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KEY PO INT S

� Integrating single-cell
omics with tracking
and dynamics
quantification to
compare HSC daughter
cells improves fate
regulator detection.

� Transcriptome
divergence at HSC
activation after
asymmetric division
includes differential cell
cycle and adhesion
regulation.

Molecular programs initiating cell fate divergence (CFD) are difficult to identify. Current
approaches usually compare cells long after CFD initiation, therefore missing molecular
changes at its start. Ideally, single cells that differ in their CFD molecular program but are
otherwise identical are compared early in CFD. This is possible in diverging sister cells,
which were identical until their mother’s division and thus differ mainly in CFD properties.
In asymmetrically dividing cells, divergent daughter fates are prospectively committed
during division, and diverging sisters can thus be identified at the start of CFD. Using
asymmetrically dividing blood stem cells, we developed a pipeline (ie, trackSeq) for
imaging, tracking, isolating, and transcriptome sequencing of single cells. Their identities,
kinship, and histories are maintained throughout, massively improving molecular noise
filtering and candidate identification. In addition to many identified blood stem CFD
regulators, we offer here this pipeline for use in CFDs other than asymmetric division.

Introduction
Molecules controlling cell fates (eg, death, division, and differen-
tiation) are typically identified by comparing cells of 2 different
types or states. However, the resulting lists are typically plagued
by irrelevant candidates.1 Single-cell RNA sequencing (scRNA-
seq) reveals heterogeneity between individual cells, and the
expression variance of a gene is used to infer its relevance.2-4

However, this variance often stems from cell fate divergence
(CFD)-independent confounding factors such as the cell cycle
(CC) state or differences in cellular history, including clonal ori-
gin5 (“cross-clonal differences”) (Figure 1A). Compared individ-
ual cells are usually nonsynchronized along the CFD trajectory
and compared long before or after the fate decision event, thus
capturing only secondary or later CFD consequences but not its
initial regulators.

An ideal experiment identifies CFD regulators by comparing
otherwise identical cells only differing in their CFD and at the
start of CFD. This is true when comparing fate-diverging sister
cells, which have no cross-clonal differences, the same lifetime,
and typically the same microenvironment. Molecular differences
between CFD sisters should thus be enriched for CFD regula-
tors, which began in the few hours since the mother’s mitosis
(“intra-clonal differences”) (Figure 1A).6

However, current scRNA-Seq protocols lose cells’ kinship and/or
history information.7-10 Comparing one hematopoietic stem cell
(HSC) daughter vs the sister’s future colony output identifies
reporters for clonal differentiation bias but without information
on their potential regulatory relevance.10 Real-time identification
of sisters at the start of CFD is crucial for identification of regula-
tors but is often hampered by delays between fate decision-
making and expression of fate markers for its detection.11 One
ideal situation to overcome this is asymmetric cell division
(ACD), where the future asymmetric daughter fates are prospec-
tively committed already during the mother’s division. Mouse
HSCs use ACD12; an example is asymmetric inheritance of lyso-
somes predicting their future asymmetric metabolic activation
and translational activity.

We therefore compared mouse HSC (Lin–Kit1Sca11CD48–

CD1501CD135–CD34–) daughter pairs soon after ACD to estab-
lish a pipeline (ie, trackSeq) for combining single-cell tracking
with scRNA-Seq to identify CFD regulators. This combines the
individual strengths of quantitative time-lapse imaging and cell
tracking13-16 with scRNA-Seq. trackSeq performs automated
real-time segmentation, quantification, tracking, and event
detection of single cells for supervised robotic picking and
scRNA-Seq, preserving cellular identity and real-time history

1482 blood® 29 SEPTEMBER 2022 | VOLUME 140, NUMBER 13

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/140/13/1482/1922902/bloodbld2022016880.pdf by guest on 30 M

ay 2024

https://crossmark.crossref.org/dialog/?doi=10.1182/blood.2022016880&domain=pdf&date_stamp=2022-09-29


(Figure 1B), and linking of single-cell dynamics history and kin-
ship with scRNA-Seq transcriptomes. trackSeq identified the ear-
liest subtle transcriptome changes at the very start of CFD in
asymmetrically dividing HSCs. Although we used ACD as one
CFD to set up trackSeq, it can now be used for any CFD in
which diverging fates can be identified at an early stage, even
without kinship information, between cells with different fates or
cellular or molecular dynamics.

Methods
Time-lapse imaging of HSC cultures
We performed time-lapse acquisition with YouScope (http://
langmo.github.io/youscope/) on Nikon-Ti Eclipse microscopes
as described previously12 with yellow fluorescent protein (500/
20; 515LP; 535/30) and Cy5 (620/60; 660LP; 700/75; all, AHF) fil-
ter cubes to detect VENUS and LysobriteNIR, respectively.
PCNAVENUS experiments were imaged every 20 minutes and
trackSeq experiments every 30 minutes with 203 (NA 0.75) and
103 (NA 0.45) CFI Plan Apochromat l objectives, respectively.
Cells were cultured in Iscove modified Dulbecco medium12 con-
taining 16.6 mM LysoBriteNIR (22641, AAT Bioquest), at 37�C,
5% oxygen, 5% carbon dioxide in SensoPlate 24 Well Glass bot-
tom plates (Greiner Bio-One) for trackSeq experiments or
m-slide VI0,4 channel slides (IBIDI), coated with 2.5 or 10 mg/mL
anti–CD43-biotin (eBIoR2/R60; eBioscience)14 in phosphate-
buffered saline at room temperature for 1 hour. The trackSeq
experiments were analyzed by self-written automated live event
recognition in time-lapse data (alerT) software, and others were
tracked as described previously.6,15,17

Automated live event recognition
in time-lapse data
The alerT.m script, discussed in this paper, automatically quantified
and tracked imaging data incoming from YouScope, with 2 bright-
field images (BF1 and BF2) of the same cells with slightly different
focus. BF1 and BF2 are set by first focusing on the cells such that
the cell bodies become transparent (ie, the focal plane). With a
103 objective, BF1 and BF2 z-coordinates are 3 mm above and
below that focal plane, respectively. Cells in BF1 have high intensi-
ties within their cell mass surrounded by lower intensities, and vice
versa in BF2. In addition, logic integrating each pixel across BF1
and BF2 makes segmentation reliable and fast. Segmented images
are then quantified, local background corrected, and tracked.

