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KEY PO INTS

� VIP produced by pDCs
in donor BM allografts
suppresses GVHD in
allogeneic BM
transplants.

� Transplanting VIP KO
pDCs led to greater
T-cell expansion, Th1
polarization, proinflam-
matory cytokines than
wild-type pDCs.

Vasoactive intestinal polypeptide (VIP), an anti-inflammatory neuropeptide with pleiotropic
cardiovascular effects, induces differentiation of hematopoietic stem cells into regulatory
dendritic cells that limit graft-versus-host disease (GVHD) in allogeneic hematopoietic stem
cell transplant (HSCT) recipients. We have previously shown that donor plasmacytoid
dendritic cells (pDCs) in bone marrow (BM) donor grafts limit the pathogenesis of GVHD. In
this current study we show that murine and human pDCs express VIP, and that
VIP-expressing pDCs limit T-cell activation and expansion using both in vivo and in vitro
model systems. Using T cells or pDCs from transgenic luciferase1 donors in murine bone
marrow transplantation (BMT), we show similar homing patterns of donor pDCs and T cells
to the major sites for alloactivation of donor T cells: spleen and gut. Cotransplanting
VIP-knockout (KO) pDCs with hematopoietic stem cells and T cells in major histocompatibility
complex mismatched allogeneic BMT led to lower survival, higher GVHD scores, and more
colon crypt cell apoptosis than transplanting wild-type pDCs. BMT recipients of VIP-KO

pDCs had more T helper 1 polarized T cells, and higher plasma levels of granulocyte-macrophage colony-stimulating
factor and tumor necrosis factor-a than recipients of wild-type pDCs. T cells from VIP-KO pDC recipients had increasing
levels of bhlhe40 transcripts during the first 2 weeks posttransplant, and higher levels of CyclophilinA/Ppia transcripts at
day 15 compared with T cells from recipients of wild-type pDCs. Collectively, these data indicate paracrine VIP synthesis
by donor pDCs limits pathogenic T-cell inflammation, supporting a novel mechanism by which donor immune cells
regulate T-cell activation and GVHD in allogeneic BMT.

Introduction
Donor immune cells play critical roles in posttransplant immunity
after allogeneic hematopoietic stem cell transplantation (allo-
HSCT). Donor T cells in the graft facilitate donor stem cell
engraftment, mediate the graft-versus-leukemia (GVL) and graft-
versus-tumor (GVT) effects of allotransplantation, and initiate
acute graft-versus-host disease (GVHD), the leading cause of
nonrelapse mortality.1-3 We previously reported donor plasma-
cytoid dendritic cells (pDCs) purified from marrow grafts
reduced GVHD in murine bone marrow transplantation (BMT)
models,4 reduced GVL activity in related-donor HLA-matched
marrow transplants,5 and reduced chronic GVHD in unrelated
donor marrow transplants.6 Data from murine models indicate
donor pDCs regulate host-versus-graft activity of recipient T cells,

facilitate stem cell engraftment,7 and induce regulatory T cells
(Tregs) through indoleamine 2,3-deoxygenase.4

Recently, we identified signaling through vasoactive intestinal
polypeptide (VIP) receptors as a novel immune checkpoint path-
way that regulates the activation and expansion of antigen-
specific T cells.8 VIP is a 28-amino-acid peptide synthesized by
neurons and immune cells.9 Pharmacological antagonists or
genetic inactivation of VIP enhances adaptive T-cell respon-
ses to viral infection10-12 and autologous13 and allogeneic14

T-cell–mediated antileukemic responses. Therefore, we hypothe-
sized that VIP expressed by donor pDCs may regulate the
GVHD activity of donor T cells after allotransplant. To test this
hypothesis, we purified pDCs from mouse bone marrow (BM)
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and human peripheral blood mononuclear cells and showed
upregulation of VIP expression in pDC after activation and
colocalization of donor pDCs and T cells in host primary and
secondary lymphoid tissues and GVHD target organs after allo-
BMT. Wild-type pDCs inhibited T-cell proliferation in vitro,
whereas VIP knockout (KO) pDCs enhanced expansion of
T helper 1 (Th1) polarized T cells. Transplanting VIP KO donor
pDCs increased GVHD in murine models of allo-BMT and
enhanced donor T-cell expansion and inflammatory cytokine lev-
els. These findings add to previously described mechanisms by
which donor pDCs regulate immune reconstitution following
allo-BMT and suggest novel approaches for pharmacological
regulation of GVHD.

