nologies, the unique landscape of somatic mutations in t-MNs
has become increasingly evident.5-7 However, little is known
about how specific CRT exposures shape the somatic mutation
profiles in t-MNs.

The model of t-MN development, in which CRT-induced muta-
tions accumulate in hematopoietic stem and progenitor cells
(HSPCs), has been challenged by increasing data suggesting that
clonal selection of preexisting mutant HSPCs (ie, clonal hema-
topoiesis [CH] of indeterminate potential [CHIP]) occurs under
the stress of cytotoxic therapy. For example, the mutational
burden of de novo AML and t-AML are comparable,8 many
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somatic mutations in t-MNs are detectable years before CRT
exposures,8-10 and somatic mutations in genes specifically
involved in the DNA damage response, such as TP53 and
PPM1D, are enriched in the blood of patients exposed to
CRTs.11,12 Although this model may not be fully applicable to
t-MNs with recurring gene rearrangements (eg, KMT2A trans-
location), these make up only a small fraction of all cases. Thus,
understanding how individual therapies promote the outgrowth
of specific mutant clones and the development of t-MNs and
whether there are interventions or modifications in therapy that
can decrease this risk is an important clinical problem. To address
this question, we systematically analyzed the association
between t-MN genotypes and prior CRT exposures in a large
cohort of patients treated within a single institution.
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Methods
Patients and samples
We retrospectively reviewed the clinical data of 416 patients
with t-MNs who were diagnosed and treated at MD Anderson
Cancer Center between November 2008 and February 2019.
One hundred fifty-six of those were previously analyzed and
reported in a study published elsewhere.6 The diagnosis of
t-MNs was based on the 2016 World Health Organization
classification.13 Cryopreserved diagnostic bone marrow (BM) or
peripheral blood (PB) samples from the patients were used for
mutation analysis by next-generation sequencing (NGS). As a
comparison, 1021 patients with de novo MNs (611 with non–
treatment-related AML and 410 with de novo MDS) who were
diagnosed and treated during the same period in our institution
were also analyzed (supplemental Table 1; available on the
Blood website). All the patients provided informed consent
under the Declaration of Helsinki guidelines and consented for
sample collection, storage, and analysis.

DNA sequencing
Somatic mutations in BM or PB samples were detected by
hybrid capture sequencing of coding regions of 300 genes
(Agilent SureSelect XT, N = 156) or 81 genes (Agilent Sure-
Select XTHS, N = 260). A list of the genes targeted by the
2 panels are shown in supplemental Table 2. PPM1D was not
covered by the 81-gene panel, and therefore; correlative anal-
ysis on PPM1D mutations was restricted to 156 patients
analyzed by the 300-gene panel. For other cancer gene muta-
tions covered by both panels (68 genes), correlative analysis
was performed with 416 patients. Sequencing methods and
bioinformatics pipelines to identify high-confidence cancer
gene mutations were previously described.6

Multiplexed in vivo CRISPR knockout screen
in mouse HSPCs
Concentrated lentiviruses encoding individual single guide RNAs
(sgRNAs) (supplemental Table 3) and a tag-red fluorescent pro-
tein (tRFP) were prepared as previously described14 and titered
on HEK293T cells. Live, lineagelo, Sca1+, c-Kit+ (LSK) cells were
sorted from the BM of CRBNI391V MxCre Cas9+/− CD45.2+

mice15 and stimulated overnight at a concentration of 1 × 106

cells per mL in serum-free expansion medium (StemSpan SFEM,
SemCell Technologies) supplemented with 50 ng/mL murine
thrombopoietin (mTPO) and 50 ng/mL murine stem cell factor
(mSCF, Peprotech). Lentiviral transduction was performed in an
1754 20 OCTOBER 2022 | VOLUME 140, NUMBER 16
arrayed fashion, with LSK cells separated into individual wells and
spinfected with individual viruses at 2200 revolutions per minute
for 90 minutes at 37◦C with the virus at a multiplicity of infection
of ~125 as determined by the titer in HEK293T cells. After
spinfection, cells were allowed to rest for 2 hours, then an equal
volume of fresh SFEM with TPO and SCF was added, and the
cells were grown at 37◦C for an additional 4 hours. Equal
numbers of cells from each infection were then mixed, washed
twice in phosphate buffer saline, and retro-orbitally injected into
lethally irradiated (split dose 450 cGy × 2) Bl6.SJL CD45.1+

