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KEY PO INTS

� N-glycosylation is
essential for mutant
CALR-driven oncogenic
transformation.

� CALR-mutant cells are
preferentially sensitive
to pharmacological
inhibition of
N-glycosylation.

Calreticulin (CALR) mutations are frequent, disease-initiating events in myeloproliferative
neoplasms (MPNs). Although the biological mechanism by which CALR mutations cause
MPNs has been elucidated, there currently are no clonally selective therapies for
CALR-mutant MPNs. To identify unique genetic dependencies in CALR-mutant MPNs, we
performed a whole-genome clustered regularly interspaced short palindromic repeats
(CRISPR) knockout depletion screen in mutant CALR-transformed hematopoietic cells. We
found that genes in the N-glycosylation pathway (among others) were differentially
depleted in mutant CALR-transformed cells as compared with control cells. Using a
focused pharmacological in vitro screen targeting unique vulnerabilities uncovered in the
CRISPR screen, we found that chemical inhibition of N-glycosylation impaired the growth
of mutant CALR-transformed cells, through a reduction in MPL cell surface expression. We

treated Calr-mutant knockin mice with the N-glycosylation inhibitor 2-deoxy-glucose (2-DG) and found a preferential
sensitivity of Calr-mutant cells to 2-DG as compared with wild-type cells and normalization of key MPNs disease
features. To validate our findings in primary human cells, we performed megakaryocyte colony-forming unit (CFU-MK)
assays. We found that N-glycosylation inhibition significantly reduced CFU-MK formation in patient-derived CALR-
mutant bone marrow as compared with bone marrow derived from healthy donors. In aggregate, our findings
advance the development of clonally selective treatments for CALR-mutant MPNs.

Introduction
The identification of novel therapeutic vulnerabilities in calreticu-
lin (CALR)-mutant myeloproliferative neoplasms (MPNs) has the
potential to be transformative in the treatment of this challeng-
ing disease. This assertion is based on the facts that CALR muta-
tions are disease-initiating events in MPNs, that CALR mutations
alone are sufficient to cause MPNs, and that CALR mutations
occur frequently in �20% to 25% of all MPNs cases.1,2 Despite
the common occurrence of CALR mutations in MPNs, there are
currently no treatment strategies to preferentially target CALR-
mutant cells over normal cells.3

CALR mutations found in MPNs typically consist of insertions or
deletions in exon 9 resulting in a 11 bp frameshift and the gen-
eration of a novel, mutant-specific C-terminus. CALR mutations

are almost exclusively found to be heterozygous, and 2 muta-
tions account for �80% of all CALR mutations. A 52 bp deletion
(CALRD52) is present in �50% of patients, and a 5 bp insertion is
present in �30% of patients.1,2,4 We have previously shown that
transformation of hematopoietic cells to cytokine independence
in the context of CALRD52 expression depends on the binding
of CALRD52 to the thrombopoietin receptor MPL and its subse-
quent activation.5 Importantly, this interaction is dependent on
N-glycosylation sites in the extracellular domain of MPL and
lectin-binding sites of mutant CALR.6 Moreover, MPL cell surface
expression is dependent on MPL N-glycosylation.7 A CalrD52

mutant knockin mouse model mirrors the phenotype seen in
CALR-mutant MPNs patients, demonstrating a marked increase
in platelet count, megakaryocyte hyperplasia, and progression
to myelofibrosis in aged mice.8
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Although the mechanism of mutant CALR-induced MPNs is
known to involve pathogenic binding between mutant CALR
and MPL,5,7,9-11 this insight has not yet been exploited thera-
peutically. Although patients with myelofibrosis harboring muta-
tions in CALR demonstrate clinical responses to the JAK2
inhibitor ruxolitinib, the mutant CALR variant allele fraction does
not decline with ruxolitinib treatment.12 More recently, similar
findings have been reported for CALR-mutant MPNs treated
with pegylated interferon (ie, clinical responses in the absence
of reducing mutant CALR variant allele fractions).13 Indeed, a
major deficiency in the treatment of MPNs is the lack of clonally
selective therapeutic agents with curative potential. Hence, we
set out to discover and validate unique genetic dependencies
for mutant CALR-driven oncogenesis.

Using unbiased approaches, we have (1) identified differential
genetic vulnerabilities of mutant CALR-transformed hematopoi-
etic cells; (2) validated that transformation by mutant CALR is
dependent on Dpm2, a key gene in the N-glycan biosynthesis
pathway; and (3) shown that inhibition of N-glycosylation nor-
malizes key features of MPNs and preferentially targets Calr-
mutant cells in vivo.

Methods
Patients
Human platelet RNA sequencing (RNA-seq) All MPNs
peripheral blood samples were obtained under written informed
patient consent and were fully anonymized. Study approval was
provided by the Stanford University Institutional Review Board.

