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KEY PO INTS

� Host T cells play a
critical role in immune
surveillance against ALL
after chemotherapy.

� Stimulating adaptive
immune response can
improve outcomes of
ALL chemotherapy.

Although acute lymphoblastic leukemia (ALL) is highly responsive to chemotherapy, it is
unknown how or which host immune factors influence the long-term remission of this
cancer. To this end, we systematically evaluated the effects of T-cell immunity on Ph+ ALL
therapy outcomes. Using a murine Arf2/2 BCR-ABL1 B-cell ALL model, we showed that
loss of T cells in the host drastically increased leukemia relapse after dasatinib or cytotoxic
chemotherapy. Although ABL1 mutations emerged early during dasatinib treatment in
both immunocompetent and immunocompromised hosts, T-cell immunity was essential for
suppressing the outgrowth of drug-resistant leukemia. Bulk and single-cell transcriptome
profiling of T cells during therapy pointed to the activation of type 1 immunity-related
cytokine signaling being linked to long-term leukemia remission in mice. Consistent with

these observations, interferon g and interleukin 12 directly modulated dasatinib antileukemia efficacy in vivo. Finally,
we evaluated peripheral blood immune cell composition in 102 children with ALL during chemotherapy and observed
a significant association of T-cell abundance with treatment outcomes. Together, these results suggest that T-cell
immunity plays pivotal roles in maintaining long-term remission of ALL, highlighting that the interplay between host
immunity and drug resistance can be harnessed to improve ALL chemotherapy outcomes.

Introduction
Acute lymphoblastic leukemia (ALL) is the most common can-
cer in children. Although a majority of children with ALL can
be cured with risk-adapted combination chemotherapy, a
substantial proportion of patients experience relapse and
eventually die as a result of leukemia.1-3 The risk of relapse is
often related to the lack of in vivo drug response, as mea-
sured by minimal residual disease. However, approximately
half of patients eventually relapse despite having excellent
treatment response initially.4 Therefore, long-term remission
seems to be influenced by factors beyond ALL drug sensitiv-
ity, at least in some patients. In fact, inherited genetic variants
in genes related to host immune functions have been linked
to ALL prognosis,5-8 pointing to their potential contribution
to long-term cure of this cancer.

In recent years, immunotherapies have gained increasing popu-
larity in oncology,9-11 encompassing a variety of treatment
approaches (eg, cancer vaccines, chimeric antigen receptor
[CAR] T cells/T-cell receptor [TCR]–engineered T cells, and
immune checkpoint blockade). Checkpoint inhibition strongly
synergized with therapeutic vaccination and enhanced survival

of mice bearing Arf2/2 BCR-ABL B-cell ALL (B-ALL).12 The intro-
duction of CAR T cells into the clinic has transformed the thera-
peutic landscape for refractory and relapsed B-cell hematologic
malignancies, including B-ALL. CD19-targeted CARs have dem-
onstrated remarkable response rates and produced durable
remissions in very high-risk pediatric patient populations.13-16

Immunotherapeutic agents that generally stimulate immune
responses (eg, interleukin 2 [IL-2], IL-7, IL-12, IL-21, and inter-
feron a [IFN-a]) have also been studied as treatment for hema-
tologic malignancies.17-20

One of the main objectives of immunotherapy is to induce or
restore host immune responses against tumor cells.21 The mech-
anisms of host immune responses in solid tumors have been
extensively studied, particularly in the context of immune cell
infiltration and activation in the tumor microenvironment.22,23 In
ALL mouse models, inoculation of leukemia cells elicits a robust
immunosuppressive response in a majority of leukemia-
recognizing T cells (ie, FOXP31 regulatory T cells [Tregs]).24 In
patients with ALL or chronic myeloid leukemia (CML), BCR-
ABL1–specific T cells were readily detectable during remission
after chemotherapy and could exert cytotoxic effects against
leukemia cells in vitro.25-27 However, it remains unknown which
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host immune factors affect outcomes of ALL chemotherapy, or
to what degree; the interplay between host immunity and che-
motherapy resistance remains particularly unclear.

In this study, we used a murine Arf2/2 BCR-ABL1 B-ALL
mouse model to comprehensively dissect the role of T-cell
immunity in ALL treatment response, emergence of drug resis-
tance, and immune surveillance against residual leukemia. We
globally profiled molecular features of host T cells associated
with long-term ALL remission, particularly those related to
type 1 immunity, and explored therapeutic strategies to
improve immune response and chemotherapy outcomes

in vivo. Finally, we determined host immune cell composition
in patients with ALL and its prognostic impact. These findings
establish the functional and mechanistic bases for host T-cell
immunity in mediating long-term ALL remission.