recipient mice. We chose retro-orbital injection over tail vein
injection because we found it to be less traumatic for the mice.
The remaining cells were grown for 2 days in SFEM with TPO and
SCF, and DNA was purified for NGS. sgRNA guide frequencies
were determined by purifying DNA from whole blood or BM and
polymerase chain reaction (PCR) amplification of the lentiviral
guide backbone followed by NGS. Quantitation was performed
by counting the number of reads matching each specific
guide sequence divided by the total number of reads matching
all 8 guides. We have previously demonstrated that our
sgRNAs induce deleterious indels adjacent to protospacer
adjacent motif sites within our target genes and that the fre-
quency of guide sequence correlates well with the presence of
these indels.14,16

Generation of Hoxb8 cell lines and Hoxb8 cell line
experiments
Immortalized myeloid progenitor cell lines were generated from
a homozygous CrbnI391V MxCre Cas9+/− mouse and a Crbnwt

MxCre Cas9+/− mouse via estrogen-regulated expression of
Hoxb8 as previously described.15,17 c-KIT+ BM cells were
infected with a murine stem cell virus retrovirus system,
encoding ER-Hoxb8, then grown in vitro in RPMI supplemented
with 10% fetal calf serum, penicillin/streptomycin, mSCF, and
1 μM estradiol (Sigma). After 1 month of culture, single-cell
cloning was performed, and a representative clone with bili-
neage (neutrophil and macrophage) differentiation potential
upon estrogen withdrawal was selected for all downstream
applications. mSCF was generated from a Chinese hamster
ovary cell line as previously described18 with conditioned media
used at a final concentration of 2% (~100 ng/mL). To generate
cell lines carrying CH mutations, CrbnI391V MxCre Cas9+/− cells
were spinfected with sgRNA-encoding lentiviruses. tRFP+ cells
were sorted, and genotypes were confirmed by PCR amplifi-
cation and sequencing of the targeted genes.

For drug sensitivity assays, cells were plated in triplicate in the
presence of various concentrations of lenalidomide or pomali-
domide prepared in dimethyl sulfoxide (DMSO). At 72 hours,
cell viability was assessed using the CellTiterGlo (Promega)
luminescent cell viability assay. For in vitro competition assays,
blue fluorescent protein positive control cells and tRFP+ test
cells were mixed in a 9:1 ratio and grown for 15 days. Every
72 hours, cells were harvested, with a portion analyzed by flow
cytometry to assess blue fluorescent protein/tRFP percentages
and a portion replated in fresh media with drug.

Competitive BM transplantation and thalidomide
analog treatment
c-Kit+ cells were isolated from the BM of CrbnI391V Trp53−/−

CD45.2, CrbnI391V vavCre Tet2fl/− CD45.2, CrbnI391V vavCre
SPERLING et al
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Csnk1a1−/+, and CRBNI391V CD45.1 mice using CD117 selec-
tion beads (Miltenyi). Cells were mixed at the indicated ratios in
phosphate buffer saline and retro-orbitally injected into lethally
irradiated (split dose 450 cGy × 2) Bl6.SJL CD45.1+ recipient
mice. Stock solutions of lenalidomide, pomalidomide, and
iberdomide were prepared in DMSO, stored at −80◦C, and
diluted to between 10% and 20% DMSO with sterile 0.9%
sodium chloride, immediately before being administered by
oral gavage. Retro-orbital bleeds were performed at the indi-
cated time points and blood counts measured on a Hemavet
(Drew Scientific). BM counts were performed on a Vi-CELL BLU
automated cell analyzer (Beckman-Coulter). Flow cytometry was
performed on a BD FACSCanto II.