Single-cell isolation
alerT.m constantly monitored incoming time-lapse data and
reported every HSC colony in its 2-cell state with quantified lyso-
somal inheritance (lysosome ratio). After 40 hours in culture (last
20 hours imaged), cells were placed on ice, washed (33 1 mL
per well; 4�C phosphate-buffered saline) because media impedes
complementary DNA production, and transferred to the picker
(CellCelector, ALS Automated Lab Solutions GmbH). Coordinates
of detected cells were gathered from alerT, which ranks detected
cells according to their user-defined relevance (here asymmetric/
symmetric lysosome inheritance). For each cell, alerT graphically
reports the field of view, the position of the colony within the
field of view, and fluorescence dynamics quantifications. It took
us 2 minutes to locate and isolate a cell. After isolation, cells
were directly transferred into individual wells of cooled 96-well
polymerase chain reaction plates (Eppendorf twin.tec; Thomas

Fisher Scientific) containing 2.3 mL lysis buffer (diethylpyrocarbon-
ate-treated water [Ambion] with 1 U/mL SUPERase-In RNase
inhibitor [Promega] and 0.2% Triton X-100 [Sigma-Aldrich/Merck
KGaA]). Isolation times for every cell were recorded and added
to time since division. After picking, plates were kept at –80�C
until collective processing for transcriptome scRNA-Seq.

scRNA-Seq and primary analysis
After single-cell isolation by picking, we performed scRNA-Seq
in an adaption from previously described protocols18 (supple-
mental Methods, available on the Blood Web site). The read
alignment pipeline included STAR,19 Samtools,20 and feature-
Counts.21 Counts were analyzed with R 3.6.2 (R Foundation for
Statistical Computing). Cells had to pass perCellQCMetrics (sca-
ter22), and additionally detect .100000 nuclear, ,20% mito-
chondrial, and ,50% spike-in reads, and .3000 nuclear genes.
We used computeSpikeFactors (scran23) and logNormCounts
(scater) to normalize cell-specific count biases.

No stratification gene ranking
After scRNA-Seq quality control and normalization (supplemen-
tal Methods), the modelGeneVar function (R library scran) was
used to model the technical and biological variance component
of each gene, per sequencing batch. We calculated the
weighted mean of both components for each gene across
sequencing batches, and ranked all genes by ratios of both
components to identify most biologically variant genes.

Time since division stratification gene ranking
Time since division stratification (TSDstrat) gene ranking consists
of performing the No stratification (NOstrat) gene ranking on a
subgroup of cells with a time since division of #5 hours, .5
hours and #10 hours, .10 hours and #15 hours, and .15
hours and #20 hours. To account for a gene’s expression across
all cells, the 4 rankings were combined by calculating the
weighted mean across all groups.

Kinship stratification gene ranking
The Kinship stratification (KINstrat) gene ranking describes
whether a gene’s expression differences between sisters are ran-
dom or biological by comparing observed differences to a ran-
dom distribution. The less similar these two distributions are, the
more biological are the gene’s actual sister expression differ-
ences. The random distribution of a given gene is created with
the RedistributedCounts.R script as follows.

After quality control, we sum the raw counts X of a gene i
between both sisters of pair j, S1j and S2j:

Xi, j 5Xi,S1j 1Xi, S2j

To create random raw counts Yi,j we redistribute Xi,j binomially
(P 5 .5) between both sister cells in pair j:

Yi, S1j 5Binomðp5 0:5, Xi, jÞ
and

Yi, S2j 5Xi, j 2Yi,S1j

This is done for every gene in every pair, followed by normali-
zation with computeSpikeFactors and logNormCounts as
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Figure 1. Integrating scRNA-Seq with quantitative time-lapse imaging to identify relevant intra-clonal differences. (A) Transcriptional differences between paired
daughter cells (intra-clonal differences) are obscured by CC and cross-clonal differences. (B) trackSeq workflow and performance. Automated real-time event detection
in ongoing live cell imaging experiments and convenient cell position navigation by alerT software. Landmarks (eg, manual sharpie dots) mark culture dishes (C) for fast
visual co-registration between time lapse and cell picker microscopy field-of-views (D). (E) alerT provides dynamics quantifications from automated cell tracking for quick
control by the user. (F) For each identified cell, alerT displays its colony position within the imaging position (field-of-view, panel D). (G) Sequential cell isolation steps
are visually logged by alerT. (H-I) Delays in cell picking have no transcriptional effect. (H) Time delays between last observations until picking for each cell used in this
study. (I) Used delays do not influence quality of single-cell transcriptional profiles (number of genes detected) or transcriptional sister dissimilarity. (J) Examples of cell
properties linked to HSC daughter scRNA-Seq profiles. (K) trackSeq culture and isolation has little impact on HSC transcriptomes. Isolated HSC daughters (blue) in G1
map closely to freshly isolated HSCs (green) in reference landscape of early adult hematopoiesis.24 a.u., arbitrary units; QC, quality control; UMap, Uniform Manifold
Approximation and Projection.
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described earlier. We then calculated the paired expression dif-
ferences Real and Random for every gene with

Reali, j 5 absðnormXi,S1j 2 normXi, S2jÞ
and

Randomi, j 5 absðnormYi,S1j 2normYi, S2jÞ
and performed a paired t test between Reali and Randomi using
the resulting t statistic of gene i for ranking.

trackSeq gene ranking
HSC daughter cells are paired by kinship and relative lysosomal
inheritance. For every gene, a paired t test compares the log-
normalized expression in daughter cells that inherited less Lyso-
BriteNIR summed (ie, LysoLow) vs their LysoHigh sisters. The
gene-wise t statistics across all pairs creates a bi-polar ranking.
Genes at the top of the list are higher expressed in LysoHigh
daughter cells, whereas genes toward the bottom are higher
expressed in LysoLow sister cells (supplemental Figure 3A).