Methods
Mouse model of Arf2/2 BCR-ABL1 B-ALL
C57BL/6 (000664), Tcra-knockout (KO; B6.129S2-Tcratm1Mom/J,
002116), and Ifng-KO (B6.129S7-Ifngtm1Ts/J, 002287) mice were
purchased from The Jackson Laboratory. All experiments were
approved by and conducted in compliance with the protocol of
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Figure 1. Complete loss of T cells significantly increased leukemia relapse after ALL chemotherapies. (A,B,D,E,G,H) Leukemia burden is plotted as a function of
time for B6 mice (blue curves) (A,D,G) and Tcra-KO mice (red curves) (B,E,H) after BCR-ABL1 leukemia cell inoculation. Animals were treated with dasatinib (A,B),
dasatinib plus dexamethasone (D,E), or 6-MP (G,H). Shaded areas indicate the duration of chemotherapy. (C,F,I) Kaplan-Meier survival curves are plotted for immunocompetent
B6 and Tcra-KO mice treated with dasatinib (C), dasatinib plus dexamethasone (F), or 6-MP (I). Dasatinib was administered at 10 mg/kg 2 times per day; dexamethasone
was administered at 6 mg/L in drinking water for the first week and reduced to 3 mg/L thereafter; 6-MP was administered by daily intraperitoneal injection at 5 mg/kg. The
differences in overall survival were detected by log-rank (Mantel-Cox) test. Of 9 immunocompetent mice receiving 6-MP, 5 were euthanized because of overall health concerns
identified by the St. Jude Children’s Research Hospital Institutional Animal Care and Use Committee, at which time leukemia blast was undetectable in peripheral blood, and
spleen size was normal by visual inspection. Therefore, their causes of death were likely unrelated to leukemia.
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Figure 2. CD4 or CD8 T-cell depletion led to increased ALL relapse with dasatinib treatment. (A) Schematic plot shows the timeline of leukemia inoculation and
treatment with dasatinib and anti-CD4 or anti-CD8 antibodies. (B) Flow cytometric analysis of CD4 or CD8 T-cell depletion after 3 days of antibody injection. We also
confirmed CD4 and CD8 T-cell depletion once every week by flow cytometry (data not shown). (C) Leukemia burden was measured immediately before CD4 or CD8
antibody injection (ie, day 13 from leukemia inoculation). There was no significant difference in leukemia progression across 3 groups up to this time point. (D-F)
Leukemia burden is plotted as a function of time for B6 mice treated with dasatinib, after CD4 T-cell (D) or CD8 T-cell (E) depletion, or without T-cell depletion (isotype
antibody control) (F). Shaded areas indicate the duration of chemotherapy. (G) Kaplan-Meier survival curves of B6 mice treated with dasatinib or vehicle after CD4 or
CD8 T-cell depletion. The differences in survival were detected by log-rank (Mantel-Cox) test. bid, twice per day; ns, not significant.
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Figure 3. The rise in ABL1 mutations and dasatinib resistance in immunocompromised vs immunocompetent hosts. (A) The pie plot shows the number of mice
relapsed with leukemia harboring wild-type (WT) or mutated BCR-ABL1 at the time of death; 71.4% of the relapsed immunocompetent mice had WT BCR-ABL1 B-ALL,
whereas 60% to 80% of immunocompromised mice relapsed with leukemia harboring a drug-resistant BCR-ABL1 T315I mutation. (B) Immunocompromised mice
relapsed much earlier than immunocompetent mice, mostly during dasatinib treatment (horizontal dash lines). (C) At relapse, ALL cells from immunocompetent hosts
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the St. Jude Children’s Research Hospital Institutional Animal
Care and Use Committee. Murine stem cell virus vector expres-
sion human BCR-ABL1 (encoding the p190 isoform) and green
fluorescent protein (GFP) were used for transduction of bone
marrow cells from 8-week-old female C57BL/6 Arf2/2 mice.28

After 7 days of in vitro culture, the BCR-ABL1–transformed pre-B
cells were injected into female recipient mice, giving rise to pre-
B-ALL (supplemental Figure 1). Splenic cells were collected from
moribund mice and used for subsequent experiments.

Leukemia inoculation and drug treatment
A total of 3000 Arf2/2 BCR-ABL1 pre-B leukemic cells were
inoculated into C56BL/6, Tcra-KO, or Ifng-KO mice by tail vein
injection, without irradiation or other conditioning regimens.
Mice were then given 2 weeks of Baytril (Bayer) in drinking water
(6 mL in 350 mL). Dasatinib (D-3307; LC Laboratories) and dexa-
methasone (Mylan) treatment was started 14 days after leukemic
cell injection, whereas mercaptopurine (6-MP) treatment was
started on the 10th day. Dasatinib was administered by oral
gavage at 10 mg/kg per dose in 80 mM of citric acid (pH, 3.1;
M-CSS-162; JBScreen Single Stocks) twice daily.29 Dexametha-
sone was administered at 6 mg/L in drinking water for the first
week and at 3 mg/L thereafter. Drinking water was changed
twice a week. 6-MP was administered by intraperitoneal injec-
tion daily at 5 mg/kg per dose.30 Dasatinib and dexamethasone
were given for 5 weeks, and 6-MP was given for 26 days. These
regimens were established previously for this mouse model.29