Statistical analysis
Pearson chi-squared or Fisher exact tests were used to analyze
the associations among categorical variables. We used odds
ratio (OR) to assess the strength of associations between any 2
categorical variables. To avoid the infinity OR value, we used
the Haldane correction. Mann-Whitney U test or Student t test
was used to test the statistical difference between continuous
variables. For comparison in continuous data with >2 groups,
one-way analysis of variance (ANOVA) plus the Tukey honestly
significant difference post hoc test was used. We performed a
multivariate logistic regression to adjust for potential con-
founding factors in the analysis of association between muta-
tions and prior exposures. The multicollinearity was evaluated,
and variance inflation factor was used to evaluate the severity.
The model was built by stepwise algorithm, and the Akaike
information correction minimization method was used for the
variable selection. A Firth logistic regression was applied
instead, if the quasi-complete separation problem was detec-
ted. Where appropriate, adjustment for multiple testing was
performed by the Benjamini-Hochberg method. The analysis
was performed with Prism (version 9), SPSS (version 23), or
statistical R software (version 4.0.2).
-2021-014956-m
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Results
The landscape of cancer gene mutations in t-MNs
To understand the landscape of cancer gene mutations in
t-MNs, we searched our institutional medical database to
identify newly diagnosed patients with t-MN whose diagnostic
BM or PB specimens were available for sequencing. We iden-
tified 416 patients with t-MN, of whom 167 (40%) had t-AML
and 249 (60%) had t-MDS. Patient characteristics are summa-
rized in Table 1. About two-thirds (63%) of the patients had a
primary diagnosis of solid tumors and the remainder (37%) had
nonmyeloid hematologic cancers (Table 1; supplemental
Figure 1A). Overall, 186 patients (45%) received prior treatment
with chemotherapy alone, 69 patients (17%) had radiotherapy
alone, and 161 patients (39%) had received both. Sixty-nine
patients (17%) underwent autologous hematopoietic stem cell
(HSC) transplant (supplemental Figure 1B). The median latency
from initial CRT exposure to t-MN diagnosis was 6.2 years
(interquartile range 3.0-12.0 years), with a significantly shorter
latency for t-AML than t-MDS (t-AML vs t-MDS, median 5.0
years vs 6.4 years, P = .0283) (supplemental Figure 2). Cyto-
genetic profiles were consistent with those seen in high-risk
MNs: 170 patients (41%) had a complex karyotype, 138 (34%)
had −7/del(7q), 131 (32%) had −5/del(5q), and 29 (7%) had
LENALIDOMIDE AND TP53-MUTATED t-MNS
11q23 rearrangements (Table 1). Although the prevalence of
complex karyotype was similar between t-AML and t-MDS, −5/
del(5q) and −7/del(7q) were more frequent in t-MDS. A small
subset of the patients had favorable cytogenetic abnormalities
including inv16/t(16;16) in 6 (1%) patients, t(15;17) in 4 (1%)
patients, and t(8;21) in 3 (1%) patients.

At least 1 gene mutation was detected in 352 of the 416
patients with t-MN (85%). Mutations in genes involved in the
DNA damage response (TP53 [37%] and PPM1D [19%]) pre-
dominated, followed by TET2 (16%), DNMT3A (15%), RUNX1
(13%), ASXL1 (13%), and SRSF2 (10%) (Figure 1A). Consistent
with a recent report,19 61% of TP53-mutated cases had multihit
alterations (combination with del 17p or multiple TP53 muta-
tions with total cancer-cell fraction exceeding 100%) with likely
bi-allelic involvement (supplemental Figure 3). Although the
median variant allele frequency (VAF) of TP53 mutations was
0.31, VAF of PPM1D mutations was predominantly subclonal
(median VAF 0.045, supplemental Figure 4). A pair-wise analysis
of mutation co-occurrence demonstrated that TP53 mutations
co-occurred with aneuploid karyotype but were anticorrelated
with many other gene mutations and with 11q23 rearrange-
ments (supplemental Figure 5).5,20 The pattern of co-
occurrence between inv16/t(16;16) and oncogenic RAS
pathway mutations (NRAS, KRAS, and NF1), SRSF2 and IDH2,
and NPM1 and FLT3 were consistent with the pattern observed
in de novo MNs. By comparing the mutational frequency with
that of AML and MDS without prior CRT exposures (N = 1021,
supplemental Table 1), we determined which genes were more
commonly mutated in each of the 4 disease subtypes (t-AML,
t-MDS, AML, and MDS) (Figure 1B). As expected, TP53 and
PPM1Dmutations were significantly more frequent in t-MNs. By
contrast, STAG2 and ASXL1 mutations were more common in
AML/MDS without prior exposures. In addition, NPM1, IDH1/2,
FLT3, CEBPA, and NRAS mutations were enriched in AML
without exposures, whereas TET2, PHF6, and spliceosome
gene mutations (SRSF2, SF3B1, and U2AF1) were found to be
more common in MDS without prior exposures (Figure 1B).
Association between gene mutations and prior
exposures
Next, we assessed the association between mutations and prior
exposures (Figure 2A). As expected, we observed significant
correlations between complex karyotype and platinum agents
(OR, 1.88; 95% CI, 1.23-2.89; FDR = 0.052), and between
chromosome 7 abnormalities with alkylating agents (OR, 1.64;
95% CI, 1.08-2.49; FDR = 0.057) and platinum drugs (OR, 1.65;
95% CI, 1.06-2.57; FDR = 0.057). Mutations that were associ-
ated with de novo AML/MDS (NPM1, IDH2, ASXL1, and
splicing genes, Figure 1B) anticorrelated with agents that are
commonly associated with t-MNs (alkylators, anthracyclines,
and topoisomerase inhibitors), suggesting that t-MNs with
these mutations may not have biological association with the
prior exposures. In addition, patients who were exposed to
radiation therapy alone had strong associations with NPM1,
splicing genes, and normal karyotype, consistent with the pre-
vious study reporting the similar clinical outcomes of those
patients with de novo MN.21