Methods
HSC, T-cell, and pDCs isolation and
transplantation
After the mice were euthanized, cells were flushed from spleen,
tibia, and femur using 2% fetal bovine serum in phosphate-
buffered saline. Donor T cells were harvested from splenocytes
using a pan T-cell isolation kit II, an LS column, and a MidiMACS
separator (magnetic-activated cell sorting [MACS]) (Miltenyi
Biotec Germany). Hematopoietic stem cell (HSC) and pDC prep-
arations were sorted from BM as previously described.4 Briefly,
cells were stained with fluorochrome-conjugated lineage (CD3,
CD11b, CD19, IgM, CD49b, and Ter119), CD11c, B220, PDCA-
1, CD117, and Ly6-A/E antibodies (supplemental Table 1, avail-
able on the Blood Web site), using fluorescence-activated cell
sorter (FACS) Aria II cell sorter and Diva Version 5.1 software
(BD Biosciences). C57BL/6 HSCs were sorted
as B2202lineage2CD1171Sca-11; donor pDCs were sorted
as B2201lineage2CD11c1PDCA-11 from wild-type C57BL/6
or VIP-KO mice (supplemental Figure 1A-C). HLA-DR1

Lineage2CD1231 human pDCs were sorted from blood mono-
nuclear cells. B10.BR recipient mice were irradiated using a
cesium source (5.5 Gy 3 2 doses; dose rate 0.70 Gy/min) or
with radiographs (Rad Source, Atlanta, GA) (4.5 Gy 3 2 doses;
dose rate 1.61 Gy/min). Balb/c mice were lethally irradiated with
the cesium source (4.5 Gy x 2 doses) or X-rays (3.5 Gy x 2
doses). DBA/2 mice were irradiated with X-rays (4.5 Gy x 2
doses). All radiation fractions were separated by 3 hours. On the
next day (day “0”), recipients were injected IV into the tail vein
with 5 3 103 HSCs, 5 3 104 pDCs, and doses of MACS-purified
C57BL/6 splenic T cells that varied by experiment and recipient
strain. Two GVL models were used. Mice were irradiated on day
22 and inoculated with 5 3 105 cells of LBRM-33 clone 5A4
cells (ATCC) by tail vein injection on day 21 before transplanta-
tion (B10.BR model) or subcutaneous injection of either 1 3 105

or 5 3 105 luciferase1 P815-TGL cells on day 21 (DBA/2
model). Transplantation with C57BL/6 HSC occurred on day 0.
Recipient mice were weighed twice weekly and monitored for
clinical signs of GVHD using an established 10-point scoring
system.4

Detailed methods for mouse strains and tumor cell lines, cell cul-
ture, histology, bioluminescent imaging, serum cytokine assays,
RNA sequencing, and statistical analyses are described in the
supplemental methods.

Results
PDCs express VIP
VIP KO mice have a modified neomycin gene cassette inserted
in an inverted orientation into exon 4 of the VIP gene via homol-
ogous recombination, leading to premature termination of trans-
lation of the pre-pro-VIP prior to the mature VIP sequence
encoded on exon 5 (supplemental Figure 1A-C). Polymerase
chain reaction (PCR) was conducted to verify the genotype of
VIP KO mice (Figure 1A), and reverse transcription-PCR con-
firmed no amplification of wild-type VIP coding sequence
(Figure 1B). Based on the described immune-regulatory roles of
donor pDCs in allogeneic transplant4,6,15-17 and reports that VIP
induces immune-tolerant dendritic cells,18-20 we first asked
whether pDCs produce VIP. The gating strategy for flow cyto-
metric analysis and sorting of pDCs is shown in supplemental
Figure 1C, with .90% purity of sorted pDCs (supplemental
Figure 1D). Cytospin preparations of pDCs sorted from mouse
BM4 showed VIP expression in the majority of wild-type pDCs
(Figure 1C,E). Mouse pDCs isolated from marrow cultured in vitro
with 12-phorbol myristate 13-acetate/ionomycin activation had
increased VIP expression (Figure 1D; supplemental Figure 1C).
Of note, the directly conjugated monoclonal antibody raised
against pre-pro-VIP detected immunoreactive VIP in pDCs from
BM of wild-type and VIP KO mice, consistent with the antibody
targeting N-terminal sequences of pre-pro-VIP that are retained
in the VIP KO gene product (supplemental Figure 1A). Human
pDCs isolated from blood expressed similar levels of VIP as
mouse pDCs (Figure 1F).

VIP-KO mice have increased numbers of pDCs
in BM
Interestingly, marrow from VIP KO mice had equivalent numbers
of nucleated cells but an increased frequency of pDCs (0.8% 6

0.25% KO vs 0.5% 6 0.14% wild-type marrow; P , .05) and
twice the number of pDCs per femur than wild-type mice
(P , .01; Figure 2A-B). No significant differences in the expres-
sion of costimulatory factors were seen in pDCs from VIP KO vs
wild-type mice (Figure 2C-H).