Statistical analysis
Statistical analysis was performed by Student t, Wilcoxon, 1-way
analysis of variance, or Kruskal-Wallis test using Prism-GraphPad
(clarified in figure and table legends). The difference in survival
was detected by log-rank (Mantel-Cox) test. The similarity of cell
populations (ie, lymphocyte, granulocyte, and monocyte) de-
tected by deconvolution analysis and monitored by complete
blood count was analyzed by Pearson correlation coefficient.

We performed a series of mechanistic studies and molecular
profiling experiments to characterize T-cell immunity related to
antileukemia outcomes, and the details are provided in the data
supplement. For example, BCR-ABL1–specific T cells were iden-
tified from peripheral blood after dasatinib treatment, using a
CD4 major histocompatibility complex 2 multimer that recog-
nizes BCR-ABL1 fusion in murine I-Ab. Global gene expression
profiling was performed using Clariom S mouse arrays (902930;
Thermo Fisher) on T cells prospectively collected during remis-
sion from mice who were later cured or relapsed. Similarly,
single-cell RNA sequencing was also performed to define sub-
populations within these T-cell samples, using the 103 Geno-
mics Chromium Controller platform.

Results
Complete loss of T cells results in a drastic
increase in ALL relapse in vivo
To examine the overall importance of the host immune system
in leukemia treatment outcome, we injected murine Arf2/2

BCR-ABL1 B-ALL cells (supplemental Figure 1) into immunocom-
petent (C57BL/6J [B6]) or immune-deficient mice (B6-Tcratm1Mom

[Tcra-KO]). The Tcra-KO mice were devoid of both CD4 and
CD8 T cells and thus lacked T-cell immunity. With dasatinib ther-
apy, leukemia-bearing B6 mice showed an 82.4% increase in
overall survival compared with Tcra-KO mice (Figure 1A-C), with
a median survival of 67.5 and 37 days, respectively (P 5 .0028).
The addition of dexamethasone to dasatinib prolonged the
survival of both Tcra-KO and B6 mice, but the survival disadvan-
tage of immunocompromised mice became more pronounced
with this combination therapy (P 5 .0002; Figure 1D-F). An-
other commonly used ALL drug, 6-MP, also exhibited greater
efficacy in B6 mice compared with Tcra-KO mice (P 5 .0291;
Figure 1G-I).

There was a moderate difference in leukemia progression
between B6 and Tcra-KO hosts before therapy (supplemental
Figure 2A), although with no effects on survival without chemo-
therapy (supplemental Figure 2B). Taken together, these results
unequivocally indicate that loss of T cells significantly reduces
treatment efficacy across different ALL chemotherapies.

CD4 or CD8 T-cell depletion leads to increased
ALL relapse with dasatinib treatment
To assess the contribution of CD4 or CD8 T cells to dasatinib
efficacy, we depleted each population using specific antibodies
(Figure 2A). Both antibodies efficiently removed respective
T-cell subsets (Figure 2B) but did not affect leukemia burden
when dasatinib therapy was initiated (Figure 2C). However, com-
pared with the isotype control treatment group, nearly all mice
with CD4 or CD8 T-cell depletion (75.0% or 87.5%, respectively)
relapsed during dasatinib treatment (Figure 2D-F). The median
survival times for CD4- and CD8-depletion groups were 41.5
and 37 days, respectively, compared with 61.5 days for mice
treated with the isotype control antibody (Figure 2G). Collec-
tively, these data indicate that both CD4 and CD8 T cells sub-
stantially contribute to dasatinib antileukemia efficacy in vivo.

Host immune deficiency is linked to relapse in
drug-resistant ALL
Because the emergence of BCR-ABL1 mutation T315I is the main
driver of dasatinib resistance in Arf2/2 BCR-ABL1 B-ALL,29,31 we
next sought to examine the pattern of BCR-ABL1 mutations in the
absence or presence of T-cell immunity. As shown in Figure 3A,
of the immunocompetent B6 mice that experienced relapse,
71.4% relapsed with wild-type Arf2/2 BCR-ABL1 B-ALL after the