Notably, we found significant associations between TP53 muta-
tions and proteasome inhibitors (OR, 3.06; 95% CI, 1.52-6.15;
20 OCTOBER 2022 | VOLUME 140, NUMBER 16 1755



Table 1. Clinical characteristics of 416 patients with t-MNs

Total t-AML t-MDS P value

N 416 167 249

Median age (range), y 68 (17-91) 65 (17-89) 69 (22-91) .002

Male, n (%) 221 (53) 79 (47) 143 (57) .051

Median latency (range), y 6.0 (0.1-40) 5.0 (0.1-40) 6.4 (0.3-45) .028

Median Hgb (range), g/dL 9.3 (5.2-14.8) 9.3 (5.2-13.2) 9.3 (5.9-14.8) .079

Median WBC (range), K/μL 3.2 (0.1-267) 3.8 (0.1-267) 3 (0.2-85.7) .000

Median ANC (range), K/μL 1.17 (0-62.5) 0.98 (0-62.5) 1.3 (0-50.6) .170

Median PLT (range), K/μL 58 (3-895) 41 (3-389) 65 (6-895) .002

Previous malignancy, n (%) .000

Nonhematological 285 (63) 142 (78) 143 (52)

Hematologic 169 (37) 39 (22) 130 (48)

Active primary malignancy, n (%) 63 (15) 11 (7) 52 (21) .000

Previous therapy, n (%) .053

Chemotherapy 186 (45) 66 (39) 120 (48)

Radiotherapy 69 (16) 36 (22) 33 (13)

Chemoradiotherapy 161 (39) 65 (39) 96 (39)

History of auto-HSCT, n (%) 69 (17) 32 (19) 37 (15) .282

Cytogenetics*, n (%)

Diploid 84 (21) 34 (21) 50 (21) .941

Complex† 170 (41) 67 (41) 103 (43) .622

Del 5q/-5‡ 131 (32) 42 (25) 89 (37) .013

Del 7q/-7 138 (34) 33 (20) 105 (43) .000

Inv 16/t(16;16) 6 (1) 6 (4) 0 (0) .003

11q23 29 (7) 26 (16) 3 (1) .000

t(15;17) 4 (1) 4 (2) 0 (0) .036

t(8;21) 3 (1) 3 (2) 0 (0) .036

-Y 16 (4) 9 (5) 7 (3) .201

Del 20q 38 (9) 11 (7) 27 (11) .118

Del 12p 42 (10) 14 (8) 28 (12) .297

Trisomy 8 60 (15) 25 (15) 35 (14) .887

Inv3q/t(3;3) 8 (2) 2 (1) 6 (2) .358

Trisomy 21 41 (11) 18 (11) 23 (10) .673

Del 17p/-17 54 (13) 22 (13) 32 (13) .988

Bold denotes variables with P < .05.

ANC, absolute neutrophil counts; auto-HSCT, autologous hematopoietic stem cell transplant; Hgb, hemoglobin; PLT, platelet; WBC, white blood cell count.

*Cytogenetic abnormalities were recorded either as a sole abnormality or with multiple other abnormalities; therefore, the total frequency exceeds 100%.