Results
Integrating time-lapse imaging and scRNA-Seq
We developed the trackSeq pipeline for automated image
acquisition and analysis, cell tracking and event detection,
semiautomatic isolation of known cells, and their scRNA-Seq
(Figure 1B; “Methods”). Our novel alerT algorithm automatically
tracks and quantifies single cells in time-lapse experiments
(Figure 1B-C) in real time to detected defined cellular and
molecular behaviors; for example, cell divisions and their asym-
metry in this study (Figure 1D-E). Specific cells can be found
quickly from graphical outputs of alerT specifying imaging posi-
tions (Figure 1C-D) and the cells’ localization within these posi-
tions (Figure 1F). Live imaging (Figure 1C) and cell isolation
(Figure 1G) are conducted on parallel platforms for modularity
and broad applicability. Immobilizing live nonadherent HSCs14

minimizes cell loss (0.6%) and preserves identity. Delays
between the last observation until isolation (Figure 1H) were
recorded (see Methods) and had no impact on transcriptome
quality (Figure 1I). Different from current scRNA-Seq
approaches, trackSeq maintains the identity of each tracked and
sequenced cell, thus combining high-dimensional transcriptom-
ics with the cells’ ancestry and kinship, time since division, and
dynamics of morphology and any other parameter quantified

during cell tracking, for example (Figure 1J). We applied it to
paired HSC daughters and detected 8980 6 923 genes [mean
6 standard deviation; log2(counts per million11).2] per cell on
average with a single scRNA-Seq run (Figure 1B; supplemental
Figure 1B). This is as good as or better than previous HSC
sequencing approaches,24,25 showing high quality of the result-
ing transcriptomes. A total of 474 of 642 HSC daughters
passed quality control (see Methods), capturing 203 sister pairs,
with 15896 overall detected genes. These transcriptomes
mapped to published transcriptomes of freshly isolated HSCs,24

showing that our approach is robust and unbiased and that
gene expression and detection are not impaired by cell imag-
ing and culture (Figure 1K; supplemental Figure 1C-E). After
the first HSC division, daughter cells have transcriptomes map-
ping between HSCs and the earliest multipotent progenitors
(supplemental Figure 1H), and HSC granddaughters also
remain mostly in the pre–multipotent progenitor transcriptome
space (supplemental Figure 1I). Thus, our study explores earlier
HSC fate diversion stages than can currently be recognized by
surface markers.

trackSeq improves the sensitivity of
candidate detection
Identifying CFD regulators from differences in gene expression
(Figure 2A) is crucial for mechanistic insight. Candidates are cur-
rently identified by high ratios of their biological to technical var-
iance.23,26 However, this ranking (NOstrat) does not control for
CC or cross-clonal differences and lacks information about CFD
directionality for better extraction of signals from intra-clonal dif-
ferences (Figure 2B). In contrast, trackSeq compares paired
daughter cells with known fates that have the following: (1) iden-
tical lifetimes, thus reducing CC variance; (2) the same clonal ori-
gin, thus erasing cross-clonal differences; and (3) known CFD
directionality. trackSeq can therefore better filter out expression
differences not related to CFD to identify otherwise obscured
relevant genes. To test the performance of trackSeq, we
retrieved the top 500 candidates identified by different data
stratifications. The NOstrat method represents the current way
of candidate detection.23,26

Gene expression changes due to CC progression are a major
confounder in scRNA-seq analysis.27 trackSeq provides the cells’
real time since division (TSD), which could correct (“TSDstrat”)
for CC-related expression changes. HSC daughter TSD indeed