Figure 3 (continued) were more sensitive to dasatinib than those from immunocompromised mice in vitro. (D) Schematic representation of experimental design and
analyses for detecting and tracking ABL1 mutations during dasatinib therapy. Dasatinib was administered at 10 mg/kg twice per day (bid). ABL1 sequence encoding
the kinase domain was polymerase chain reaction amplified from genomic DNA extracted from peripheral blood and then subjected to Illumina sequencing. Leukemia
burden was quantified by flow cytometry weekly. (E) BCR-ABL1 mutations were enriched shortly after dasatinib treatment was initiated relative to baseline (ie, day 14,
immediately before dasatinib treatment) in both immunocompetent and Tcra-KO mice. Brown dots indicate mutations that increased in frequency during dasatinib
treatment; x-axis shows the highest mutant allele frequency of each identified mutation in baseline samples, and y-axis shows the highest mutant allele frequency of
each identified mutation during dasatinib treatment. (F) The frequency of ABL1 mutations was not related to leukemia growth in the absence of dasatinib treatment;
x-axis shows the mutant allele frequency in leukemia samples before inoculation, and y-axis shows the highest mutant allele frequency of each identified mutation in
leukemia cells immediately before dasatinib therapy was initiated. (G-H) Mutant allele frequency (left panel) and mutational burden (right panel) are plotted as functions
of time in Tcra-KO mice (G) and B6 mice (H). IC50, 50% inhibitory concentration; ns, not significant.
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Figure 4. Memory and effector T-cell activation, TCR signaling, and IFN-g/IL-12 signaling pathways were implicated in T-cell immunity against ALL relapse in
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withdrawal of dasatinib (Figure 3B), and relapsed leukemia
remained sensitive to dasatinib (Figure 3C). By contrast, 60.0%,
75.0%, and 80.0% of relapsed ALL in immunocompromised ani-
mals (Tcra-KO, CD4 T cell–depleted, and CD8 T cell–depleted
mice) had T315I BCR-ABL1 (Figure 3A). Relapse occurred during
dasatinib treatment (Figure 3B), and leukemia resistance to dasati-
nib was confirmed in vitro (Figure 3C). Only a minority of cases
relapsed with leukemia harboring other mutations, including
E255K and F317L.

To characterize the rise of BCR-ABL1 mutations during therapy,
we serially sampled peripheral blood in leukemia-bearing mice
and performed Illumina sequencing at 30000003 to quantify
mutational burden (Figure 3D). As shown in Figure 3E, the allele
frequency of BCR-ABL1 mutations in leukemic cells generally
increased upon dasatinib treatment compared with baseline
in both Tcra-KO and B6 mice, and we observed similar results
when dexamethasone was added to dasatinib treatment
(supplemental Figure 3). By contrast, BCR-ABL1 mutation fre-
quency in leukemia cells did not change significantly in the
absence of therapy (Figure 3F), indicating a selection pressure
by dasatinib.

In Tcra-KO mice, nearly all relapses occurred during dasatinib
therapy. BCR-ABL1 mutations arose as early as 1 week after
dasatinib treatment, and leukemias harboring drug resistance
mutations quickly achieved exponential growth and gave rise to
overt relapse (Figure 3G; supplemental Figure 4A). Two Tcra-KO
mice showed a clonal shift of different BCR-ABL1 mutations
(supplemental Figure 4B-C). In B6 mice, a variety of BCR-ABL1
mutations also emerged early during therapy, with 38 mutations
enriched by dasatinib compared with baseline (supplemental
Figure 5), with an average of 9 BCR-ABL1 mutations per case.
However, the frequency of BCR-ABL1–mutated leukemic cells
remained low, even after drug withdrawal (Figure 3H).

The ability of the immunocompetent host to suppress the
growth of BCR-ABL1–mutated ALL strongly pointed to immune
surveillance against leukemia independent of ALL sensitivity to
dasatinib. To verify this, we rechallenged B6 mice that achieved
long-term remission (ie, cured mice) with Arf2/2 BCR-ABL1
B-ALL of wild-type and T315I-mutated backgrounds. As shown
in supplemental Figure 6, none of these mice developed leuke-
mia after leukemia rechallenge, suggesting that the host
immune system had already gained the antileukemia memory
during dasatinib treatment. We also rechallenged these cured
mice with Arf2/2 BCR-ABL1 leukemia cells labeled with lucifer-
ase. BCR-ABL1 luciferase1 leukemia emerged rapidly in naive
mice; however, it did not appear in mice already cured after
treatment of BCR-ABL1 GFP1 leukemia (supplemental Figure 7),
suggesting that T-cell memory against leukemia was primarily
mediated by the BCR-ABL1 neoantigen instead of GFP or lucif-
erase. Moreover, we directly verified the presence of BCR-
ABL1–specific CD4 T cells by the BAp:I-Ab tetramer, a CD4
major histocompatibility complex 2 multimer that recognizes

BCR-ABL fusion in murine I-Ab24 (supplemental Figure 8).
Collectively, these results indicate that neoantigen-specific
T cells can effectively inhibit the outgrowth of drug-resistant leu-
kemia, thus contributing to long-term remission.