†Among patients with complex karyotype, 40 (25%) did not have chromosome 5 or 7 abnormalities.

‡Seventy-nine patients (19%) had concurrent chromosome 5 and 7 abnormalities.
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FDR = 0.025) and with thalidomide analogs (OR, 2.62; 95% CI,
1.36-5.05; FDR = 0.035). Multivariate logistic regression analysis
to adjust for the confounding effect from multiple exposures in
individual patients confirmed a significant association between
TP53mutations and prior exposures to thalidomide analogs (OR,
3.14; 95% CI, 1.60-6.18; P = .0009) and vinca alkaloids (OR, 1.76;
95% CI, 1.05-2.93; P = .031) and negative association with
1756 20 OCTOBER 2022 | VOLUME 140, NUMBER 16
topoisomerase inhibitors (OR, 0.49; 95% CI, 0.26-0.91; P = .023)
(Figure 2B; supplemental Table 4). The associations between
gene mutations and prior malignancies were concordant with
these findings (supplemental Figure 6). Correlation between
gene mutations and prior malignancies revealed a significant
association between TP53 mutations and history of multiple
myeloma (MM) (FDR < 0.05) and ovarian cancer (FDR < 0.1),
SPERLING et al
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t-AML vs AML in x-axis and t-MDS vs MDS in y-axis. Statistically significant enrichment based on OR of 95% CI is highlighted by colors. CI, confidence interval.
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whereas breast cancer was associated withNF1mutations (FDR<
0.05) and 11q23 rearrangements (FDR < 0.01) (supplemental
Figure 6). Because thalidomide analogs are predominantly used
for the treatment of MM, with prolonged administration as a
maintenance therapy, we also analyzed the duration of exposure
and t-MN genotype. Among the patients treated with lenalido-
mide, patients with TP53-mutated t-MN had significantly longer
duration of exposure compared with patients with wild-type (WT)
TP53 (supplemental Figure 7), suggesting that the t-MN geno-
type is also shaped by the duration of exposure. We also
analyzed the secondary exposures in patients with MM who were
treated with thalidomide analogs and had developed t-MNs
(supplemental Figure 8). There were no significant differences in
secondary exposures between patients who developed TP53-
mutated or unmutated t-MN. These data suggest that specific
1758 20 OCTOBER 2022 | VOLUME 140, NUMBER 16
CRT exposures promote the development of t-MNs with unique
driver events.
Trp53 loss promotes resistance to lenalidomide
but not pomalidomide
The significant association between TP53 mutations and prior
exposures to thalidomide analogs (Figure 2) in t-MNs prompted
us to directly investigate the effect of lenalidomide on TP53-
mutant HSPCs because 92% of the thalidomide analog expo-
sure in this cohort involved lenalidomide. TP53 mutations are
associated with resistance to lenalidomide therapy in del(5q)
MDS.22 Lenalidomide induces CK1α degradation leading to
p53-dependent apoptosis in HSPCs.23 In addition, loss of p53
in Csnk1a1−/+ mouse HSPCs confers resistance to ex vivo
SPERLING et al
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treatment with lenalidomide.23 However, to the best of our
knowledge, the effect of thalidomide analogs on preleukemic
TP53-mutant HSPCs and their evolution to t-MN has never been
assessed.

To address the hypothesis that thalidomide analogs promote
evolution of TP53-mutated disease directly, we generated an
immortalized mouse HSPC cell line with an estrogen-inducible
Hoxb8 transgene (supplemental Figure 9A).17 Because mouse
cells are inherently resistant to thalidomide analogs owing to a
single amino acid difference from the human CRBN, we used a
CrbnI391V knockin mouse model that we previously developed
and characterized.15 Hoxb8 cells generated from the CrbnI391V

mouse were sensitive to both lenalidomide and pomalidomide,
whereas cells derived from a WT mouse were not (supplemental
Figure 9B).