Figure 2. trackSeq improves CFD gene detection by removing scRNA-Seq confounders. (A) HSC gene expression landscape (density). Log2(counts11) used
throughout study. (B) trackSeq stratification steps for increased filtering out of confounders not related to CFD. NOstrat compares gene expression across all cells,
TSDstrat across cells with similar lifetimes (removes CC variance), and KINstrat across sisters (identical TSD, removes cross-clonal and CC variance). trackSeq adds fate
directionality information. The different stratifications identify drastically different candidates. Dotted line: boundary of NOstrat detection.23 (C) TSDstrat removes CC
effects but still detects many more NOstrat candidates than expected by chance (P 5 4.27 3 102171, hypergeometric test). (D) TSDstrat candidates have higher cross-
clonal than intra-clonal variance and are thus unlikely CFD regulators. Unrelated: 203 randomly paired cells. Paired Wilcoxon rank sum test. Error bars: Tukey throughout
study. (E) KINstrat selects candidates with larger intra-clonal variance than expected by chance. Sister expression differences for representative genes with Kinship strat-
ification ranks. “Real”: absolute sister differences of measured log2(counts11) expression. “Random”: total raw counts for each gene randomly re-distributed between
sisters (see Methods). (F) KINstrat candidates have increased intra-clonal variance. Paired Wilcoxon rank sum test. (G) KINstrat reveals different candidates. (H) Informa-
tion from trackSeq on sister fate directionality (here lysosome inheritance) improves detection of subtle but directed differences by accumulating directed differences
but averaging out uncoordinated differences. (I) Paired trackSeq candidate expression for ACD daughters with lysosome ratio .1.63, n 5 59 pairs. To simulate sister
analysis without information on fate directionality, random fates were assigned. Paired t test. (J) Eighty-nine percent of the top 500 trackSeq candidates are missed by
other stratification methods. Single-cell resolution is required for differential candidate identification. (K) Decreasing single-cell resolution from trackSeq to pooled cell
experiments was simulated by incrementally removing available information from trackSeq data: First, “Pooled trackSeq” averages LysoHigh and LysoLow cells into a
LysoHigh or LysoLow pool, respectively. Second, “Pseudo bulk” removes single-cell library size normalization. Third, “Bulk” further removes single-cell library quality
control (QC) information that would not be available for complementary DNA libraries from pooled cells. Top 500 candidates identified for each step using paired
t tests (supplemental Figure 3A) between LysoHigh/LysoLow pools to relate changes in candidate identification to loss of single-cell information. (L) Loss of single-cell
library information worsens trackSeq candidate re-identification. “Pooled trackSeq”/“Pseudo bulk”/“Bulk” identify 34.8%/19.8%/22.4% of trackSeq candidates.
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correlated well with transcriptome-inferred CC phases (Figure
3A) and can remove more CC-related confounding candidates
than CC regression (Figure 3B-D). However, candidates still
highly overlapped with the NOstrat gene set (195 of 500 genes)
(Figure 2C), and TSDstrat candidates displayed high cross-clonal
expression differences (Figure 2D). To remove confounding
cross-clonal variance, we developed KINstrat (see “Methods”). It
screens for genes with larger than randomly expected sister dif-
ferences (Figure 2E) and identified candidates with more diver-
gent sister expression (Figure 2F) but lower general variance
than NOstrat or TSDstrat (Figure 2B). Importantly, 93% of
candidates were previously undetected (467 of 500 genes) (Fig-
ure 2G) because of the improved sensitivity of sister cell com-
parison, which automatically reduces CC differences due to their
identical TSD (Figure 3B).

Although KINstrat improves identification of low variance candi-
date genes (Figure 2B) by revealing intra-clonal expression
changes,7,9,10 it still lacks their correlation with overall future cell
fates (and thus functional relevance) and with fate directionality,
thus prohibiting the identification of subtle yet coordinated CFD
transcriptional changes (Figure 2H). In contrast, trackSeq pro-
vides information about fate and transcriptome directionality. In
HSC ACD, for example, asymmetric lysosome inheritance pre-
dicts the future daughter CFD direction.12 trackSeq correlates
sister transcriptome differences with fate directionality to aver-
age out undirected differences but accumulate directed differ-
ences (Figure 2H-I; supplemental Figure 2A-C). Indeed, of the
500 trackSeq candidates, 444 (89%) remained undetected in all
other strategies (Figure 2B,J). For NOstrat and TSDstrat, we
used the method by Lun et al,26 which models technical noise
as the trend between mean and variance of gene expression.
Alternatively, the coefficient of variation28 or coefficient of varia-
tion squared26 can be used, which did not change the concep-
tual advantage of trackSeq, with only 8%, 6%, or 4% of trackSeq
candidates re-identified by NOstrat using variance, coefficient of
variation, or coefficient of variation squared, respectively.

trackSeq detected drastically different candidates than even the
already improved KINstrat (Figure 3B). Only 9 of 500 genes
overlapped (Figure 2B), significantly less than expected by
chance (hypergeometric test, P 5 .044). Importantly, lysosome
levels without kinship information only explained 15% of genes
detected by trackSeq (supplemental Figure 2D-F) and thus are
not sufficient to discover ACD CFD regulators. This is due to
missing kinship information and because sisters inheriting fewer
lysosomes (LysoLow) of one sister pair can have higher lysosome
levels than the LysoHigh sisters of other pairs (the same is true
for genes). Thus, integrating cellular history information with
scRNA-Seq data identifies gene candidates that would other-
wise be missed.

trackSeq’s analysis is demanding as it requires users to track
every cell’s TSD, kinship, and inheritance during isolation, molec-
ular profiling, and the subsequent expression analysis. We there-
fore quantified whether all this information is indeed required or

if all LysoHigh vs LysoLow cells could simply be pooled into col-
lective wells without kinship information for complementary
DNA library preparation. To simulate this pooling, we retrospec-
tively removed single-cell information successively from trackSeq
data (Figure 2K). Losing sister paired kinship information
already lost 65.2% of trackSeq candidates (“Pooled trackSeq”)
(Figure 2L). The additional loss of library quality and fate direc-
tionality information further worsens candidate identification, as
“Pseudo bulk” and “Bulk” only re-identified 19.8% and 22.4%,
respectively, of trackSeq candidates (Figure 2L). Thus, single-cell
information of sister pair kinship and fate directionality, as well
as single-cell library quality, is crucial for trackSeq performance.
These are not available in other scRNA-Seq approaches cur-
rently used in the field, which would therefore not have track-
Seq’s sensitivity in candidate identification.

Validating identified candidate genes
To show the relevance of trackSeq candidates and the cell fates
they regulate, we analyzed their possible cooperation in func-
tional networks, their differential protein expression, and differ-
ential sister cell CC progression.