pDCs lacking VIP increase T-cell proliferation and
Th1 polarization in vitro
Next, we tested the ability of freshly isolated pDCs activated
overnight with CpG and R848 to suppress the proliferation
of primary T cells activated in vitro with surface-bound anti-
CD3 monoclonal antibodies and interleukin-2 (IL-2) for 72
hours. Both CD41 and CD81 T cells had increased prolifera-
tion following CD3 stimulation when cocultured with synge-
neic activated pDCs, reflected in an increased proliferation
index and a higher fraction of proliferated cells. However,
the fraction of proliferated T cells was greater follo-
wing coculture with VIP-KO pDCs than wild-type pDCs
(Figure 3A-B), indicating that VIP expression by pDCs sup-
pressed proliferative capacity of activated T cells without
altering the fraction of cells that proliferated. In addition to
stimulating more T-cell divisions among activated T cells,
VIP-KO pDCs induced higher frequencies of interferon-g
(IFN-g)1, inducible costimulator1, and IFN-g/tumor necrosis
factor-a (TNF-a) double-positive CD81 T cells than wild-
type pDCs (Figure 3D-F). Similar effects were not seen in
CD41 T cells (Figure 3C). Notably, wild-type pDCs induced
significantly more Tregs in vitro than in cultures lacking
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pDCs, and the frequency of Treg in cocultures with
wild-type pDCs trended higher (P 5 NS) than cocultures
with VIP-KO pDCs (supplemental Figure 2A). There were no
significant differences in the frequencies of perforin- or
granzyme B-expressing CD81 T cells comparing coincuba-
tion with wild-type vs KO pDC (supplemental Figure 2C),
suggesting a greater role for VIP expression by pDC in cyto-
kine polarization than effector function in cognate T cells.

pDCs and T cells home to hematolymphoid
tissues and GVHD target organs in allo-HSCT
After showing that VIP expressed by pDCs suppresses syn-
geneic T-cell activation, we next asked whether donor pDCs
home to GVHD tissue sites in allotransplant recipients. We
used luciferase-transgenic (luc1) donor pDCs or luc1 donor
T cells in a major histocompatibility complex mismatched
B6!Balb/c BMT model to characterize the tissue-specific
homing properties of both donor pDCs and donor T cells.21

On day 7, luciferase signals from transplanted luc1 pDCs
were barely detectable (Figure 4A) but easily visible in anes-
thetized mice on day 14 (Figure 4B). Following euthanasia
and necropsy, the majority of luc1 donor pDCs had
migrated to the spleen, but significant numbers were pre-
sent in GVHD target organs, including scattered signals in
the gastrointestinal (GI) tract, representing 12.5% of whole-
body luminescence (Figure 4D), with diffuse signals in lung
(Figure 4B). Similar homing patterns were observed for luc1

donor T cells cotransplanted with wild-type HSC, with the
spleen and GI tract being the major sites for T-cell homing
on day 7 (not shown) and day 14 (Figure 4B-C), as previously
reported.21 Comparing mean luciferase signals in organs
harvested on day 14 from separate experiments utilizing
luc1 donor pDCs or luc1 donor T cells, we observed a con-
cordance of homing patterns for these donor cell popula-
tions (R2 5 0.93) (Figure 4E). Transplanting GFP1 donor
T cells and wild-type pDC showed scattered GFP1 donor
T cells and PDCA-11 cells (presumptive donor pDCs) in 5%
to 10% of sections of day 18 small intestine (Figure 4F). Of
note, pDCs are very sensitive to radiation and alloreactive
T cells, and host pDCs are gone by day 114 posttrans-
plant.22 Although PDCA-1 is not a unique marker for donor
pDCs,23 the correspondence of PDCA-11 cells with donor
pDC was confirmed by costaining for PDCA-1 and major his-
tocompatibility complex class I H-2Kb (Figure 4G) or anti-
GFP (Figure 4H) in sections of the small intestine of Balb/c
recipients on day 114 following transplantation of 5 3 103

B6 wild-type HSC, 5 3 104 donor T cells, and 5 3 104 GFP1

pDC from C57BL/6 donor mice.

VIP signaling by donor pDCs reduces
GVHD-related mortality
To test whether local production of VIP by donor pDCs regu-
lates GVHD and survival in allo-HSCT, we transplanted lethally
irradiated B10.BR mice with FACS-purified populations of
5 3 103 B6 wild-type HSC, 1 3 106 donor T cells, and 5 3 104

pDCs from either B6 wild-type or VIP-KO donor mice as previ-
ously described.4 Recipients of VIP-KO pDCs developed clinical
manifestations of GVHD posttransplant with 44% mortality com-
pared with 22% mortality among recipients of wild-type pDCs
(Figure 5A; P , .05). Recipients of VIP-KO pDCs developed
more severe GVHD as demonstrated by higher clinical GVHD
scores (Figure 5B; P , .0001). Early after allo-HSCT, mice experi-
enced diarrhea and weight loss for 7 to 10 days, followed by
gradual weight gain. Fur ruffling, skin scaling, and other manifes-
tations associated with chronic GVHD begin to appear at �1
month. Mice with more severe clinical manifestations of chronic
GVHD were euthanized after meeting protocol-defined Institu-
tional Animal Care and Use Committee endpoints. To confirm
that the ability of donor pDCs to regulate GVHD was robust
across different T-cell doses, we repeated the transplant experi-
ments using a twofold higher dose of donor T cells (2 3 106