Bone marrow samples for megakaryocyte colony-forming
unit assays Patients and controls gave written informed con-
sent and bone marrow samples were acquired using institutional
review board–approved protocols at Dana-Farber Cancer Insti-
tute/Brigham and Women’s Hospital and Boston Children’s Hos-
pital, respectively.

CRISPR depletion screens
Clustered regularly interspaced short palindromic repeats
(CRISPR) screens were performed in collaboration with the
Genetic Perturbation Platform at the Broad Institute. For the
whole-genome screen, we used 2 biological replicates of BA/
F3-MPL-pMSCV-IRES-GFP-EV and pMSCV-IRES-GFP-CALRD52

cells. For the secondary CRISPR pooled screen, we used 4 differ-
ent biological replicates each. These lines were cultured in the
presence of interleukin-3 (IL3) and 130 million cells (whole-
genome screen) or 4 million cells (pooled screen) were infected
with the lentivirus (pBrie library) on subsequent days at multiplic-
ity of infection of 0.3, with 4 mg/mL polybrene. Twenty-four
hours postinfection, cells were selected with 1 mg/mL puromycin
for a total of 3 days. On day 7, the cells were split and 80 million
cells (whole genome) or 16 million cells (pooled screen) per
genotype cultured either in the presence or absence of IL3.
Genomic DNA was isolated another 14 days later using the
NucleoSpin Blood XL-Maxi kit (Clontech Cat. #740950) with
RNase A (Clontech Cat, #740505) treatment. DNA concentration
was measured with the Quant-iT PicoGreen dsDNA Assay Kit
(ThermoFisher Scientific, #P11496). DNA was submitted to the
Broad Institute’s Genetic Perturbation Platform for next-
generation sequencing (NGS) (Illumina HiSeq2000).

Experimental details of generation of BA/F3 cell lines, BA/F3
cell proliferation assays, chemical screen, CRISPR/CRISPR-
associated protein 9 (Cas9) gene editing, NGS of CRISPR-
targeted regions, Dpm2 single-guide RNA (sgRNA) rescue
experiment, MPL N-glycan analysis, intracellular phosphopro-
tein flow cytometry analysis, competitive bone marrow trans-
plant, in vivo pharmacological studies, complete blood cell
count analysis, stem and progenitor cell analysis, additional
immunophenotypic analyses, tissue N-glycan analyses, colony
assays of megakaryocyte progenitors, and patient studies, as
well as bioinformatic and statistical analyses, are described in
supplemental Methods (available on the Blood Web site).

Results
Unbiased whole-genome CRISPR depletion screen
identifies pathways essential for oncogenic
transformation by CALRD52

To identify genes and pathways that are differentially required for
the cytokine-independent growth of CALRD52 cells, we performed
a whole-genome CRISPR/Cas9 knockout depletion screen in
CALRD52 MPL-expressing hematopoietic cells. We aimed to iden-
tify genes that were differentially required for the growth of
CALRD52-transformed cells as compared with empty vector-
transduced control cells. To do so, we ectopically expressed the
human thrombopoietin receptor MPL in parental BA/F3 (Figure
1A). BA/F3-MPL–expressing cells were then transduced either
with an empty vector control (EV) or human CALRD52. Two inde-
pendent biological replicates were produced and subjected to
transduction with a whole-genome Cas9 sgRNA library contain-
ing 4 sgRNAs per gene (Figure 1A). Cas9-sgRNA–transduced cells
were selected with puromycin. On day 7, cell lines were split into
cultures grown either in the presence or absence of IL3, the cyto-
kine required for the growth of parental BA/F3-MPL cells. Two
weeks later, DNA from these cells was harvested and subjected
to NGS (Figure 1A; supplemental Figure 1). As expected, BA/F3-
MPL-EV cells were cytokine dependent, whereas BA/F3-MPL-
CALRD52 grew well in both the presence and absence of cytokine
(Figure 1B). We found 669 genes to be significantly depleted in
CALRD52-transformed cells as compared with EV cells grown in
the presence of IL3, with a log2 fold change . 1 (supplemental
Table 1). Strikingly, among the top 10 most differentially depleted
genes in CALRD52 cells, 7 are involved in protein glycosylation
(Figure 1C-D). Conversely, the most significantly differentially
depleted gene in the EV control was IL3 receptor a (ll3ra) (supple-
mental Figure 1D). Of note, the whole-genome library did not
contain sgRNAs directed against human MPL or human mutant
CALR. However, the sgRNAs directed against mouse Calr each
contained only 0 to 2 mismatches with human mutant CALR,
which explains how murine Calr was significantly differentially
depleted in CALRD52-transformed cells (Figure 1C). Using gene
set enrichment analyses (GSEA), we identified the N-glycan bio-
synthesis, the protein secretion pathway, and the unfolded protein
response (UPR) to be among the most significantly differentially
depleted pathways (false discovery rate q values , 0.001,
0.025, and 0.014, respectively) in transformed CALRD52 cells
(Figure 2A-C). This was true, both in the comparison of CALRD52

2IL3 vs EV control and CALRD522IL3 vs CALRD521IL3
(Figure 2A-C). Our CRISPR screen reveals pathways required for
MPL-dependent transformation as prosurvival signaling and cell
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growth in the absence of IL3 can only occur through MPL in
CALRD52-transformed cells.