As expected, the robustness of higher ranked trackSeq candi-
dates increases, allowing increased selection stringency (supple-
mental Figure 2G-J). LysoLow candidates are less robust, likely
due to their lower expression (supplemental Figure 4A), which
suggests that these candidates are part of new transcriptional
programs just starting in LysoLow cells. In contrast, LysoHigh
cells remain more similar to the maternal state, and their tran-
scriptional programs were already running and therefore
expressed higher. First, we chose 4 candidates with different
expression levels, potential stem cell function, and available anti-
bodies to quantify protein levels. Two were LysoHigh candidates
(higher in LysoHigh sisters; Tgm2, a transglutaminase with HSC-
specific messenger RNA [mRNA] expression,24 and Ecd, a
glycolysis activator29). The two LysoLow candidates (higher in
LysoLow sisters) were Bace1 (regulates differentiation and
proliferation in neural progenitors30) and Map2k4 (required for
p38-signaling activation in embryonic stem cell differentiation31)
(Figure 2I; supplemental Figure 2G,I-J; supplemental Figure 3A).
Because all protein levels increased with CC progression, we
compared daughter pairs after binning by TSD. As expected, pro-
tein levels were not different between symmetric cell division
daughters at any CC stage but differed between ACD daughters
for MAP2K4 and ECD (supplemental Figure 3C). The finding that
50% of the tested trackSeq mRNA candidates were also asym-
metrically expressed at the protein level, and only in ACD daugh-
ters, confirms the candidate selection of trackSeq. Differences for
LysoHigh candidate ECD increase later in the CC, likely due to
increased mRNA expression in LysoHigh sisters. Expression for
LysoLow candidate MAP2K4 proteins was higher in LysoHigh
daughters in early CC intervals and differences decreased later in
the CC. As previously described,32 this likely reflects the asym-
metric inheritance of candidates’ proteins into LysoHigh daugh-
ters during ACD, and their loss in LysoLow daughters is

Figure 3. TSDstrat removes CC-dependent confounder genes, which are not recognized by current transcriptome-based approaches. (A) CC progression can be
transcriptionally inferred and corrected with regression by the R library Seurat. These inferred CC phases correlate with TSD. (B) TSDstrat removes effects of CC hetero-
geneity from candidate identification. Heatmap of top 50 NOstrat, TSDstrat, KINstrat, and trackSeq candidates’ expression per cell. Only NOstrat columns and rows
cluster for CC progression. Thus, TSD sufficiently controls for CC heterogeneity. (C) Principal component (PC) analysis of scRNA-Seq profiles before and after CC
regression. (D) TSDstrat removes different and more CC-dependent genes than CC regression.
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compensated by their higher production first of mRNA and then
of protein later in the CC. This compensation also agrees with the
increased translation activity in LysoLow daughter cells.12

Next, we analyzed if trackSeq candidates are known to cooper-
ate in molecular networks to identify cellular fates likely to be

regulated by ACD. In addition, enrichment of trackSeq candi-
dates in the same functional networks would further validate the
relevance of their differential expression and function. We there-
fore queried the STRING database33 for known protein–protein
interactions between the top 500 LysoHigh and LysoLow candi-
dates, respectively (Figure 4A). A coordination of different

LysoHigh 

LysoLow 

LysoHigh and LysoLow 

LysoHigh 

IV: DNA metabolic process 

VI: DNA replication 

I: Cell differentiation 

V: DNA repair II: Protein ubiquitination 

III: Signal transduction 

A

B

D

E

Known protein–protein
interactions

Top LysoLow 

Top LysoHigh 

Random genes 

Map to STRING
500 candidates ?

Protein–protein interactions  
50 100 150 200 250 300

LysoLow (38)
P<0.001

De
ns

ity
 

1

0

2

3
�10–3 P<0.001

Random
genes

LysoHigh (290)

Mean expression 

Va
ria

nc
e 

820 12

0

5

10

15

1464 10

Network genes

152
65

LysoHigh
LysoLow

GO process expression bias
LysoHighLysoLow

5

–1 –0.5 0 0.5 1

10

15

20

25

–lo
g 1

0 (
FD

R)
 

I II

III

IV

V 

VI

C

Figure 4. Categorization of identified CFD programs. (A) trackSeq detects functionally cooperating genes. STRING database queried for known protein–protein
interactions of trackSeq candidates. Top 500 LysoHigh genes, top 500 LysoLow genes, and 1000 sets of 500 random genes as null distribution queried for interactions.
(B) LysoHigh genes contain significantly more than random interactions. P values from null distribution. (C) trackSeq candidates form networks of 65 LysoLow (white)
and 152 LysoHigh (green) genes (of top 500 candidates, respectively). (D) Functional enrichments in LysoHigh and LysoLow sisters. Expression bias: ratio of LysoHigh to
LysoLow candidates in process, normalized by number of process genes in network. If .0, more LysoHigh candidates involved; if ,0, more LysoLow candidates
involved. (E) Functional predictions from network: HSC daughters modulate cell differentiation, protein catabolism, and signaling. LysoHigh network components sug-
gest faster CC transition than in LysoLow sisters. Mean and variance of gene expression from Figure 2B, shown throughout figure. FDR, false discovery rate of process
enrichment within network.

COMBINED SINGLE HSC TRACKING AND OMICS blood® 29 SEPTEMBER 2022 | VOLUME 140, NUMBER 13 1489

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/140/13/1482/1922902/bloodbld2022016880.pdf by guest on 30 M

ay 2024



CBA

SCF, TPO
LysoBriteNIR 

Transduction HSC sort 
VENUSPCNA 

G1

S 

G2M 
�Time 

S 

G1

G2M 

LysoLow LysoHigh 

Nu
cle

ar
 P

CN
AV

EN
US

di
str

ib
ut

io
n 

 

Same HSC 

Asymmetric cell divisions Symmetric cell divisions

19.9(7.0)
10.6(4.4)
7.5(3.1)
1.8(1.1)

17.7(6.8) 
9.0(4.2) 
6.9(2.9) 
1.8(1.0) 

17.8(5.4) 
9.1(3.5) 
7.0(2.5) 
1.7(0.9) 

CC
G1

S
G2M

Mean [h](sd) 
18.0(5.5) 

9.3(3.6) 
7.0(2.6) 
1.7(0.9) 

0 40 501040 10 20 30203050 5 10 15 200

100
50
0

TSD (h) 