Molecular features of T cells associated
with immune surveillance against ALL
To explore the mechanisms underlying host immune response
against ALL, we performed molecular profiling experiments in
immunocompetent mice to compare features distinguishing
those that did vs did not relapse after dasatinib therapy. To this
end, we prospectively collected serum, T cells, and peripheral
blood leukocytes 1 week after the initiation of dasatinib treat-
ment from all mice. At that time, they were all in remission and
then continued dasatinib treatment for 4 additional weeks. Mice
were retrospectively classified as cured or relapsed based on
their survival status at 100 days after leukemia inoculation (ie,
the cured group and the relapsed group; Figure 4A). By focus-
ing on normal T cells in mice during remission, this strategy
enabled us to identify molecular features of the T cell–mediated
immune response driving divergent chemotherapy outcomes,
with minimal confounding effects of fluctuating leukemia burden
on T-cell function.

As shown in supplemental Figure 9, serum levels of IFN-g,
CCL5, and CCL4 were significantly higher in cured mice than in
those that relapsed. Comparing the global transcriptional profile
of CD8 T cells, we identified 58 genes upregulated in cells from
the relapsed group and 136 genes upregulated in the cured
group (Figure 4B, left panel; supplemental Tables 1 and 2).
Gene set enrichment analysis (GSEA) using the ImmuneSigDB
database of immunologic signatures32 showed that CD8 T cells
from the relapsed group consistently expressed a naive T cell
signature (Figure 4C, left panel; supplemental Table 3). In con-
trast, memory/effector signatures were enriched in genes upre-
gulated in the cured group, including Gzmk, Gzma, S100a4,
S100a6, Rora, Ccl5, Eomes, and Ccr2 (Figure 4C, left panel; sup-
plemental Figure 10). The IL-12–stimulated gene signature was
also enriched in cured mice (supplemental Figure 11). GSEA
using Hallmark, PID, KEGG, and BIOCARTA gene sets identified
TCR signaling, IFN-g response, and IL12 pathway (Figure 4C,
right panel; supplemental Figure 10; supplemental Table 3) as
being upregulated in the cured group (Figure 4C, right panel).
For CD4 T cells, there were 69 genes upregulated in the
relapsed group and 117 in the cured group (Figure 4B, right
panel). GSEA of C7 immunology gene sets showed that CD4
cells from the relapsed mice exhibited FOXP3 Treg expression
signature (eg, downregulated in Foxp32/2 CD4 Tregs). In con-
trast, cells from cured mice showed signatures of activated CD4
T cells (eg, upregulated in memory or Th1 CD4 T cells relative
to naive CD4 T cells; Figure 4C; supplemental Table 4).

Following the same study design, we next performed single-cell
RNA sequencing of peripheral blood cells collected during
remission from mice that later achieved long-term remission or

Figure 4 (continued) flow cytometry, and RNA was purified and used for microarray gene expression profiling (cured, n 5 4; relapsed, n 5 4); and (3) at this same time
point, peripheral blood leukocytes were collected and subjected to single-cell RNA sequencing (scRNA-seq; cured, n 5 6; relapsed, n 5 6). (B) Volcano plot shows
differentially expressed genes in CD8 T cells (left panel) or CD4 (right panel) T cells from mice in the cured vs relapsed group. Green indicates genes upregulated in
the cured group, and brown highlights genes upregulated in relapsed mice. Gray dash lines indicate P 5 .05 (y-axis) and log2 (fold change) 5 60.5 (x-axis). (C) Heat
map shows the gene sets enriched in T cells collected from the cured or relapsed group of mice. Analysis was performed for CD8 or CD4 T cells separately. Color
indicates the degree of enrichment (normalized enrichment score), and blank means nominal P . .05.
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Figure 5. Single-cell RNA sequencing profiling of T-cell subpopulations in mice cured of or relapsed with BCR-ABL1 B-ALL after dasatinib therapy. (A,B) Uniform
manifold approximation and projection (UMAP) visualization of 14 836 individual peripheral blood leukocytes collected from cured (7578 single cells) (A) and relapsed
mice (7258 single cells) (B). (C) Each cell was classified into 1 of 5 immune cell types based on the expression of marker genes. (D) The difference in immune cell
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eventually developed relapse (ie, the cured and relapsed
groups; Figure 4A). We identified 7258 single cells from the
relapsed group and 7578 single cells from the cured group
(Figure 5A-C). These cells clustered into B cells, T cells, mono-
cytes, natural killer (NK) cells, and macrophages, based on
the expression of cell type–specific markers (supplemental
Figure 12). The proportion of T cells was higher in peripheral
blood from the cured mice than in the relapsed group
(Figure 5D), especially for CD4 T cells as verified by flow cytom-
etry (Figure 5E-F).