A CRISPR pooled screen confirms unique CALRD52

pathway dependencies
We next performed a secondary CRISPR pooled screen focused
on differentially depleted pathways in CALRD52-transformed cells
identified in the whole-genome screen (supplemental Figure 2).
In addition to 8 sgRNAs per gene against �250 selected murine
genes and 5% intronic and 5% nontargeting (NTG) controls, we
included sgRNAs against human mutant CALR and human MPL
(supplemental Table 2). As expected, MPL, CALR, and Jak2
were among the top 10 most differentially depleted genes in
transformed CALRD52 vs EV control cells (Figure 2D-E; supple-
mental Table 3). The remaining most depleted genes are
involved in protein glycosylation (Figure 2D). When comparing
“hits” between CALRD522IL3 vs EV 1IL3 controls and
CALRD52 2IL3 vs CALRD521IL3, we identified 28 overlapping
genes (Figure 2F), including important control genes in the
screen (eg, CALR, MPL, Jak2, and Stat5b). Importantly, we found

that the majority of overlapping genes are involved in protein
glycosylation (eg, Dpm1-3), protein secretion (eg, Tmed2 and
Tmed10), or UPR (Eif4a1) (Figure 2F), validating these as key
pathways for mutant CALR-driven cellular transformation. Four
significantly depleted genes in transformed CALRD522IL3 cells
encode proteins involved in the enzymatic activity of dolichol-
phosphate mannose synthase (DPM1, DPM2, DPM3, and
MPDU1). This enzyme complex synthesizes dolichol D-mannosyl
phosphate, an essential substrate for protein glycosylation.14,15

Importantly, these findings from an unbiased genome-wide
screen align with prior mechanistic studies demonstrating that
the N-glycosylation sites on MPL are required for MPL cell sur-
face expression and the oncogenic interaction between MPL
and mutant CALR.6,7,10,16-18

The requirement for Dpm2 for CALRD52-driven
cellular transformation is MPL dependent
Dpm2, which was the most depleted gene in the genome-wide
screen and was validated in the secondary pooled screen, is
essential for protein N-glycosylation.14,15 Hence, we next
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Figure 2. Whole-genome CRISPR depletion screen identifies pathways differentially required for the growth of mutant CALR-transformed BA/F3-MPL cells,
validated in a secondary CRISPR pooled screen. GSEA on the whole-genome CRISPR screen showing that genes in the N-glycan biosynthesis pathway (A), the protein
secretion pathway (B), as well as the UPR pathway (C) are differentially depleted in CALRD52 2IL3 cells as compared with EV plus IL3 cells. GSEA ranking for the pathways
indicated was performed with the genes rank-ordered based on fold change. Genes that are more depleted in EV 1IL3 condition are represented on the left and genes
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panel. (D-F) Results of the CRISPR pooled screen for validation of the whole-genome CRISPR screen. (D) Gene ranking, comparing CALRD52 2IL3 with empty vector 1IL3.
The 10 most differentially depleted genes for CALRD52 (as compared with EV 1IL3 cells) are shown, ranked by corrected P values. Genes involved in protein glycosylation
are highlighted in dark blue. (E) Volcano plot depicting significance and fold change of depleted genes, separated by the conditions stated, highlighting Dpm2 and
important control genes. Log2 fold change threshold 5 61. FDR adjusted P threshold 5 .05. (F) Venn diagram depicting the significantly depleted genes, comparing
overlapping hits in the comparisons stated. FDR, false discovery rate; neg. LFC, negative log2 fold change; NES, normalized enrichment score.
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Figure 3. In-depth validation of the N-glycan biosynthesis pathway as an essential pathway for growth of mutant CALR-expressing hematopoietic cells.
(A) Experimental setup: parental BA/F3 cells were infected with MPL-expressing virus, selected for 21 days with hygromycin, and infected with either EV- or
CALRD52-expressing virus carrying GFP. GFP1 cells were subsequently sorted and transduced with Cas9-carrying virus. Following 7 days of puromycin selection
(1 mg/mL), cells were then infected with RFP-expressing viruses containing either 1 of 2 NT sgRNAs (NTG) or 1 of 2 sgRNAs directed against Dpm2. RFP1 cells were
sorted and subsequently subjected to functional assays. N 5 2 independent biological replicates for BA/F3-MPL-EV and -CALRD52-Cas9. Two NTGs and 2 targeting
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performed single-gene CRISPR/Cas9 knockout validation studies
targeting Dpm2. We transduced 4 independent BA/F3-MPL-EV
and -CALRD52–expressing cell lines with Cas9-expressing virus,
followed by transduction with 2 separate NTG or Dpm2-target-
ing sgRNAs (Figure 3A). Pools of BA/F3-MPL-EV/CALRD52-Cas9-
NTG or -DDpm2 cells were then subjected to proliferation
assays and functional downstream analyses (Figure 3B-F;
supplemental Figure 3A). We found that Dpm2 is required for
CALRD52-mediated transformation, as demonstrated by
increased cell death, decreased MPL cell-surface levels, and
reduced phosphorylated STAT5 upon Dpm2 knockout com-
pared with NTG controls (Figure 3B-D). Importantly, cells cul-
tured in cytokine-rich medium were unaffected by Dpm2 loss
(Figure 3B). Loss of MPL surface expression forces BA/F3 cells to
signal through their endogenous ILR3A, rendering them
cytokine-dependent. Of note, Dpm2 knockout escapees upon
96 hours of IL3 withdrawal showed MPL cell-surface expression
comparable to NTG controls (Figure 3C). Furthermore, upon
cytokine withdrawal, a subclone of nonedited Dpm2wildtype (WT)