G1

S 

G2M %
 o

f c
el

ls 
in

 C
C 

ph
as

e 

E 

0 40 501040 10 20 30203050

Duration (h) 

D 

PCNAVENUS 
scSeq 

F 4.5×10–8

2.7×10–6

0.002 

0.74 

CC G1 G2M S 

20

10

30

40

0 

50 P = 0.88 

0.28 

0.97 
0.95 

Du
ra

tio
n 

(h
) 

CC G1 G2M S 

Asymmetric cell divisions Symmetric cell divisions 

G 

Elongation (%) compared to sister  

G1

150 75 0 75 150

G2M 

400 200 200 4000

S 

0 50 100100 50

Ti
m

e 

CC

50100 0 50 100

Asymmetric 
Symmetric 

Division 

LysoLow
longer 

LysoHigh
longer 

CC elongation (%) compared to sister
50100 050 100

Asymmetric cell divisionsH Inhibitor CandidateI 

+/–
Inhibitors  

DMSO
NH4Cl 1 �M

NH4Cl 10 �M
Bafilomycin 0.5 nM

Bafilomycin 1 nM
Compound5 0.2 �M

Compound5 2 �M
NSC15520 5 �M

NSC15520 50 �M
Pyrcoumin 0.5 �M

Pyrcoumin 5 �M
NSC663284 34 nM

Ct
rl

un
sp

ec
ifi

ct
ra

ck
Se

q 
ca

nd
id

at
es Cdc25a 

Dctpp1 

Rad9a

Chd1l

Ly
so

so
m

e 

NSC663284 340 nM

None
0.001 
0.012 
0.092 
0.021 
0.010 
0.011 
0.050 
0.904 
0.337 
0.420 
0.857 
0.478 

P = 0.869 

0.011 

G1/S regulator candidates
with published inhibitors:

Cdc25a, Chd1l,
Dctpp1, Rad9a

LysoHigh 
tra

ck
Se

q

LysoLow 

Top 500
candidates 

�Time

Time 

Figure 5.

1490 blood® 29 SEPTEMBER 2022 | VOLUME 140, NUMBER 13 WEHLING et al

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/140/13/1482/1922902/bloodbld2022016880.pdf by guest on 30 M

ay 2024



candidates into functional modules would be indicated by their
increased number of interactions over that of random genes.
Indeed, LysoHigh genes contain 290 interactions, much more
than random genes (Figure 4B), indicating their cooperation. In
contrast, LysoLow genes are mostly weakly expressed, less var-
ied (supplemental Figure 4A), and are not enriched for
interactions.

Because ACD CFD might induce exit from vs maintenance of
the maternal state through a shared network, we decided to
check protein–protein interactions between LysoLow and Lyso-
High candidates together. Most candidate interactions originate
from a single network (Figure 4C; supplemental Figure 5B),
enriched for “Protein ubiquitination” and “Signal transduction”
(Figure 4D-E) (eg, for Ras-, Wnt-, or Vegf signaling) (supplemen-
tal Figure 4C). LysoHigh candidates include ubiquitin ligases
such as Uhrf1 (involved in HSC self-renewal34), Traf3, and Btrc
(degrading IkBa35), all activators of both NF-kB signaling axes,
which is essential for HSC survival.36 Rrm2, Dut, Hells, and Uhrf1
(LysoHigh) are regulators of early hematopoiesis.37 Mitochon-
drial clearance and glycolysis are other essential HSC properties.
“Protein ubiquitination” candidates (eg, interaction of the Lyso-
High candidates Fbxo15 and Kifbp) suppress metabolic activa-
tion by degrading mitochondria,38 in line with asymmetric
inheritance of mitophagosomes in HSC ACD.12 LysoHigh candi-
date Hells supports glycolysis and accelerates CC.39

“DNA metabolic process,” “DNA repair,” “DNA replication”
(Figure 4E), and “Cell cycle” (supplemental Figure 4D) showed
reduced expression in LysoLow daughter cells, suggesting
slower CC progression in LysoLow sisters. This was unexpected
because it had not been detected in HSC ACD daughters and
because LysoLow sisters display increased metabolic activa-
tion.12 We therefore experimentally tested this prediction and
imaged live HSCs expressing PCNAVENUS (Figure 5A) reporting
G1/S and S/G2M CC phase transitions (Figure 5B). This enables
CC phase length quantification (Figure 5C-D), which agreed well
with transcriptome inferred CC phases (Figure 5E). Upon sym-
metric cell division, no difference between sister CC lengths
could be detected (mean 6 standard deviation, 17.9 6 5.4
hours) (Figure 5F-G). In contrast, as predicted by trackSeq, CC
was indeed longer in LysoLow HSC ACD daughters (mean
difference, 2.3 hours; 19.9 6 7.0 hours vs 17.7 6 6.8 hours) due
to an elongated G1 phase and to a lesser extent S phases.
Importantly, inhibiting trackSeq candidates known to regulate
the G1/S transition (Chd1l,40 Dctpp1,41 Rad9a,42 and Cdc25a43)
(Figure 5H), and for which small molecule inhibitors were

available (“Compound 5,”44 Pyrcoumin,45 NSC15520,46 and
NSC663054,47 respectively), eliminated the systematic CC differ-
ence after ACD, less efficiently for Chd1l (Figure 5I), without
changing overall CC lengths (supplemental Figure 5B). This
shows the functional specificity of candidates identified by
trackSeq.

To also functionally validate a CC-independent trackSeq candi-
date, we identified CC-independent CFD programs by exclud-
ing 63 daughter pairs with pronounced CC differences
(Figure 6A) from a second trackSeq candidate identification.
This removed 294 of the original top 500 trackSeq candidates
encoding the systematic CC effect (Figure 6B). The remaining
206 candidates were enriched for the Kyoto Encyclopedia of
Genes and Genomes pathway “Extracellular matrix [ECM]-
receptor interactions” with Itgb4 as a central node (Figure 6C),
which we investigated further.