Hoxb8 CrbnI391V;Rosa26-Cas9 cells were engineered to carry
mutations recurrently mutated in CH, including Trp53, using the
CRISPR-Cas9 system, and then treated with lenalidomide. Only
loss of Trp53 led to resistance to lenalidomide (Figure 3A),
although it did not confer resistance to pomalidomide
(Figure 3B). Similarly, in long-term in vitro competition assays,
Trp53 mutant cells rapidly outcompeted control Hoxb8 cells in
the presence of lenalidomide, but with pomalidomide, showed
only a mild proliferative advantage at high drug doses (sup-
plemental Figure 9C-D). Because almost all patients with MM
were exposed to both thalidomide analogs and proteasome
inhibitors, it was difficult to separate the effect of the 2 drugs
from clinical analysis. Therefore, we also treated Trp53-mutated
and WT Hoxb8 immortalized mouse HSPCs with bortezomib or
carfilzomib. However, compared with lenalidomide, Trp53-
mutated clones showed only mild resistance to the protea-
some inhibitors, further suggesting that lenalidomide is the
main driver of clonal selection of TP53-mutated clones (sup-
plemental Figure 10).
-2021-014956-m
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Trp53 mutation confers a selective advantage on
HSPCs in the presence of lenalidomide therapy
To further assess the effect of lenalidomide on clonal outgrowth
in vivo, we virally transduced LSK cells harvested from
CrbnI391V;Rosa26-Cas9 mice with sgRNAs targeting 6 recurrently
mutated genes in CH (Dnmt3a, Tet2, Asxl1, Trp53, Ppm1d, and
Ezh2) and 2 control sgRNAs in parallel, pooled the mutant cells at
equal ratios, and then transplanted them into lethally irradiated
WT recipient mice (Figure 3C).14,24 NGS of the input cells after
2 days in culture demonstrated an equal distribution of sgRNAs
across the 6 genes and 2 controls, and flow cytometry demon-
strated efficient engraftment of the fluorescently labeled mutant
hematopoietic cells in the mice (supplemental Figure 11A-B).
After hematopoietic reconstitution, we treated the mice with
lenalidomide or vehicle for 5 weeks and collected PB and BM for
both flow cytometric analysis and NGS. As expected, treatment
with lenalidomide led to selective loss of CrbnI391V donor cells
(supplemental Figure 11C). Sequencing of the PB before and
after treatment with lenalidomide demonstrated a 23% average
increase in cells carrying the sgRNA targeting Trp53 (P = .0175)
(Figure 3D). We also observed a trend toward a reduction in cells
carrying the sgRNA targeting Tet2 (Figure 3D). Similar results
were seen in the BM (supplemental Figure 11D).
LENALIDOMIDE AND TP53-MUTATED t-MNS
To further study the impact of thalidomide analogs on the
outgrowth of Trp53-mutant HSPCs in vivo, we crossed
the CrbnI391V mouse to a Trp53−/− knockout mouse.15,25 We
transplanted c-Kit+ cells with donor marrow consisting of 20%
CD45.2;Trp53−/−;CrbnI391V (mutant) cells mixed with 80%
CD45.1;CrbnI391V (WT) cells (supplemental Figure 12A). After
hematopoietic reconstitution at 8 weeks, we treated mice with
vehicle (10% DMSO), lenalidomide 50 mg/kg, or pomalidomide
20 mg/kg. Treatment with both lenalidomide and pomalidomide
led to a similar degree of PB leukopenia and decreased BM
cellularity (supplemental Figure 12B-C). Other PB parameters
showed only mild differences, consistent with prior work (sup-
plemental Figure 12C).15 In general, whereas both agents led to
equal levels of PB leukopenia and decreased BM cellularity,
lenalidomide led to further decrease in long-term HSCs and
myeloid progenitors than did pomalidomide (supplemental
Figure 12D). Treatment with lenalidomide, but not pomalido-
mide, led to outgrowth of Trp53−/−-mutant cells in all blood
cell lineages, suggesting selection in HSPCs (Figure 3E; supple-
mental Figure 12E). Analysis of the BM demonstrated significant
preferential expansion of the Trp53−/−-mutant cells in all stem cell
and progenitor populations, only in the lenalidomide treated
mice (Figure 3F; supplemental Figure 12F). Competitive trans-
plantation of Tet2−/− HSPCs failed to demonstrate any selective
depletion of Tet2-mutant cells after treatment with lenalidomide
(Figure 3G; supplemental Figure 13A-D). Thus, we conclude that
treatment with lenalidomide but not pomalidomide leads to the
selective outgrowth of Trp53-mutant HSPCs.