CALRD52 cells grew out and dominated the culture after 96
hours, further demonstrating the requirement for Dpm2 for the
survival of CALRD52-transformed cells (Figure 3E). Because MPL
N-glycosylation is essential for mutant CALR-mediated transfor-
mation, we performed N-glycan profiling after immunoprecipita-
tion of MPL in BA/F3-MPL-EV-NTG and BA/F3-MPL-EV-DDpm2
cells. As expected, Dpm2 knockout reduced MPL N-glycosyla-
tion by �75% (Figure 3F), similar to the percentage of cells with
deleterious Dpm2 mutations (Figure 3E). To confirm that the
observed growth effects are due to on-target inactivation of
Dpm2, we performed a rescue experiment, reexpressing either
WT Dpm2 or sgRNA-resistant Dpm2 into BA/F3-MPL-EV/
CALRD52-Cas9-DDpm2 cells. sgRNA-resistant Dpm2 overexpres-
sion fully rescued the phenotype by restoring cytokine indepen-
dence (Figure 3G). Although expression of WT Dpm2 resulted
in a growth delay, a pool of cells picked up growth after 48
hours, consistence with the emergence of Dpm2 escapees as
depicted in Figure 3B. Additionally, we observed a .50%
reduction in ex vivo myeloid colony formation of murine CalrD52

Dpm2 knockout bone marrow (BM) compared with CRISPR-
Cas9 NTG controls, with nonsignificant effects on Calr1/1 BM
cells (Figure 3H). To determine if the dependence on Dpm2 was
mutant CALR-specific, we performed the single-gene Dpm2
knockout experiments in BA/F3-MPL-Jak2V617F–transformed
cells. Jak2V617F-transformed Dpm2 knockout BA/F3-MPL cells
showed the same growth disadvantage as CALRD52-transformed
cells, as well as decreased MPL surface expression, reduced
pSTAT5 levels, and an outgrowth of nonedited Jak2WT cells
(supplemental Figure 3B-E). In aggregate, these findings indi-
cate that the requirement for Dpm2 for mutant CALR-driven cel-
lular transformation is MPL-dependent and suggest that Dpm2
loss impairs MPL cell-surface expression as a consequence of
diminished MPL N-glycosylation.

Pharmacological inhibition of N-glycosylation
inhibits CALR-mutant cell growth in vitro
To enable clinical translation, we performed a focused pharma-
cological screen targeting differentially depleted pathways,
including the N-glycosylation, protein secretion, UPR, and RNA
splicing pathways (supplemental Figure 4; supplemental Table 4).
We hand selected 64 compounds previously described to target
these pathways or other genes identified in the whole-genome
CRISPR screen (supplemental Table 3). BA/F3-MPL–expressing
cells expressing either EV, CALRD52, or Jak2V617F were incubated
in either dimethyl sulfoxide (DMSO) control or active drug, and
the live cell count was determined 72 hours after drug adminis-
tration by high-throughput flow cytometry (supplemental
Figure 4A). During this drug screen, BA/F3-MPL-CALRD52 and
BA/F3-MPL-Jak2V617F cells were grown in the absence of IL3 to
induce MPL-mediated cellular transformation, whereas BA/F3-
MPL-EV cells were grown in the presence of IL3. Of the 64
drugs screened, 32 displayed preferential growth inhibition of
CALRD52 and Jak2V617F over EV-transduced cells. Almost all
drugs inhibited growth of both CALRD52 and Jak2V617F cells to a
similar extent, suggesting a common mechanism of action. The
largest differential growth inhibition in CALRD52-transformed
cells as compared with EV control cells was seen in response to
chemicals targeting N-glycosylation (supplemental Figure 4B-F),
protein secretion (supplemental Figure 4G-H), and the UPR (sup-
plemental Figure 4I). Of these, the only pathway in which all
compounds screened (ie, 5 of 5) showed differential growth inhi-
bition in transformed CALRD52 cells as compared with EV control
cells was the N-glycosylation pathway.