T cells). B10BR mice transplanted with 2 3 106 T cells and VIP-
KO pDCs developed severe GVHD with 60% mortality
(Figure 5C; P 5 NS) and higher clinical GVHD scores (Figure 5D;
P , .01) compared with 33% mortality among recipients of the
same numbers of donor T cells, HSC, and wild-type pDCs.
Scheduled euthanasia and necropsy of recipients of wild-type vs
VIP-KO donor pDCs at 32 days posttransplant did not reveal sig-
nificant differences in histological scores of acute GVHD among
mice that received the low dose of donor T cells (1 3 106 T cells;
data not shown). In contrast, among B6!B10.BR mice trans-
planted with 2 3 106 T cells, histological analysis of the colon
early posttransplant on day 7 showed that recipients of VIP-KO
pDCs had higher frequency of intracryptal apoptosis24 (indicated
as yellow arrows in Figure 5I-J; P , .05) compared with recipi-
ents of wild-type pDCs, consistent with the higher level of acute
GVHD seen with the higher donor T-cell dose. Notably, high
lymphocytic infiltration was not seen in colons from VIP-KO pDC
recipients, suggesting that cytokine-mediated effects were likely
responsible for intracryptal apoptosis. Confirming our previous
report,4 day 18 necropsy of allo-HSCT recipients transplanted
with donor HSC and T cells in the absence of donor pDCs dem-
onstrated higher histological scores for intestine (Figure 5E-F;
P , .05), GVHD, and colon (Figure 5G-H; P , .05) compared
with mice transplanted with wild-type donor pDCs. The histolog-
ical GVHD scores combined for small and large intestine
were higher among recipients of VIP-KO pDCs compared with

Figure 1. pDCs express VIP. (A) Gel electrophoresis showing the PCR products of DNA extracted from wild-type, VIP KO, and VIP wild-type/KO heterozygous mice
using PCR amplification of genomic DNA as described in supplemental methods. The 708-bp band is generated by primers N1 and V2 given by KO allele. The wild-
type allele gives a product of 318 bp, generated by V1 and V2. Lanes 1 to 2 are DNA from wild-type mice, lanes 3 to 6 VIP-KO homozygous mice, and lanes 7 to 8
wild-type/KO heterozygous mice. (B) Ethidium-bromide-stained agarose gel electrophoresis showing reverse transcription–PCR products of RNA extracted from both
wild-type and VIP KO mice whole brain. The primers were designed to target coding sequence, including PHI encoding exon 4 sequence and VIP encoding exon
5 sequence as described in the supplemental methods. Messenger RNA extracted from VIP-KO mice brain showed no amplification of wild-type VIP coding sequence.
(C) Cytospin preparations of FACS-purified mice BM pDCs were stained for CD317(PDCA-1), and pre-pro-VIP, followed by Alexa Fluor 568 and Alexa Fluor 488 conju-
gated secondary antibodies, respectively (shown in red and green), and counterstained with DAPI (49,6-diamidino-2-phenylindole; shown in blue). Magnification is 340,
zoom 31.5. (D) Freshly sorted mouse BM pDCs activated overnight with phorbol 12-myrsitate 13-acetate/ionomycin. Representative of 3 independent experiments.
(E) Freshly sorted pDCs stained as per panel C stained with secondary antibody but without using the primary anti–pre-pro-VIP primary antibody as a control. (F) FACS-
purified human peripheral blood pDCs stained with anti–pre-pro-VIP (red stain is shown in pseudo green) in combination with the pDC-specific marker CD303 (BDCA-2)-
fluorescein isothiocyanate (green stain is shown in pseudo red). Magnification is 340, zoom 31.0. Analysis by confocal microscopy shows the coexpression of murine and
human pDCs surface markers with intracellular expression of VIP in both human and mice pDCs. Bar indicates 20 mm. GAPDH, glyceraldehyde-3-phosphate dehydroge-
nase; WT, wild type.
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recipients of wild-type pDCs (P 5 .023). Recipients of VIP KO
pDCs had fewer mucus-secreting goblet cells in the intestinal
villi (P 5 NS) and more apoptotic cells in crypts (P , .05; Figure
5E-L). The immune-modulatory effect of donor pDCs appeared
to be time-limited, as we did not observe attenuation of gut

GVHD comparing histopathology of small intestine and colon in
allotransplant recipients of wild-type vs no donor pDCs on day
15 (supplemental Figure 3). Taken together, these data indicate
that wild-type donor pDCs can inhibit the initiation of acute
intestinal GVHD, but that limited persistence of donor pDCs in
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Figure 3 (continued) proliferated cells and the proliferation index. Two independent experiments that included 3 biological replicates per group with a total of n 5 14
technical replicates in the VIP-KO pDC group, n 5 10 in the wild-type pDC group, and n 5 14 in the no pDC group. (A) Proliferation for activated CD41 T cells.
(B) Proliferation for activated CD81 T cells. (C-D) Representative flow plots of IFN-g expression on CD41 T cells (C) and CD81 T cells (D) analyzed by flow cytometry
after intracellular staining. (E-F) Representative flow plots of IFN-g and TNF-a coexpression on CD41 T cells and CD81 T cells based on 2 independent experiments
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****P , .0001.
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GVHD target organs mitigates their ability to control GVHD at
later times.