Itgb4 is the top LysoLow candidate (Figure 2I), indicating a puta-
tive ECM interaction mechanism regulated by ACD. This weakly
expressed (Figure 6D) integrin b4 chain dimerizes with integrin
a6 (Itga6, CD49f, a human HSC marker48) to specifically bind
laminins.49,50 We used proximity ligation assay amplification for
robust ITGB4 detection in HSC daughter cells after ACD. As for
mRNA, ITGB4 protein levels were higher in LysoLow ACD
daughters (Figure 6E). Interestingly, fluorescence-activated cell
sorting quantification revealed that ITGA6 and ITGB4 expression
decreased with hematopoietic differentiation (Figure 6F), and
ITGB4 expression varied across HSCs. This suggests a possible
function of ITGB4 in HSCs, likely by mediating adhesion to LAM-
ININ. We therefore used live cell time-lapse imaging to quantify
the adhesion vs cell displacement of HSCs and their daughters
on specific laminins. As expected, ITGB4 expression correlated
with adhesion of freshly isolated HSCs to LAMININ, as
ITGB4-low HSCs were displaced more than ITGB4-high HSCs
(Figure 6G). In addition, when cultured on LAMININ 511 that is
specifically bound by ITGB4,51 LysoLow ACD HSC daughters
(expressing more ITGB4) indeed moved less than their LysoHigh
sisters (Figure 6H). In contrast, this difference could not be
observed when cultured on LAMININ 421, which is not bound
by ITGB4.51 This confirms both ITGB4-mediated HSC adhesion
to LAMININ 511 and its asymmetric regulation downstream of
ACD, and further validates the functional relevance of the gene
candidate Itgb4, which was exclusively identified by trackSeq.

The experimental validation of the regulation and functional
relevance of the first trackSeq candidates analyzed here shows

Figure 5. Validation of predicted CC progression differences. (A) Experimental workflow. (B) PCNAVENUS nuclear patterns identify CC phase transitions. Scale
bar 5 5 mm. (C) Correlation of CC phase durations and lysosomal inheritance between paired HSC daughters. (D) G1 symmetry (indicated by red line) of 152 symmetric
(lysosome ratio #1.33) and 96 ACD (lysosome ratio $1.63, throughout figure) HSC daughter pairs. Sorted by LysoHigh G1 length (5 replicates). (E) Agreement between
scRNA-Seq transcriptome-inferred and PCNAVENUS-measured CC state assignment for individual cells. S/G2M transition occurs earlier in scRNA-Seq compared with
PCNAVENUS data. Percentage of cells in each CC phase (G1, S, and G2M) for every hour of TSD plotted for scRNA-Seq and PCNAVENUS derived data. (F) ACD corre-
lates with CC elongation in LysoLow daughter due to G1 and to lesser extent S-phase expansion. P values from Wilcoxon matched-pairs signed-rank tests. Error bars:
Tukey. (G) CC phase duration expansions between paired daughter cells (% relative to longer sister) sorted by relative elongation per pair. Some symmetric cell division
outliers trimmed to maximize displayed dynamic range (CC, 1; G1, 1; S, 3; G2M, 1). (H-I) The systematic CC difference after ACD (asymmetric lysosome inheritance) is
neutralized by inhibiting trackSeq candidates. (H) We identified trackSeq candidates that are known G1/S regulators with available small molecule inhibitors. (I) Inhibiting
candidates neutralizes the systematic CC difference after ACD while unspecific inhibition of lysosomes and CC does not. Green line indicates lack of ACD CC effect.
None (n 5 82 cells [3 replicates]); dimethyl sulfoxide (DMSO) (n 5 56 [5 replicates]); NH4Cl (1 mM, n 5 38; 10 mM, n 5 46 [2 replicates]); bafilomycin (0.5 nM, n 5 42;
1 nM, n 5 32 [2 replicates]); Compound 5 (0.2 mM, n 5 54 [2 replicates]; 2 mM, n 5 122 [4 replicates]); and NSC15520 (5 mM, n 5 120; 50 mM, n 5 106 [4 replicates]);
Pyrcoumin (0.5 mM: n 5 74; 5 mM: n 5 122 [4 replicates]); NSC663246 (34 nM, n 5 20 [1 replicate]; 340 nM, n 5 102 [4 replicates]). Outliers (.100% elongation) omitted,
full range shown in supplemental Figure 6. P values from Wilcoxon signed-rank test of LysoHigh vs LysoLow daughter CC. SCF, stem cell factor; TPO, thrombopoietin.
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the high potential value also of the many other trackSeq can-
didates. This treasure trove of potential HSC CFD regulator
candidate genes is now available to the community in supple-
mental Data 4.

Discussion
We introduce trackSeq, a novel approach for combining scRNA-
Seq data with single-cell kinship and dynamics history from
time-lapse imaging, and report its superior sensitivity for CFD
regulator identification. Literature-based and experimental vali-
dation of identified candidates confirm both the improved sensi-
tivity of trackSeq for detecting small but relevant transcriptome
differences and the functional relevance of the already analyzed
candidates, and thus likely also of a large part of the provided
long list of novel candidates for molecular regulation of the earli-
est HSC fate decisions.