N-glycosylation inhibitors reduce MPL surface
expression and intracellular pSTAT5 signaling
in CALRD52-transformed cells
To validate our drug screen and test more specific N-glycosyla-
tion inhibitors (Figure 4A), we treated BA/F3-MPL-EV and BA/
F3-MPL-CALRD52 cells with 2-DG (Figure 4A-C; supplemental
Figure 5A) and 3 N-glycosylation inhibitors that were not used in
the drug screen: tunicamycin (Figure 4D-E; supplemental
Figure 5B), NGI1 (Figure 4F-G; supplemental Figure 5C), and
castanospermine (Figure 4H-I; supplemental Figure 5D). Tunica-
mycin has previously been shown to decrease pSTAT5 levels in
CALR mutant-transformed 32D cells.19 All compounds demon-
strated differential growth inhibition of CALRD52-transformed
cells compared with EV1IL3 control cells in a dose- and time-
dependent manner and reduced MPL surface expression and
downstream pSTAT5 signaling. Cell growth, MPL surface expres-
sion, and pSTAT5 signaling were also reduced in Jak2V617F-
transformed BA/F3-MPL cells following the same treatment
(Figure 4C,E,G,I; supplemental Figure 5A-H). Moreover, tunica-
mycin reduced colony formation in primary mouse CalrD52/1 and
CalrD52/D52 cells, whereas colony formation of control Calr1/1

cells was unperturbed (supplemental Figure 5I). Because 2-DG

Figure 3 (continued) (D) phosphorylated STAT5 levels 24 hours upon withdrawal of IL3 of indicated cell lines. (C-D) Statistical significance was determined by 1-way ANOVA.
Mean plus SEM. **P , .01; ****P , .0001. (E) NGS results of the CRISPR-targeted regions in the Dpm2 gene in the cell lines depicted. In the CALRD52 Dpm2-targeted 2IL3
condition (96 hours post IL3 withdrawal), there is a strong enrichment for Dpm2 WT subclones as compared with the CALRD52 Dpm2-targeted 1IL3 condition, indicating that
Dpm2 is required for the growth of CALRD52-transformed cells. Mean plus SEM. (F) N-glycan profile of immunoprecipitated MPL from BA/F3-MPL-EVD52-Cas9-NTG and
BA/F3-MPL-EVD52-Cas9-DDpm2 cells. (G) Growth curve of BA/F3-MPL-CALRD52-Cas9-DDpm2-WT and -Dpm2-sgRNA-resistant (sgR) cells grown for 96 hours upon IL3
withdrawal. N 5 3 in duplicate. Statistical significance was determined by 1-way ANOVA. ****P , .0001. Mean plus or minus SEM. (H) Colony-forming assays on RFP-sorted
CALRD52 VaviCre Cas9 BM transduced with NTG or Dpm2-targeting (DDpm2) RFP virus. N 5 4 to 5 in technical duplicates. Statistical significance was determined by 1-way
ANOVA. Mean plus SEM. ***P , .001. a.u., arbitrary units; esc, escapee: these are cells that survived IL3 withdrawal for 96 hours.
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Figure 4. N-glycosylation inhibitors preferentially reduce growth of mutant CALR-transformed cells and reduce MPL surface expression. (A) Overview of
N-glycosylation biosynthesis and endoplasmic reticulum (ER)-resident trimming proteins (labeled in black) differentially required for growth of CALRD52-transformed cells
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has been used successfully in in vivo mouse models20 and
tested in human clinical trials (#NCT00096707, clinicaltrials.gov;
CTRI/2020/06/025664),21,22 we selected 2-DG for further
studies.

2-Deoxyglucose normalizes platelet counts in
CalrD52/1 mice and upregulates apoptosis in
CalrD52/1 megakaryocyte erythrocyte progenitors
We next studied the sensitivity of Calr-mutant cells to
N-glycosylation inhibition by 2-DG in vivo. CalrD52 knockin mice
carrying the human CALRD52 C-terminus8 were crossed with
Mx-Cre mice to generate polyinosinic:polycytidylic acid (pI:pC)
inducible knockin mice (Mx-Cre CalrD52/1). Two weeks after
pI:pC injection, mice were injected intraperitoneally daily with
either 750 mg/kg 2-DG or vehicle control for 18 days (Figure
5A). As a pharmacodynamic marker of on-target inhibition of
glycosylation, we determined the surface expression of CD59a
on erythrocytes. The rationale for this is that patients with con-
genital disorders of glycosylation due to mutations in DPM com-
plex genes have reduced CD59 expression.23,24 We confirmed
that CD59a was significantly reduced in 2-DG–treated CalrD52/1