VIP production by donor pDCs did not abrogate
the GVL or GVT activity of donor T cells
Two graft-versus-cancer models were studied: B6!B10.BR
transplants in mice engrafted with LRBM following lethal irradia-
tion and prior to allotransplant4 and the B6!DBA/2 P815-TGL
model.25 B10.BR mice bearing LBRM leukemia and transplanted
with VIP-KO pDCs had 40% 60-day survival compared with 60%
survival among recipients of wild-type pDCs, and 30% survival in
the group that received no pDCs (supplemental Figure 4A-B;
P 5 NS). Using luciferase1 P815-TGL mastocytoma tumors
established in DBA/2 recipients, we found that transplantation
with VIP KO pDCs did not have detrimental effects on the long-
term GVT effect of donor T cells (supplemental Figure 4C-G). Of
note, mice transplanted with 5 3 104 VIP KO pDC, 1 3 105

P815, and 1 3 105 donor T cells had transient suppression of
tumor growth at day 15 posttransplant, with tumor burdens at
later time points equal across treatment groups (supplemental
Figure 4F). Consistent with published data on graft-facilitation,7

wild-type donor pDCs facilitated HSC engraftment when trans-
planted in the absence of donor T cells (supplemental Figure 5).
In contrast to the B6!B10.BR model, transplanting purified
populations of HSC, T cells, and wild-type or VIP KO pDCs into
irradiated Balb/c recipients did not result in significant survival
differences (supplemental Figure 6).

VIP KO pDCs induce greater donor T-cell expan-
sion in vivo than wild-type pDCs
We next tested the effects of the VIP production by pDCs on
the kinetics of donor T-cell expansion within specific organs in
allo-HSCT recipients. B10.BR recipients of VIP-KO pDCs had sig-
nificantly more splenic T cells on day 18 posttransplant
(Figure 6A), although not on day 115 (Figure 6B), consistent
with greater initial donor T-cell expansion. The percentages of
Treg cells among recipients of wild-type pDCs trended higher
on day 8 (P 5 NS) and were significantly higher on day 15
(P , .05) posttransplant vs recipients without pDCs
(Figure 6C-D). To measure the effect of VIP KO pDC on donor
T-cell expansion, Balb/c recipients were irradiated and trans-
planted with 1 3 106 luc1 donor C57BL/6 T cells in combination
with 5 3 103 wild-type HSCs and 5 3 104 wild-type or VIP KO
pDCs. Donor T cells transplanted with VIP KO pDCs homed to

and expanded in the spleen, gut, and lungs of recipient mice to
a greater degree than donor T cells cotransplanted with wild-
type pDCs (Figure 6E-F; P , .05), with more donor T cells in
skin and lung at day 14 posttransplant (Figure 6F). In a separate
experiment using the B6!B10.BR transplant model, short term-
expansion (supplemental Figure 7) and long-term expansion and
engraftment of donor luc1 T cells (Figure 6G) were greater
when T cells were cotransplanted with VIP KO pDCs than wild-
type pDC. Taken together, these data indicate that VIP expres-
sion by donor pDCs limits the expansion of donor T cells.

VIP KO pDCs induce inflammatory cytokines and
TNF-a1 T cells in vivo
Next, we determined the immune polarization of donor T cells
recovered on days 8 and 15 following cotransplantation with
wild-type or VIP-KO donor pDCs. Recipients of VIP-KO pDCs
generally had higher serum levels of inflammatory factors than
recipients of wild-type pDC, including Th1-related (IL-12p70),
Th2-related (IL-31), Th17-related (IL-17A and IL-22) cytokines
(supplemental Table 3). Notably, serum levels of granulocyte-
macrophage colony-stimulating factor (GM-CSF) were signifi-
cantly higher among recipients of VIP KO pDCs than wild-type
pDCs on days 13 and 18 posttransplant (Figure 7A-B,D). CD81

T cells from recipients of VIP-KO pDCs had significantly higher
levels of T-bet and PD-1, significantly higher TNF-a, and a trend
toward higher intracellular GM-CSF expression than T cells from
recipients of wild-type pDCs on day 115 posttransplant (supple-
mental Figure 8C-D).