To characterize specific T-cell subpopulations that may influence
chemotherapy efficacy, we identified 4 distinct T-cell popula-
tions: memory-like CD8 T cells (CD8-T1), effector-like CD8
T cells (CD8-T2), CD4 T cells, and NK T cells (Figure 5G-H).
Within the T-cell compartment, there was a marked reduction in
the NK T-cell population and an increase in CD4 T cells in cured
compared with relapsed mice (NK T cells, 6.41% vs 12.25%;
CD4 T cells, 20.64% vs 16.36%; supplemental Figure 13).
Although there was no difference in the overall frequencies of
the 2 CD8 T-cell subsets (CD8-T1 and CD8-T2; supplemental
Figure 13), they exhibited a distinct distribution pattern on the
uniform manifold approximation and projection plot between
cured and relapsed mice (Figure 5I-J). Therefore, we further
examined the gene expression profiles of these CD8 T-cell sub-
sets in each group of mice. GSEA showed that genes highly
expressed in CD8-T1 cells from the cured mice were enriched
for TCR, IL-12, and IFN-g signaling pathways, as well as for mem-
ory CD8 T-cell signature (ie, upregulated in memory CD8 T cells
relative to naive CD8 T cells; Figure 5K; supplemental Table 5).
The CD8-T2 population from the cured mice exhibited upregula-
tion of genes in TCR and IFN-g signaling pathways and was
enriched for the effector T-cell signature (ie, downregulated in
naive vs effector CD8 T cells; Figure 5L; supplemental Table 6).

Therefore, results from these molecular profiling studies, at both
the bulk and single-cell levels, point to more robust T-cell
responses (especially CD8 T cells) and expansion of CD4 T cells
in cured mice vs relapsed mice that most likely occurred weeks
before overt relapse.

IFN-g and IL-12 strongly influence dasatinib
efficacy in ALL
On the basis of both bulk and single-cell molecular profiling of
T cells, we hypothesized that IL-12 and IFN-g signaling are
major determinants of successful immune surveillance against
ALL. To test this experimentally, we first compared dasatinib
therapy efficacy in leukemia-bearing mice of B6 or Ifng-KO
background (supplemental Figure 14A). Ifng-KO mice showed a
slightly faster leukemia progression than immunocompetent
mice (Figure 6A; supplemental Figure 15), although this did not
result in any difference in survival in the absence of chemother-
apy (Figure 6B). With dasatinib therapy, the overall survival of
Ifng-KO mice was significantly shorter than that of B6 mice
(P , .0001; Figure 6B). In addition, most of the Ifng-KO mice

(75.0%) relapsed with Arf2/2 BCR-ABL1 B-ALL harboring a
T315I mutation, and relapsed leukemia cells were tested ex vivo
to confirm their dasatinib resistance (Figure 6C-D). In parallel,
we also evaluated the effects of IL-12 on dasatinib treatment
outcome in the murine Arf2/2 BCR-ABL1 B-ALL model (supple-
mental Figure 14B). The combination of IL-12 and dasatinib sig-
nificantly prolonged overall survival (P 5 .0011; Figure 6E-F). By
comparison, IL-12 alone showed modest antileukemic efficacy
(P 5 .0363), but all mice eventually died as a result of leukemia
(Figure 6F). These data highlight the importance of type 1
immunity in host immune response during ALL chemotherapy.

T-cell percentage is predictive of relapse-free
survival in patients with ALL
To understand the clinical relevance of our findings, we sought
to assess whether T-cell abundance was predictive of treatment
outcome in children with ALL. To quantify immune cell compo-
sition, we applied a deconvolution algorithm to the gene
expression profile of peripheral blood leukocytes collected at
week 1 of consolidation therapy from 102 children with ALL
in the St. Jude Total Therapy XV study (supplemental
Table 7).33,34 Using expression signature for each immune cell
population, we estimated the levels of B cells, T cells, NK cells,
monocytes, macrophages, dendritic cells, mast cells, eosino-
phils, and neutrophils in each patient at this time point (Figure
7A). T cells and monocytes were the most abundant immune
cells, accounting for 32.40% 6 1.33% and 29.23% 6 1.19% of
all mononuclear cells, respectively. Dendritic cells and eosino-
phils were relatively uncommon (Figure 7A). There was no sig-
nificant association of immune cell composition with patient
age, sex, or race (Table 1). Lymphocyte level (T, B, and NK
cells) inferred by the gene expression–based deconvolution
method was highly correlated with actual lymphocyte
count measured at this time point for these patients (R 5 0.66;
P 5 9.1 3 10214; Figure 7B), and this was also true for granulo-
cytes and monocytes (granulocytes, R 5 0.55; P 5 5.4 3 1029;
monocytes, R 5 0.40; P 5 4.8 3 1025; supplemental Fig-
ure 16), confirming the accuracy of deconvolution analysis.