mice (supplemental Figure 6A). Additionally, to confirm on-
target inhibition of N-glycosylation by 2-DG, we performed tis-
sue N-glycan analyses on spleens from vehicle and
2-DG–treated Mx-Cre CalrD52/1 mice. N-glycans were enzymati-
cally cleaved from paraffin-embedded spleens followed by gly-
can mass spectrometry. The top 10 most abundant N-glycans,
as well as immature high-mannose N-glycans, were reduced by
�20% in 2-DG compared with vehicle-treated mice (Figure 5B-
C; supplemental Figure 6B; supplemental Tables 5 and 6), indi-
cating that 2-DG treatment reduces N-glycan biosynthesis.
Complete blood counts showed significantly increased platelet
counts in Mx-Cre CalrD52/1 mice compared with Mx-Cre Calr1/1

controls, a hallmark of CALR-mutant MPNs. Importantly, platelet
counts were significantly reduced only in CalrD52/1 mice upon
treatment with 2-DG (Figure 5D). White blood cell count (WBC)
and hematocrit values were not significantly altered (supplemen-
tal Figure 6C-D). In line with these data, BM analyses showed a
reduced frequency of MEPs in 2-DG- vs vehicle-treated Mx-Cre
CalrD52/1 mice (Figure 5E), with no significant reduction in
2-DG–treated Calr1/1 mice. We next performed flow cytometry
analysis on megakaryocyte progenitors (MkPs) to assess whether

2-DG decreases MPL surface expression as a result of N-glyco-
sylation inhibition. 2-DG treatment significantly reduced MPL on
Calr mutant but not on WT MkPs (Figure 5F). We next per-
formed RNA-seq on MEPs flourescence-activated cell sorted
from vehicle and 2-DG-treated mice followed by GSEA. We
found an enrichment of the Hallmark apoptosis pathway and
upregulation of proapoptotic genes in MEPs isolated from
Mx-Cre CalrD52/1 mice treated with 2-DG compared with vehicle
(Figure 5G-H; supplemental Figure 6E). This was not the case in
control Mx-Cre Calr1/1 mice, suggesting preferential targeting
of CalrD52/1 over WT cells following 2-DG treatment in vivo. Of
note, primary Mx-Cre Jak2V617F/1 mice treated with 2-DG had
significantly decreased platelet counts (Figure 5I), and MPL cell
surface expression was also reduced on Mx-Cre Jak2V617F/1

MkPs (Figure 5J), showing that the activity of 2-DG is not
restricted to Calr-mutant MPNs.

2-Deoxyglucose treatment preferentially
decreases CalrD52/1 long-term hematopoietic
stem cells and platelets over Calr WT cells in vivo
Next, we aimed to determine whether the preferential effects
of 2-DG on CalrD52/1 cells holds true in a chimeric transplant
mouse model. To do so, we crossed CD45.2 Mx-Cre CalrD52/
1 mice with UBC-GFP mice. UBC-GFP mice express GFP in all
cells including platelets, allowing assessment of platelet chi-
merism. Unfractionated Mx-Cre CalrD52/1 UBC-GFP BM was
mixed in a 1:1 ratio with CD45.1 competitor cells and trans-
planted into lethally irradiated CD45.1 recipients25 (Figure
6A). Four weeks posttransplantation, recombination of Calr
was induced with pI:pC injections. Daily intraperitoneal injec-
tions with vehicle or 750 mg/kg 2-DG were started 2 weeks
later. Platelet counts were reduced after 14 days of treatment
(Figure 6B), with gradually reducing WBCs and platelet chi-
merism, reaching statistical significance after 6 weeks of treat-
ment (Figure 6C-D). Hematocrit values were reduced in 2-
DG- vs vehicle-treated mice after 14 days of treatment but
did not further decrease over time (supplemental Figure 7A),
whereas body weights remained stable (supplemental Figure
7B). BM analyses showed reduced GFP1 Calr-mutant chime-
rism in long-term hematopoietic stem cells (Figure 6E) but
not in other progenitor compartments (supplemental Figure
7C). In line with these data and with the strong
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Figure 5. 2-Deoxyglucose normalizes key MPN features in mice. (A) Schematic overview of 2-DG treatment in primary mice. (B-C) Spleen N-glycan analyses in
vehicle- or 2-DG–treated CalrD52/1 mice upon 18 days of treatment, showing the top 10 most abundant N-glycans (B) and the immature high-mannose N-glycans
(C). Statistical analysis performed using 1-way analysis of variance (ANOVA). Mean plus standard error of the mean (SEM). *P , .05; **P , .01. (D) Peripheral blood
platelet count of vehicle- or 2-DG–treated Calr1/1 and CalrD52/1 mice 18 days after treatment start. Statistical analysis performed using 1-way ANOVA. Mean plus SEM.
***P , .001; ****P , .0001. (E) Megakaryocyte-erythroid progenitor (MEP) frequency. N 5 7 per genotype and condition. Statistical analysis performed using 1-way
ANOVA. Mean plus SEM. *P , .05. (F) MPL surface expression (normalized geometric mean) on megakaryocyte progenitors of vehicle- or 2-DG–treated Calr1/1 and
CalrD52/1 mice. N 5 3. Statistical analysis performed using 1-way ANOVA. Mean plus SEM. *P , .05. (G-H) GSEA on RNA-seq data of MEPs isolated from Calr1/1