VIP KO pDCs induce and inflammatory gene
signatures in donor T cells
Comparing differences in gene expression in T cells across dif-
ferent groups, we found significantly higher expression of CCL4
and Smad7 in T cells from mice receiving wild-type pDCs,
whereas higher expression of Fasn and CyclophilinA/Ppia was
seen in T cells from mice receiving VIP-KO pDCs (Figure 7E).
The GO/pathway analysis indicates alteration of genes, including
CCL3/CCL4 and Smad7, could affect several molecular interac-
tion networks (supplemental Figure 9). Bhlhe40 is a key tran-
scription factor that regulates GM-CSF production by CD41

T cells.26

Expression of Bhlhe40 increased in T cells from day 8 to day 15
posttransplant in recipients of VIP-KO pDCs and no pDCs, but

Figure 4. Homing and in vivo expansion of donor pDCs and T cells in the spleen and GVHD target organs. (A) The bioluminescent image was taken 7 days after
Balb/c mice were transplanted with 5 3 104 FACS-purified luciferase pDCs or 1 3 106 luciferase T cells, in combination with 5 3 103 FACS-sorted HSCs from C57BL/6
mice. Mice were sacrificed, and thymus (an anatomic site for tolerogenic pDC),53 lung, GI tract, spleen, paw, and liver were collected. Left side radiance scale bar (200-
500) is for the whole-body image; right side radiance scale bar (100-350) is for the organ images. (B) Fourteen days after the transplant, bioluminescent images of anes-
thetized mice and isolated organs were obtained. The highest bioluminescence signals are seen in the spleen, GI tract, and lung. Left side radiance scale bar (103 to
104 p/sc/cm2/sr) is for the whole-body image of both groups; right side radiance scale bar (104 to 105) is for the organ images. (C) Mean 6 standard deviation for biolu-
minescent signals in organs following transplantation of luciferase1 T cells; N 5 6 biological replicates per group. (D) Mean 6 standard deviation for bioluminescent sig-
nals in organs following transplantation of luciferase1 pDCs recipients; N 5 4 biological replicates per group. (E) Correlation of mean bioluminescent signals per organ
comparing recipients of luciferase1 donor T cells and donor pDCs (R2 5 0.93). N 5 4 biological replicates in the luc1 pDCs 1 HSC group, and n 5 6 in luc1 T cells
and HSC group. Statistics: power linear progression. (F) The small intestine from B10.BR recipients was collected 8 days after allo-HSCT from a C57BL/6 donor graft con-
taining 5 3 103 HSCs, 5 3 104 pDCs, and 13 106 GFP1 T cells. Recipients were sacrificed on day 8 posttransplant. GI tract was stained for rat anti-PDCA-1, followed by
staining with an anti-rat AF568-conjugated antibody. Images were analyzed with an Olympus FV10000 Confocal Laser Scanning Biological Microscope. An image show-
ing the presence of pDCs and donor T cells is shown from 4 images with detectable donor cells out of 40 images examined. Magnification: 320. Bar indicates 50 mm.
(G) Immunofluorescence staining with anti-H-2Kb and anti-PDCA-1 antibodies in optimal cutting temperature compound–embedded, 4% paraformaldehyde-fixed small
intestine of Balb/c mice 14 days after lethal irradiation and transplantation with 5 3 104 donor GFP1 pDC, 5 3 103 HSC, and 5 3 104 T cells from C57BL/6 donors. Iden-
tity of donor pDCs in the gut section was established by coexpression of H-2Kb and PDCA-1. White arrows show an exemplar of 3 cells that coexpressed H-2Kb and
PDCA-1. Magnification: 340. Bar indicates 50 mm. (H) Immunofluorescence staining of the same sections as in panel G with anti-GFP and anti-PDCA-1 antibodies. Iden-
tity of donor pDCs in the gut section was established by coexpression of GFP and PDCA-1. Gray arrows show 2 cells that coexpressed GFP and PDCA-1. Anti-GFP Ab
was applied to eliminate the possible confounding effects of autofluorescence in the GI tract with GFP signals. Magnification: 340. Bar indicates 50 mm.
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not in the wild-type pDCs group. These data suggest that VIP
production by donor pDCs suppresses expression of Bhlhe40 in
T cells (Figure 7F-H). Notably, other markers of inflammation,
including Gzma, Itgb7, S1pr1, and Serpinb9, decreased from
day 8 to day 15 independently of VIP synthesis by donor pDCs
(Figure 7F-H).

Discussion
This study identifies a novel mechanism by which donor pDCs, a
rare immune cell present in marrow grafts, regulates the alloreac-
tivity and GVHD potential of donor T cells in allo-HSCT. Recipi-
ents of wild-type donor pDCs had 8% better survival than mice
transplanted with no pDC, less than the 18% survival benefit of
donor pDCs previously reported,4 but consistent with a signifi-
cant survival benefit when data from both studies are combined
(not shown). Previous reports have shown that exogenous VIP
generates tolerogenic dendritic cells from BM progenitors in vitro,
and that dendritic cells generated from BM cells in the presence
of VIP limit GVHD without decreasing GVL activity.18,27 Activated
pDCs also play a critical role in developing CD41CD251

