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Richter syndrome (RS) is the histological transformation of
chronic lymphocytic leukemia (CLL) into an aggressive lym-
phoma, typically diffuse large B-cell lymphoma (DLBCL), with
most cases clonally related to the preceding CLL.1-3 In the past
10 years, a revolution has occurred in therapeutic options for
patients with CLL.4 However, little has changed for patients with
RS, with only a few phase 1 and 2 clinical trials ongoing, mostly
based on different drug combinations.5 Novel therapeutic per-
spectives for RS may come from immune-based therapies6,7 or,
alternatively, from the use of antibody-drug conjugates (ADCs)
targeting antigens predominantly or exclusively expressed by
neoplastic cells.8

One of these antigens is CD37, a heavily glycosylated leukocyte
surface antigen belonging to the tetraspanin superfamily, selec-
tively expressed at high levels by normal mature B cells, as well
by mature B-cell malignancies, including non-Hodgkin lym-
phoma (NHL), CLL, and DLBCL.9-11 CD37 has recently gained
attention as a potential target, with consequent development of
novel therapeutic agents12-16 that have shown clinical efficacy in
CLL and DLBCL when used in combination with rituximab, che-
motherapy, or targeted compounds.17-21

The increased interest and efficacy of anti-CD37–based thera-
pies prompted the development of 3 different anti-CD37-ATACs
(amanitin-based ADCs). These novel drugs are composed of a
chimeric monoclonal IgG1 antibody specific for CD37, conju-
gated via either a proteolytic cleavable (anti-CD37-Ama 1 and
anti-CD37-Ama 2) or a noncleavable (anti-CD37-Ama 3) linker to
amanitin as the payload (supplemental Figure 1A, available on
the Blood Web site).

All 3 anti-CD37 ATACs showed full-blown cytotoxicity on target-
positive Raji cells (Burkitt lymphoma cell line) with half-maximal
effective concentration in the low nanomolar and picomolar
range (anti-CD37-Ama 1: 2.04 3 1029 M; anti-CD37-Ama 2:
7.5 3 10210 M; anti-CD37-Ama 3: 3.9 3 1029 M; supplemental
Figure 1B). Target specificity was demonstrated by absence of
cytotoxicity up to a concentration of 1026 M in a CD372 cell line
(HEK293wt; supplemental Figure 1C). In contrast, free a-amanitin
showed cytotoxicity on Raji and HEK cells (supplemental Figure
1D) with half-maximal effective concentration values in the micro-
molar range, which was even lower in HEK cells expressing

OATP1B3 (supplemental Figure 1D), a cell surface transporter
that is known to transport a-amanitin into hepatocytes.

Amanitin is an RNA polymerase II inhibitor that interrupts cellu-
lar transcription at low nanomolar concentrations.22 Consis-
tently, anti-CD37 ATACs induced cytotoxicity by arresting RNA
transcription, with the active metabolite of anti-CD37-Ama 2
displaying a similar degree of inhibition of free a-amanitin, with
a half-maximal inhibitory concentration in the low nanomolar
range (supplemental Figure 1E).

Analysis of CD37 expression in cell lines and primary samples
obtained from B-cell hematological malignancies revealed low
levels of expression in acute lymphoblastic leukemia, Hodgkin
lymphoma, and multiple myeloma, whereas CLL, mantle, and
NHL cells expressed it at high levels (supplemental Figure 2A).
Primary samples confirmed this pattern of expression, with CLL
cells showing the highest expression, followed by follicular lym-
phoma and DLBCL, whereas acute lymphoblastic leukemia and
multiple myeloma had low-to-undetectable expression of CD37
(supplemental Figure 2B). Importantly, RNA sequencing data
performed on 14 patients with RS showed that CD37 was invari-
ably expressed by this lymphoma (supplemental Figure 2B), as
confirmed by immunohistochemical staining performed on bone
marrow or lymph node biopsy specimens from patients with RS
(Figure 1A). In paired CLL-RS specimens, CD37 expression,
which was high in the CLL phase, was invariably maintained after
RS transformation (Figure 1A).

We then took advantage of established PDX models, which
have been shown to be useful tools to test the efficacy of novel
drugs/drug combinations.8,23,24 The 4 RS-PDX models were
characterized by significant levels of CD37, with 2 of them,
RS1316 and IP867/17, showing slightly higher CD37 expression
compared with the other 2 (RS9737 and RS1050; Figure 1B-D).
Flow cytometry analyses (supplemental Figure 2C) and immuno-
histochemistry staining on formalin-fixed, paraffin-embedded
sections of tumor masses obtained from the 4 RS-PDXs (Figure
1E) confirmed these observations.