MxCre and CalrD52/1 MxCre mice treated with vehicle or 2-DG. (G) GSEA showing enrichment of the Hallmark apoptosis pathway in CalrD52/1 MxCre MEPs from mice
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megakaryocyte-lineage bias of Calr-mutant stem cells,26 mye-
loid and erythroid chimerism in the peripheral blood did not
change over time (supplemental Figure 7D-E). Together, our
data indicate that inhibition of N-glycosylation preferentially
targets CalrD52/1 over WT cells, including the disease-
initiating long-term hematopoietic stem cell population.

N-glycosylation–related pathways are upregulated
in the transcriptome of primary MPNs platelets as
compared with healthy control platelets
To determine the importance of N-glycosylation in human
MPNs, we first interrogated bulk RNA-seq data from platelets
from CALR-mutated patients and healthy controls (HC). GSEA
showed that many metabolism-related pathways, including the
“KEGG fructose and mannose metabolism” and “Reactome

N-glycan trimming in the ER and calnexin/calreticulin cycle”
pathways, are significantly enriched in the transcriptome of pla-
telets from CALR-mutated patients (n 5 13) as compared with
HC (n 5 21) platelets (Figure 7A-C; supplemental Figure 8A). In
line with the genetic dependencies identified in our CRISPR
screens, the “Reactome UPR” and “Reactome IRE1a activates
chaperones pathways” were also significantly enriched in plate-
lets from CALR-mutated patients vs HC platelets (supplemental
Figure 8B-C). We found a similar enrichment of these pathways
in platelets from JAK2-mutant essential thrombocythemia and
myelofibrosis patients (n 5 41 total) as compared with HC plate-
lets (n 5 21) (supplemental Figure 8D-G). To explore potential
therapeutic relevance in humans, we subjected BM from
patients with a CALR mutation and healthy controls
(supplemental Table 7) to colony assays of megakaryocyte

Figure 5 (continued) treated with 2-DG as compared with vehicle, whereas the opposite was found for Calr1/1 MxCre mice treated with 2-DG as compared with
vehicle, shown in (H). (I) Platelet (PLT) values of Jak2V617F/1 MxCre and Jak21/1 MxCre mice treated with 2-DG for 14 days. N 5 3. Statistical analysis performed using
1-way ANOVA. *P , .05. (J) MPL surface expression (normalized geometric mean) on megakaryocyte progenitors of vehicle- or 2-DG–treated Jak2V617F/1 MxCre and
Jak21/1 MxCre mice. N 5 3. Mean plus SEM. Statistical analysis performed unpaired Student t test. *P , .05. CBC, complete blood cell count; FDR, false discovery
rate; NES, normalized enrichment score.
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Figure 6. 2-Deoxyglucose preferentially targets Calr mutant cells in a preclinical MPN mouse model. (A) Schematic overview of chimeric transplantation experiment.
CD45.11 competitor BM cells were mixed in a 1:1 ratio with CD45.21 CalrD52/1 MxCre UBC-GFP BM and transplanted into lethally irradiated CD45.11 recipient animals.
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progenitors. 2-DG treatment significantly reduced megakaryo-
cyte colony formation of patient-derived BM cells, whereas BM
cells from healthy controls were not affected by 2-DG (Figure
7D). We confirmed a preferential reduction in colony formation
of patient-derived BM using NGI1, a more specific inhibitor of
N-glycosylation (Figure 7E). In aggregate, these findings high-
light the relevance of our findings to human MPNs.

Discussion
The identification of CALR as a key gene involved in the patho-
genesis of MPNs was unexpected but transformative in terms of
advancing insights into MPNs biology and in making a definitive
diagnosis of MPNs in patients.1,2 In 2016, we and others eluci-
dated the basic mechanism by which CALR mutations cause
MPNs, demonstrating that a pathogenic binding interaction
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between mutant CALR and MPL is central to oncogenic transfor-
mation.5,9-11 Despite these mechanistic insights, there are cur-
rently no clonally selective drug therapies for CALR-mutant
MPNs. This represents a major unmet clinical need, particularly
in an era where we can detect MPNs in the preclinical phase27

but currently lack any effective strategies to intervene and pref-
erentially target CALR-mutant clones.