Differential degradation of CK1α defines the
toxicity of thalidomide analogs in HSPCs
Although lenalidomide and pomalidomide both facilitate the
degradation of IKZF1 and IKZF3, only lenalidomide promotes
degradation of CK1α23,26,27 (supplemental Figure 14A). Because
suppression of CK1α induces p53-mediated apoptosis,15,28 we
hypothesized that lenalidomide treatment would be more toxic
to normal HSPCs compared with pomalidomide and could
explain the competitive advantage seen for TP53-mutated
HSPCs. Consistent with this hypothesis, we observed that treat-
ment with lenalidomide led to a more significant reduction in
long-term HSCs and myeloid progenitors compared with
pomalidomide (supplemental Figure 12D).

To further characterize the role of CK1α degradation in the
toxicity of thalidomide analogs in normal HSPCs, we performed
a competitive BM transplant experiment with Csnk1a1 hetero-
zygous knockout (Csnk1a1−/+) mouse cells and WT cells in the
Crbn1391V background, and treated the transplanted mice with
lenalidomide, pomalidomide, and iberdomide.29 Iberdomide is
a next-generation thalidomide analog currently in clinical
development.30 We found that, similar to pomalidomide, it
degrades IKZF1 and ZFP91 but not CK1α (supplemental
Figure 14A). Although all 3 drugs led to a similar degree of
leukopenia, only lenalidomide treatment selectively depleted
Csnk1a1−/+ cells in the PB and hematopoietic stem and pro-
genitor populations (Figure 4C-D; supplemental Figure 14).
These data strongly suggest that the HSPC toxicity seen during
lenalidomide treatment is driven by the degradation of CK1α,
that this effect is specific to lenalidomide, and that CK1α
degradation provides a mechanistic basis for selection of Trp53-
mutant HSPCs.
20 OCTOBER 2022 | VOLUME 140, NUMBER 16 1759
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at equal ratios, and then transplanted into lethally irradiated Bl6.SJL recipient mice. (D) PB was collected before and after treatment of mice from pooled CRISPR-Cas9
experiment, DNA was harvested, sgRNA sequence was PCR amplified, and then subjected to NGS. The proportions of read mapping to each sgRNA sequence was
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of the mean (n = 9-10 mice per group). ****P < .0001, one-way ANOVA. (G) After hematopoietic reconstitution, chimeric transplants containing 50% Tet2−/−, CrbnI391V
(mutant, CD45.2), and 50% CrbnI391V (WT, CD45.1) were treated with vehicle (DMSO) or lenalidomide 50 mg/kg, twice daily (BID). PB was collected weekly and chimerism was
measured using fluorescence-assisted cell sorting. Shown is the mean ± the standard error of the mean (n = 15 mice per group). Actb, cutting guide targeting intronic
sequence within β-actin gene; NTG, nontargeting guide; ns, not significant; PO, postoperative; tx, treatment.

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/140/16/1753/2050718/blood_bld-2021-014956-m

ain.pdf by guest on 05 M
ay 2024
Discussion
Here, we have analyzed the mutational profiles of 416 patients
with t-MN and their associated clinical characteristics including
1760 20 OCTOBER 2022 | VOLUME 140, NUMBER 16
prior cancer therapy exposures. We identified a significant
association between TP53-mutated t-MN and prior exposure to
thalidomide analogs, especially lenalidomide. Using in vitro and
in vivo mouse models, we demonstrate that lenalidomide, but
SPERLING et al
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not pomalidomide, treatment promotes selective outgrowth of
Trp53-mutant HSPCs, which likely forms the basis of t-MN
development in this context.

Mutations in TP53 within both leukemic cells and otherwise
normal HSPCs lead to resistance to a variety of cytotoxic
agents.8,31 This likely explains their predominance in the setting
of t-MN, where the disease has evolved in the setting of this
selective pressure. Loss of p53 is likely to allow tolerance for
additional genomic instability and karyotypic abnormalities,
promoting the development of the high-risk cytogenetic abnor-
malities that have been associated with a poor prognosis.32 Thus,
it appears that TP53-CHIP may represent a unique high-risk
lesion with increased preleukemic potential33,34 and risk for
transformation, especially in the setting of cytotoxic therapy.35