Within this cohort, there was wide variability in the level of total
T cells (the sum of CD4 and CD8 T cells; Figure 7B). We divided
patients into 2 groups using a 42% T-cell population as the cut-
off, which was derived from a model-based clustering analysis35

of the distribution of T-cell population across all samples (ie, low
and high T-cell groups; supplemental Figure 17). The event-free
survival of low and high T-cell count groups was 76.83% vs
100%, respectively (P 5 .024; Figure 7C; supplemental Figures
18-20). Even after adjusting for age, presenting leukocyte count,
minimal residual disease at the end of induction, and treatment
risk group as covariables, T-cell frequency remained prognostic
(P 5 .0083; supplemental Table 8). The relapse-free survival of
the 2 groups was 79.75% vs 100%, respectively (P 5 .034;
Figure 7D; supplemental Figures 18-20). T-cell level was not
associated with clinical features or ALL molecular subtype or
other patient characteristics (supplemental Table 9). Moreover,

Figure 5 (continued) Memory T-cell markers: Tcf7, Sell, Ccf7, and Il7r. Effector T-cell markers: Ifng, Gzma, Gzmb, and Pdcd1. NK T-cell markers: Klra1 and Xcl1. (H-J)
UMAP visualization of T cells collected from cured and relapsed mice. Each cell was classified into 1 of 4 subpopulations based on the expression of marker genes; 4
subpopulations (H); distribution of cells from cured mice (green) and relapsed mice (brown) (I); T-cell distribution of 4 subpopulation in cured (left) or relapsed (right)
groups, respectively (J). (K,L) To identify genes related to ALL cure, we compared gene expression profiles of T cells from cured mice vs relapsed mice and specifically
focused on CD8 T1 cells (memory like) (K) and CD8 T2 cells (effector like) (L). Differentially expressed genes were analyzed for pathway enrichment using GSEA.
The bar plot shows the normalized enrichment scores of gene sets.
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T-cell absolute count had a minor but significant influence on
event-free survival (P 5 .05; supplemental Figure 21). Because
higher lymphocyte/monocyte ratio or lower monocyte percent-
age was associated with better survival in several types of can-
cers,36-39 including ALL,40 we further analyzed the association of
the T cell/monocyte ratio (T-cell population divided by mono-
cyte population) with treatment outcome. According to the ratio
distribution, we used 2 as the cutoff (supplemental Figure 22).
As shown in Figure 7E-F, a higher T cell/monocyte ratio was
associated with better event-free survival (P 5 .031) and relapse-
free survival (P 5 .047). These results indicate the prognostic
impact of T-cell immunity in children with ALL.

Discussion
The interplay between host immunity and tumor has an essential
role in cancer pathogenesis and prognosis.41-43 In this study, we
investigated the role of T-cell immunity in chemotherapy out-
comes in ALL. Loss of either CD4 or CD8 T cells resulted in a
drastic increase in leukemia relapse, mostly as a result of the
emergence of drug resistance. Additional molecular profiling
studies demonstrated that IL-12 and IFN-g signaling were crucial
regulators of T-cell immunity against ALL, and T-cell percentage
during remission was predictive of ALL relapse in patients. These
findings establish the role of host immunity in the cure of ALL
and point to stimulating T-cell function as a means of improving
outcomes with ALL chemotherapy.

Drug-resistant ABL1 mutations can develop when ABL inhibitors
are used as monotherapy for ALL or CML.44,45 Our data pre-
sented here suggest that these mutations arise randomly even
in the absence of dasatinib, although those conferring drug
resistance became significantly enriched once therapy started.
These rare ALL clones occurred in both immunocompetent and
immunocompromised hosts. Without T-cell immunity, drug-
resistant ALL grew out and resulted in relapse, whereas disease
was contained in immunocompetent mice. These results indicate
that robust host immune surveillance can control the outgrowth
of drug-resistant leukemia, although the emergence of
BCR-ABL1 mutation is almost inevitable. It is unclear whether
T-cell reaction differs against wild-type vs T315I BCR-ABL1 leu-
kemia. However, stronger immunity against drug-resistant leuke-
mia would be beneficial to long-term survival, and this should
be examined in future studies. Dasatinib resistance can also be
overcome by more potent inhibitors such as ponatinib46 or
through combination with cytotoxic agents that indiscriminately
kill leukemia cells (even in those with the ABL1 T315I mutation).
However, a significant proportion of patients still relapse after
ponatinib or dasatinib treatment, even if combined with chemo-
therapy.47,48 This plausibly reflects the failure to establish or sub-
sequent loss of host immunosurveillance against leukemia. We
posit that host immune response may generally be operative in
governing long-term cure of ALL regardless of the type of phar-
macotherapy used. In CML, up to 40% of patients can maintain
clinical remission without continuous exposure to an ABL inhibi-
tor, although whether this is linked to their BCR-ABL1–directed
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Figure 6. IFN-g and IL-12 strongly influence dasatinib efficacy in ALL. (A) Leukemia burden is plotted as a function of time with dasatinib treatment for B6 or
Ifng-KO mice. The shaded area indicates the duration of dasatinib treatment. (B) Kaplan-Meier survival curve of leukemia-bearing mice with dasatinib treatment or with
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IL-12. The shaded area indicates the duration of therapy. (F) Kaplan-Meier survival curve of leukemia-bearing mice treated with dasatinib/vehicle or dasatinib/vehicle
plus IL-12. The difference in overall survival was detected by log-rank (Mantel-Cox) test. ns, not significant; PBS, phosphate-buffered saline; WT, wild type.
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T-cell immunity remains unclear.49,50 Therefore, inducing and
maintaining host immune reaction to leukemia may be much
more effective in preventing relapse than further intensifying the
chemotherapy used in contemporary treatment regimens.