Exploiting advances in genome-wide libraries for CRISPR screen-
ing,28 we applied whole-genome CRISPR knockout screening to
study CALR-mutant MPNs. We first performed a whole-genome
CRISPR knockout depletion screen in mutant CALR-MPL–
transformed hematopoietic cells and followed this with a
secondary pooled validation CRISPR screen. Strikingly, the
results from our CRISPR screens converged on a differential
dependency for mutant CALR transformed cells on protein
N-glycosylation–related genes. Concordant with these findings,
WT CALR is an ER-resident chaperone protein that interacts with
glycoproteins by binding to Glc1Man9GlcNAc2 oligosacchar-
ides. Importantly, N-glycosylation has been shown to be essen-
tial for MPL cell surface expression.7 Moreover, we and others
have previously reported that the interaction of mutant CALR
with MPL is dependent on the lectin residues of mutant CALR
and the N-glycosylation residues in the extracellular domain of
MPL.6,10,17,18 Pathways related to protein secretion were also dif-
ferentially required for the growth of mutant CALR-transformed
cells. Aligning with these results, it has been shown that mutant
CALR entry into the ER secretory pathway is required for binding
to MPL and that subsequently, the mutant CALR-MPL complex is
shuttled through the Golgi apparatus to the cell membrane.16,17

Finally, we found a differential requirement for UPR-related genes
in mutant CALR-transformed cells, which is consistent with earlier
studies showing transcriptional upregulation of UPR pathways in
primary CALR-mutant megakaryocyte-lineage cells.29,30 In aggre-
gate, our findings are compatible with the known biological
underpinnings of CALR-mutant MPNs and uncover several distinct
genetic vulnerabilities with therapeutic potential.

With these results from our CRISPR screens in hand, we next per-
formed a focused pharmacological screen targeting the afore-
mentioned pathways, among others. In line with the genetic
dependency data, inhibitors of N-glycosylation consistently inhib-
ited the growth of mutant CALR-transformed cells in vitro. There-
fore, we focused on testing N-glycosylation inhibition in vivo,
using a previously published mutant CALRD52 knockin mouse
model.8 With the goal of translating our findings to the clinic, we
treated CALRD52 mice with 2-DG, an N-glycosylation inhibitor
that has been used to treat patients with advanced solid tumors
in a phase 1 study.22 2-DG was well tolerated by the mice in our
experiments and reduced immature, newly formed N-glycan
forms and the top 10 most abundant N-glycan forms. In studies
with either primary CalrD52 mice or chimeric CalrD52 transplant
mice, we found that CalrD52/1 hematopoietic cells were pref-
erentially sensitive to 2-DG treatment as compared with
WT cells. In accordance with this, we found that N-glycosylation–
related pathways were significantly upregulated in the transcrip-
tome of primary CALR-mutant human platelets as compared with
platelets obtained from healthy controls. Moreover, inhibition of
N-glycosylation reduced megakaryocyte colony formation in
CALR-mutant BM but not that of healthy controls.

To determine the specificity of our findings to mutant CALR-
driven MPNs, we treated Jak2V617F-transformed BA/F3-MPL
cells and primary Jak2V617F mice and found they were simi-
larly sensitive to N-glycosylation inhibition. This finding, in
combination with our data indicating that MPL surface expres-
sion is reduced upon Dpm2 knockout or pharmacological
inhibition of N-glycosylation, indicates a likely underlying
mechanism of impaired MPL trafficking to the cell surface as a
consequence of decreased N-glycosylation. Consistent with
this, acute myeloid leukemias driven by mutations in cell-
surface receptors such as FLT3 and c-KIT have been shown to
be sensitive to treatment with 2-DG through N-glycosylation
inhibition.20 As noted, we used 2-DG for our in vivo studies in
CalrD52 mice because it has been demonstrated that 2-DG
can safely be administered to humans, although
2-DG–related adverse effects were reported in this clinical
trial, including abnormalities in blood glucose levels.22 Fur-
thermore, the effects of 2-DG are pleiotropic, including inhibi-
tion of glycolysis.31 In our in vitro studies, we tested
additional N-glycosylation inhibitors with a narrower and
more clearly defined mechanism of action (eg, NGI1 and cas-
tanospermine) and found these also had activity. With recent
advances in targeting glycans therapeutically,32 we anticipate
the development of more specific N-glycosylation inhibitors
targeting distinct enzymes in the N-glycan biosynthesis path-
way for clinical use. Our studies provide a “proof of concept”
that the N-glycan biosynthesis pathway represents a genetic
and therapeutic vulnerability in CALR-mutant MPNs.

In summary, using unbiased genetic and focused pharmacologi-
cal screens, we identified the N-glycosylation pathway as essen-
tial for mutant CALR-driven oncogenesis. Using a preclinical
MPNs model, we found that in vivo inhibition of N-glycosylation
normalizes key features of MPNs and preferentially targets
CALRD52 cells over WT cells. These findings have therapeutic
implications for CALR-mutant MPNs, and potentially MPNs
more broadly through inhibiting N-glycosylation, to advance the
development of clonally selective therapies and ultimately alter
the natural history of these chronic blood cancers.
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