All 3 anti-CD37 ATACs (anti-CD37-Ama 1, -Ama 2, and -Ama 3)
bound CD37 (supplemental Figure 2D), ruling out any interfer-
ence of the linker or amatoxin with antibody-binding properties.
When tested in vitro (40 and 200 nM; 72 hours) on
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Figure 1. CD37 is expressed by Richter syndrome primary samples and patient-derived xenograft models. CD37 expression on primary RS samples was checked
by immunohistochemistry performed on bone marrow or lymph node biopsy specimens from patients with RS (yellow dots) or paired CLL-RS samples (A; red-green-
dark blue-purple dots). Representative staining of 2 paired CLL-RS and 3 RS samples. Original magnification, 3200; inset 36. CD37 expression was checked, both
at the transcript and protein levels, in our 4 RS-PDX models (RS1316, RS9737, RS1050, and IP867/17) by RNA sequencing (B; n 5 4 per model; box and whiskers,
minimum to maximum representation), quantitative real-time PCR (C; n 5 8 per model; box and whiskers, minimum to maximum representation), western blot analy-
sis (D; n 5 4 per model; box and whiskers, minimum to maximum representation) and immunohistochemistry staining on slides of formalin-fixed and paraffin-
embedded, RS-PDX–derived tumor masses (E). In western blot analyses, actin was used as a loading control. RE, relative expression; TPM, transcript per million.
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RS-PDX–derived cells, these 3 ATACs resulted in a significant
apoptotic response, with limited heterogeneity among the PDXs
and compounds (supplemental Figure 3B). These results were
corroborated by pronounced cleavage of caspase-3 and PARP
proteins in all models (supplemental Figure 3B). All anti-CD37
ATACs induced apoptosis selectively in CD37-expressing cells.
Indeed, when incubated with peripheral blood mononuclear
cells from healthy donors, only CD371 B cells underwent apo-
ptosis, whereas no reduction in viability was measured in T lym-
phocytes (CD372; supplemental Figure 4). Furthermore, no
toxicity was assessed when treating these cells with nontargeted
antibodies conjugated to amanitin with the same 3 linkers,
underlining the specificity of anti-CD37 ATACs (supplemental
Figure 4).

Finally, these ATACs were tested in vivo in 3 of 4 RS-PDX mod-
els (RS1316, RS9737, and RS1050), which can grow in a systemic
way, mimicking the human disease. After IV injection, RS cells
are engrafted and localized in different tissues, including spleen,
bone marrow, peripheral blood, and even the brain, effectively
establishing a progressive lymphoma.25 Anti-CD37 ATACs were

administered IV at 2 different doses as a single treatment (anti-
CD37-Ama 1: 2.5 and 5 mg/kg; anti-CD37-Ama 2: 5 and 10
mg/kg; and anti-CD37-Ama 3: 20 and 40 mg/kg). The mice
were then compared with a vehicle control group for survival
and disease distribution in different organs (spleen, liver, periph-
eral blood, bone marrow, kidney, brain, and lung), as assessed
by flow cytometry using tumor-specific human markers. Consis-
tent with the in vitro data, RS1316 showed the best responses in
terms of improvement of survival after anti-CD37 ATAC adminis-
tration, with complete disease regression in 21 of 24 treated
mice (P 5 .0067; Figure 2A, left panel) and no or very limited
tumor cells in the different organs (supplemental Figure 5A). At
variance with RS1316, all RS9737, and RS1050 mice died of dis-
ease (supplemental Figure 5B), but anti-CD37 ATAC-treated
mice displayed a marked increase in survival (Figure 2B). Specifi-
cally, mice treated with anti-CD37 ATACs displayed heteroge-
nous responses among the 3 different compounds, with no
significant differences between the 2 doses (vehicle: 24 days
vs anti-CD37-Ama 2: 45 days vs anti-CD37-Ama 1: 61 days;
P 5 .0091). Anti-CD37-Ama 3 showed a higher degree of het-
erogeneity of in vivo response (41-59 days with the higher dose
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Figure 2. Anti-CD37 ATACs induce apoptosis in vitro and prolong survival of RS-PDX mice. (A) The apoptotic response of RS cells exposed for 72 hours to differ-
ent doses (40 and 200 nM) of anti-CD37-Ama 1, anti-CD37-Ama 2, and anti-CD37-Ama 3 or left untreated was analyzed with conventional cytofluorimetric annexin V/PI
staining (n 5 5 per model; box and whiskers, minimum to maximum representation). (B) RS cells were injected IV into NOD/SCID/g chain2/2 mice and left to engraft
(Eng) for 2 weeks. The mice were then randomly assigned to different treatment groups (4 mice per group). After anti-CD37 ATAC administration (Tx), mice were moni-
tored (W&W, watch and wait) and survival analyses performed, generating Kaplan-Mayer curves. (A) Asterisks on the box plots refer to statistical significance vs the
untreated condition; P values with bars refer to the indicated conditions. Statistical analyses were performed with the paired t test. *P , .05; **P , .01; ***P , .001.
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vs 42-86 days with the lower one; P 5 .0091). Likewise, the
RS1050 model showed a significant increase in survival when
mice were treated with anti-CD37 ATACs, although with some
differences among the compounds, and with the only exception
of the anti-CD37-Ama 1 that resulted only in a mild in vivo effect
(Figure 2B; right panel). Vehicle-treated mice were euthanized
on days 32 to 34 after injection of RS cells, with neoplastic cells
localizing in several tissues (supplemental Figure 5C). Anti-
CD37-Ama 3 resulted in a statistically significant increased sur-
vival (41-69 days after injection), with comparable results when
considering the 2 doses of drug (P 5 .0107 for the 40-mg/kg
dose and P 5 .0193 for the lower dose). Anti-CD37-Ama 2 treat-
ment further improved the mice’s survival (63-84 days for the
higher dose and 65-120 days for the 5-mg/kg dose).

To exclude any toxicity related to amanitin administration, ad
hoc experiments were performed on NSG mice to analyze the
effects of this toxin on the liver, administering the 3 ADCs at the
higher dose with the same schedule adopted for RS models.
Hepatic enzymes were measured, and histology of the liver was
performed at days 7 and 21 after administration of ADC. Eleva-
tion of aspartate aminotransferase and alanine aminotransferase
was noted 7 days after treatment, with levels diminishing after
21 days. However, regarding hepatic tissue and morphology, no
signs of hepatic toxicity related to the administration of amanitin
was note at the histological level in treated mice, suggesting a
transient elevation of the enzymes, but no permanent liver dam-
age (supplemental Figure 6 and supplemental Table 2).

Taken together, the data indicate that CD37 may represent a
good candidate for targeting RS cells with highly selective
amanitin-based ADCs.
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