Real-time and kinship data provided by trackSeq confirmed the
validity of transcriptome-based inference of CC states and of sis-
ter comparisons for reducing cross-clonal noise, similar to previ-
ous work that used paired daughter/cousin comparisons on
high-dimensional scRNA-Seq9,10 or on low-dimensional time
series to filter out unwanted variance.6,11,12,17,52 TSD information
of our scRNA-Seq profiles is now also a useful resource to study
CC-dependent gene expression in HSCs similar to recent
studies in human cell lines.53 trackSeq improved differential can-
didate gene identification with much lower expression and vari-
ance, as shown here by using the example of asymmetrically
dividing HSCs. These candidates would have been missed even
by sister analyses without information of individual cells’ dynam-
ics history and CFD direction (trackSeq vs KINstrat) used in a
previous study9 (Figure 2I). trackSeq identifies otherwise
obscured candidates, several of which could already be func-
tionally validated by experimental findings such as the differen-
tial oxidative phosphorylation between ACD HSC daughters12

and the differential CC phase lengths or cell adhesion quantified
here. Similarly, only 3 of the top 10 biological processes found
by STRING within the trackSeq top 500 candidates were also
found by TSDstrat and KINstrat (supplemental Data 3). The
improved candidate identification by trackSeq thus translates
directly into processes discovery. It is therefore highly promising
that the list of identified gene candidates provided here con-
tains many other relevant CFD regulators for future functional
validation.

LysoLow daughters undergo changes indicating the activation of
HSCs, including translational and oxidative phosphorylation acti-
vation,12 and express candidates modulating adhesion and

motility. The longer CC of LysoLow sisters was initially surprising
due to their higher metabolic activation.12 However, lysosome
abundance and CC length is indeed linked in yeast where lyso-
somes are required for G1/S phase progression.54 In neuronal
progenitors, an extended G1 phase seems required for differen-
tiation.55 It is interesting to speculate that the extended LysoLow
G1 phase contributes to CFD induction by extending the time a
cell is receptive for signaling inputs or can accumulate CFD reg-
ulatory proteins, for example. Indeed, G1 expansion causes line-
age output imbalances of human HSC,56 and ACD increases the
lineage output heterogeneity of mouse HSCs.12 Importantly,
because trackSeq analyzes cells at different TSD, it allows analyz-
ing if target programs are implemented at different times after
division and detects convergence or divergence (supplemental
Figure 6). We found that LysoLow candidates are lowly
expressed, and their sister differences tend to diverge later in
CC, suggesting novel transcriptional programs starting in Lyso-
Low ACD daughters. In contrast, LysoHigh candidate expression
is higher and sister differences tend to converge or remain sta-
ble with CC progression. The “DNA repair” process enriched in
LysoHigh daughters in combination with their shorter lifetime
and previously reported metabolic quiescence12 suggests their
programmatic focus on genome integrity and the maintenance
of the mother’s state.

The candidate identification of trackSeq as used here relies on
paired daughter cell analysis, and thus on dividing cultured
HSCs. HSCs periodically also leave their G0 state in vivo,
increasingly so in response to stress. This is one major situation
for HSC fate regulation and likely similar to HSCs starting to
divide in vitro.

We used the ideal situation of ACD here to establish and vali-
date trackSeq; however, its application is not limited to ACD.
trackSeq can now also be used for any CFD in different cell
types and species, provided that early reporters for the live iden-
tification of CFD exist.6,15,57 Although the comparison of closely
related cells removes cross-clonal differences, trackSeq can also
compare nonrelated cells that differ in their fate trajectory or cel-
lular or molecular dynamics. One example is signaling activity
dynamics, which regulate cell fates and require continuous live
single-cell tracking for their quantification.58 Heterogeneous sig-
naling activity dynamics exist in hematopoietic stem and pro-
genitor cells.59 We have already used trackSeq to identify
signaling dynamics-specific hematopoietic stem and progenitor
cell gene target programs, in this case only using dynamics his-
tory but no kinship or fate directionality information.60 Finally,
trackSeq is not restricted to scRNA-Seq but can be used with
other single-cell omics approaches (eg, single-cell sequencing

Figure 6. Experimental validation of trackSeq candidate Itgb4. (A) Identifying CC-independent expression differences. Histogram of absolute transcriptome-inferred
pseudo time (ie, CC) difference between paired daughters. Cutoff at ,0.2 excludes 63 pairs. (B) Venn diagram of top 500 trackSeq candidates including or excluding
sister pairs with CC differences. Gene set size and pathway/process enrichments from STRING are shown. (C) Itgb4 is a central node of the ECM-receptor interaction
pathway indicating a CC-independent putative niche retention mechanism regulated by ACD. A total of 206 CC-independent trackSeq candidates mapped to STRING
database, with unconnected nodes omitted. Yellow nodes 5 candidates of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway ECM-receptor interaction.
(D) Itgb4 is a weakly expressed LysoLow trackSeq candidate. Plot as in Figure 2B; top 500 trackSeq candidate genes in blue. (E) Higher ITGB4 protein expression in
ACD LysoLow than in LysoHigh HSC daughters. ITGB4 detection by proximity ligation assay immunostaining. Eighteen ACD (lysosome ratio .1.63) pairs from 2 repli-
cates. P value from paired t test. Whiskers 5 minimum–maximum. Example ACD HSC daughter pair after PLA (top). Scale bar 5 5 mm. (F) Surface expression of ITGB4
and dimerization partner ITGA6 quantified by fluorescence-activated cell sorting. Their expression decreases during HSC differentiation (middle). ITGB4 expression
varies in HSCs (right). (G) ITGB4-high HSCs are more adherent to LAMININ than ITGB4-low HSCs. Mean HSC displacement per time quantified by time-lapse imaging.
t test. 53/48 ITGB4-low/high HSCs from 3 replicates. (H) Higher LAMININ adhesion of LysoLow (higher Itgb4 expression) than LysoHigh HSC daughters. Quantification
of ACD (lysosome ratio .1.63) HSC daughter displacement on LAMININ 511 (bound by ITGB4) or 421 (not bound by ITGB4). 32/33 pairs for LAMININ 511/421. Paired
t tests from 3 replicates; error bars 5 minimum–maximum. GO, gene ontology.
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assay for transposase-accessible chromatin or single-cell methyl-
ation and transcriptome sequencing).61
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