Tregs,28,29 which protect against GVHD.30 VIP-KO pDCs induced
greater T-cell activation and expansion compared with wild-type
pDCs, significantly increasing GVHD and mortality. We have pre-
viously published that exogenous VIP limits the activation and
proliferation of T cells in vitro, and that adding VIP receptor
antagonists enhances T-cell activation and proliferation.15 To our
knowledge, this is the first demonstration that VIP expressed by
donor pDCs suppresses T-cell proliferation and immune activa-
tion, thereby limiting GVHD and facilitating donor HSC engraft-
ment. These data are consistent with our previous reports on the
effect of VIP receptor agonists and antagonists on T-cell prolifera-
tion in vitro15 and demonstration that in vivo treatment of mice
with a VIP receptor antagonist augments in vivo expansion, antivi-
ral, and antileukemia activities of CD81 effector T cells.10,14

Several hypotheses may explain the mechanism by which VIP
secreted by donor pDCs may modulate T-cell alloreactivity. First,
pDCs express VIP receptors, and exogenous VIP inhibits IFN-a
secretion by pDCs,31 supporting an autocrine effect of VIP on
pDCs. Second, VIP expressed by donor pDCs may have a para-
crine effect on T-cell proliferation. Activation of T cells leads to
increased expression of VPAC1 and VPAC2 receptors, rendering
them more susceptible to the immune-inhibitory effects of VIP.32

VIP-receptor signaling may inhibit T-cell receptor signaling in
response to allo-peptides presented by host antigen-presenting
cells 33 or cross-presented by donor antigen-presenting cells,34,35

reducing activation of alloreactive donor T cells. Third, VIP

expression by donor pDCs may indirectly affect T-cell activation
by changing the antigen-presenting ability of nonhematopoietic
host epithelial cells.36 All mechanisms are consistent with find-
ings of increased donor T-cell homing to GVHD-target organs,
expansion, and alloreactivity among recipients of VIP-KO pDCs.

Histological data from this study support inhibition of GVHD by
donor VIP. Recipients of VIP-KO pDCs had more intracryptal
apoptosis in the intestine without increased infiltration by donor
lymphocytes, consistent with VIP reducing inflammatory cytokine
cytokines that cause epithelial cell death in acute GVHD.24 His-
tological findings of acute GVHD in the gut largely resolved by
2 weeks posttransplant, suggesting that late mortality among
VIP-KO donor pDC recipients may be manifestations of chronic
GVHD, consistent with clinical findings of more chronic GVHD
among recipients of fewer donor pDCs6 and IL-17/IL-22 expres-
sion in cutaneous GVHD in mice.37,38

Analysis of cytokine and gene expression in T cells in recipients of
VIP KO pDCs is consistent with the etiology of acute GVHD.
Bhlhe40 is the key transcription factor that regulates GM-CSF pro-
duction in pathogenic donor T cells following allogeneic BMT.26

The increase in Bhlhe40 expression in T cells cotransplanted with
VIP KO pDCs corresponded to increased GM-CSF plasma levels
in these animals (supplemental Table 3). Consistent with this find-
ing, coculture of VIP KO pDCs and T cells led to higher levels of
inducible costimulator expression on CD81 T cells, a marker for
alloreactive T cells responsible for GVHD.39 Higher levels of Fasn
in T cells from VIP-KO pDCs is consistent with increased IL17-
polarization of T cells seen in mouse models of colitis.40,41 In con-
trast, VIP-producing donor pDCs may mitigate activation of donor
T cells recruited to GVHD target organs. Notably, T cells from
recipients of VIP-KO pDCs expressed higher levels of Cyclophilin
A messenger RNA (CypA/Ppia, the therapeutic target for the
immunosuppressive drug cyclosporine42) than T cells transplanted
with wild-type pDCs. Cyclophilin A induces T-cell Th1 polarization,
leading IFN-g and TNF-a producing CD41 T cells,43 and induces
chemokines that attract leukocytes to sites of inflammation.44

Smad7, a major negative regulator in transforming growth factor-
b/bone morphogenetic proteins signaling,45 was higher in T cells
from mice transplanted with wild-type pDC. These data support
the model in which VIP secreted by donor pDCs attenuates inflam-
matory polarization and activation of donor T cells.4 Taken
together, these findings suggest that VIP production by pDCs reg-
ulates pathogenic inflammatory donor T cells.26 VIP production by
donor pDCs may be linked to the induction of indoleamine
2,3-deoxygenase, with both processes contributing to T-cell allor-
eactivity control.4

Figure 5. VIP synthesis by donor pDCs limits GVHD in allo-HSCT recipients. (A-B) Percentage survival of B10.BR mice transplanted with 5 3 103 FACS-sorted HSCs
and 1 3 106 MACS-enriched splenic T cells from C57BL/6J mice with the addition of 5 3 104 FACS-purified pDCs from either wild-type or VIP-KO mice. Survival and
mean GVHD score of each group are shown. Biological replicates involved 18 independent experiments with n 5 83 mice in wild-type pDCs, HSC, and 1MT group; n
5 41 mice in the VIP-KO pDCs, HSC, and 1 3 106 group; n 5 61 in the HSC and 1 3 106 T-cell group. (C-D) Survival and mean GVHD scores of mice that received
5 3103 HSCs, 2 3 106 splenic T cells, and 5 3 104 FACS-purified wild-type or VIP-KO pDCs. N 5 16 mice per group. (E) 7 days after B10.BR mice received 1 3 106