Mutations in TP53 have also been proposed to mediate resis-
tance to lenalidomide in del(5q) MDS and secondary AML based
on data that these mutations can often be found in patients who
progress on treatment.22,36 We demonstrate that TP53-mutated
t-MNs are particularly enriched in patients with MM treated with
thalidomide analogs. We have also previously observed that
although there was no increased risk of t-MN among patients
with CH at the time of autologous stem cell transplant for MM,
those that did develop t-MN had universally been exposed to
thalidomide analogs and most had a preexisting TP53-mutant
clone.37 Because MM is a clonal plasma-cell disorder, one could
postulate that patients with MM are more likely to carry mutant
LENALIDOMIDE AND TP53-MUTATED t-MNS
HSCs and hence are at increased risk of t-MN development.
However, previous studies have found a similar prevalence of
CHIP in patients with MM and solid tumors.12,35,37 In addition,
the risk of t-MN in patients with MM has evolved significantly
over time, accompanied by the changes in treatment modal-
ities.38 These observations argue against the idea that patients
with MM have inherently higher risk of having abnormal HSCs
that predispose them for t-MN, but rather, treatment exposures
are driving the risk. Our multiplexed CRISPR-Cas9 experiments
demonstrate that the selective advantage is exclusive to Trp53-
mutant HSPCs and is not conferred on HSPCs carrying other
mutations that are commonly found in CHIP (eg, Dnmt3a, Tet2,
Asxl1, Ppm1d, and Ezh2). Although this model may not fully
recapitulate the setting in patients, these data suggest a direct
role for lenalidomide in driving the development of TP53-mutant
t-MN.

We also demonstrate that pomalidomide does not exert the
same selective pressure on Trp53-mutated HSPCs. The primary
difference between the activities of lenalidomide and pomali-
domide is the degradation of CK1α. Both drugs bind CRBN and
induce degradation of Ikaros and Aiolos; however, pomalido-
mide is a significantly less potent degrader of CK1α.23,27 CK1α
is essential for HSPC survival.29 Thus, pomalidomide may have
less impact on WT HSPCs, limiting the selective advantage of
TP53-mutant clones, a finding we observed in competitive
transplant assays. Using competitive transplantation with
Csnk1a1−/+ cells, we confirmed that the differential toxicity of
20 OCTOBER 2022 | VOLUME 140, NUMBER 16 1761
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lenalidomide and pomalidomide is largely driven by the
lenalidomide-specific degradation of CK1α. This finding in
mouse HSPCs will require further prospective validation in
patients but suggests the possibility that future therapeutic
regimens using thalidomide analogs with a narrower target
degradation profile (eg, pomalidomide or iberdomide) could
mitigate the risk of t-MN while maintaining their antimyeloma
activity. At this point, because the clinical use of pomalidomide
is restricted to patients previously treated with lenalidomide, it
is difficult to identify a clinical cohort that has only been treated
with pomalidomide but not lenalidomide. Future and ongoing
clinical trials investigating the efficacy of newer thalidomide
analogs (eg, iberdomide) might offer the opportunities to
investigate the difference in t-MN risk based on the choice of
thalidomide analogs.

Although it is important to identify the etiologic agents and
genetic hallmarks of t-MN, it is equally important to define those
patients with mutations more commonly seen in AML/MDS
without prior exposures and thus likely to represent t-MNs that
are biologically unrelated to the prior therapy and instead
represent a second primary AML/MDS. Mutations in NPM1,
IDH2, ASXL1, and spliceosome genes were anticorrelated with
agents that are commonly associated with t-MNs (alkylators,
anthracyclines, and topoisomerase inhibitors). These exact
mutations are also more commonly identified in AML/MDS
without prior exposures. Our data suggest that genetic profiling
may distinguish true t-MN from second primary AML/MDS with a
coincident history of CRT exposure. Such distinctions are impor-
tant for improved risk stratification and trial allocation because
many patients with t-MN are currently excluded from partici-
pating in clinical trials.

Our data add to the growing understanding of the interactions
between specific clonal somatic mutations in the blood, exog-
enous stressors, and the development of clinical dis-
ease.6,8,35,39-41 Although CHIP, as an entity, is associated with
adverse outcomes including increased cardiovascular disease
and risk of myeloid malignancy, the specific risk of any disease
outcome is likely to involve a complex interplay between
genotype and environmental perturbagens. Comprehensive
understanding of the heterogeneous interactions between
CHIP and exogenous stressors will help advance a personalized
approach to risk reduction and early intervention.
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