Interestingly, the outcome difference between immunocompe-
tent vs immunodeficient mice became even more pronounced
when dexamethasone was added to dasatinib (Figure 1F). This
combination therapy may rapidly debulk leukemia and release
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Figure 7. T-cell count during remission was associated with relapse-free survival in children with ALL. (A) The prevalence of different immune cell populations in
patients with ALL during remission was inferred by applying the CIBERSORT deconvolution algorithm to the global gene expression profile of peripheral blood
leukocytes collected in week 1 of consolidation therapy. The level of each type of immune cell was inferred on the basis of the expression of a panel of marker genes
of this population. A total of 102 children with ALL from the St. Jude Total Therapy XV clinical trial32,33 with gene expression profiles available were included in this
analysis. T cells, monocytes, and neutrophils accounted for the highest cell populations. (B) The expression-based estimates of lymphocyte level (B cells and T cells;
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survival were detected by log-rank (Mantel-Cox) test.
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neoantigens to be recognized by host immune systems, despite
the immunosuppressive effects of glucocorticoids (supplemental
Figure 23).

A recent study examined neoantigens in pediatric ALL and
experimentally demonstrated that CD8 T cells in patients with
ALL can readily mount an immune response to fusion proteins
such as ETV6-RUNX1.51 In the current study, we also confirmed
the presence of BCR-ABL1–specific CD4 T cells using tetramer
staining,24 and immunocompetent mice cured of ALL subse-
quently developed immunity against the same leukemia. It is
plausible that host T cells also develop immunity against other
leukemia antigens besides BCR-ABL1. For example, WT1, a
well-established target for cancer immunotherapy, is directly
upregulated by BCR-ABL1 in ALL.52-54 We reason that the over-
all antileukemic efficacy of dasatinib therapy derives from several
processes: (1) direct cytotoxic effects of dasatinib on Arf2/2

BCR-ABL1 B-ALL and (2) tumor-specific neoantigens released
upon leukemia cell death from dead cells to elicit T-cell
response, which can lead to immune surveillance against resid-
ual leukemia to prevent relapse. On the other hand, ALL drugs
can also directly influence host immunity because of their immu-
nosuppressive activities (eg, glucocorticoids).55,56 The effects of
ALL drugs on leukemia and the host are ineluctably intertwined,
and the intricate relationship between the 2 ultimately deter-
mines the outcome of ALL therapy.

Our results point to an essential role of IL-12 in host immune
surveillance. In fact, IL-12 showed robust antitumor activity in
preclinical studies of solid tumors with immune-stimulating
potential. However, direct administration of IL-12 has proven
exceedingly toxic, limiting its clinical use.57,58 Recent
reports of CAR T cells modified to constitutively secrete
IL-12 showed improved antitumor effects,59,60 suggesting
more sophisticated approaches to incorporate IL-12 into
immunotherapy.61,62

Our study is not without limitations, including the murine Arf2/2

BCR-ABL1 B-ALL model. There are several advantages to
this model, including its syngeneic nature and thus suitability
for studying host immunity, its efficiency and reproducibility in
establishing leukemia in vivo, and its well-characterized response
to several antileukemic agents. However, because the retroviral
BCR-ABL1 construct also encodes other xenogeneic proteins
(eg, GFP) and possibly components of viral proteins, it is plausi-
bly much more immunogenic than the ALL naturally arising in
patients. Consequently, our model might have given rise to an
outsized effect of host immunity on leukemia treatment outcome
than what would be expected in patients with ALL. However, it
is also likely that there is wide variability in immunogenicity
across ALL subtypes (or even individual cases), and a direct com-
parison in this regard between mouse and human is challenging.
Future studies using a gene-edited mouse model of the human-
ized nonobese diabetic/severe combined immunodeficiency g

mouse model might be needed to more precisely define the
role of T-cell immunity in ALL therapy.

In summary, our findings provide novel insights into the mecha-
nisms by which host factors influence the success of ALL therapy

and point to potential therapeutic strategies to further improve
the cure rate in this aggressive cancer.
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