T cells, mice were euthanized, and jejunum, duodenum, and ileum were harvested, formalin-fixed, paraffin-embedded, 10-mm sections stained with hematoxylin and
eosin, and histological GVHD scores were determined by a pathologist masked to treatment group. Bar indicates 50 mm at 3200 magnification. (F) Each dot represents
a segment of small intestine. Four biological replicates and 12 technical replicates were analyzed for each group. Bar indicates 50 mm at 3200 magnification. (G-H) His-
tology score of colons in recipients of 1 3 106 T cells of recipients. Bar indicates 50 mm at 3200 magnification. (I-J) Seven days after the B10.BR mice received 2 3 106

T cells, colons were collected and stained with hematoxylin and eosin. Apoptotic crypts are counted by a pathologist. N 5 8 in each group. Bar indicates 100 mm at
340 magnification. (K-L) Seven days after allo-HSCT, formalin-fixed, paraffin-embedded sections of small intestine from recipients of 2 3 106 T cells were stained with
periodic acid–Schiff, and goblet cells were counted by a pathologist (masked to treatment group), n 5 6 or 7 biological replicates for each group. Bar indicates 50 mm
at 3200 magnification. Statistics: Kaplan-Meier for survival analysis, two-way analysis of variance for clinical GVHD, nonparametric Mann-Whitney U test for histological
GVHD scores, and crypts apoptosis. Yellow arrow marks necrotic cell; yellow asterisks marks neutrophils. *P , .05, **P , .01, ***P , .001, ****P , .0001.
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This study has several limitations. First, we used a reductionist
model, combining highly purified populations of donor T cells,
pDCs, and HSCs, to isolate the effect of donor pDCs in allo-
HSCT. Other cells in the graft, including classical dendritic cells, B
cells, natural killer cells, monocytes, and granulocyte progenitors,
may regulate T-cell activation and VIP production. Second, the
precise anatomic sites at which donor T cells and pDCs interact
remain to be fully defined. Notably, both donor T cells and pDCs
home to hematolymphoid and GVHD target organs, including the
GI tract, the major site for acute GVHD.46 However, current meth-
odologies of bioluminescent imaging and fluorescent microscopy
have limited the ability to define intercellular signaling between
donor pDCs and donor T cells. We used a dose of donor pDCs
comparable to the content in 5 3 106 murine marrow cells, and 2
3 106 pDC per kilogram in a human allograft.6 If 12.5% of 50000
donor pDCs are present in the intestine (1 g of tissue), then donor
pDCs should be detectable in �12% of 1 mm2 3 10-mm-thick
gut sections, slightly higher than observed detection rates. Direct
examination of the gut by immunofluorescence showed the pres-
ence of rare donor T cells and PDCA-11 cells (presumptive pDC;
Figure 4F), with confirmation of the PDCA-11 cells as donor pDC
conferred by costaining with anti-H-2Kb and anti-PDCA-1 (Figure
4G), as well as costaining with anti-GFP and anti-PDCA-1 (Figure
4H). However, observed frequencies of donor pDC were too low
to permit reliable quantitation. In addition, the overall survival ben-
efit of wild-type pDC was modest compared with no donor pDCs
recipients (Figure 5). There may be strain-dependent effects of
donor pDC in murine allotransplantation, as enhanced T-cell
expansion with VIP KO donor pDCs was seen in Balb/c recipients
(Figure 4) without donor pDC-dependent survival differences in
B6!Balb/c transplants (supplemental Figure 6). Finally, endoge-
nous VIP may suppress HSC differentiation to pDCs or HSC prolif-
eration.47,48 Notably, wild-type donor pDCs facilitated donor HSC
engraftment, likely by attenuating host-versus-graft activities of
residual recipient T cells and natural killer cells rather than a direct
paracrine effect on myelopoiesis.49 Although previous reports indi-
cate that severe GVHD impairs posttransplant pDCs recovery,49-51

we found similar frequency of pDCs in blood in all treatment
groups (data not shown).

In summary, our study confirms that marrow-derived donor
pDCs are tolerogenic and support a novel mechanism whereby
donor pDCs regulate GVHD activities of donor T cells in allo-
HSCT. The current findings support VIP-receptor signaling as a
novel immune checkpoint pathway that limits donor T-cell acti-
vation. Strategies that increase the content of VIP-producing
donor pDCs in allo-HSCT grafts by mobilization with Flt-3L may
modulate in vivo donor T-cell activation and proliferation to bal-
ance GVHD and GVL activities in patients with hematologic
malignancies undergoing allo-HSCT.52
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