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KEY PO INT S

� Peripheral T-cell
lymphomas have
distinct DNMT3A
mutation patterns and
prognostic outcomes.

� DNMT3A mutations are
associated with an
activated, cytotoxic
phenotype in the
PTCL-TBX21 subtype.

Peripheral T-cell lymphomas (PTCLs) are heterogenous T-cell neoplasms often associated
with epigenetic dysregulation. We investigated de novo DNA methyltransferase 3A
(DNMT3A) mutations in common PTCL entities, including angioimmunoblastic T-cell
lymphoma and novel molecular subtypes identified within PTCL–not otherwise specified
(PTCL-NOS) designated as PTCL-GATA3 and PTCL-TBX21. DNMT3A-mutated PTCL-TBX21
cases showed inferior overall survival (OS), with DNMT3A-mutated residues skewed
toward the methyltransferase domain and dimerization motif (S881–R887). Transcriptional
profiling demonstrated significant enrichment of activated CD81 T-cell cytotoxic gene
signatures in the DNMT3A-mutant PTCL-TBX21 cases, which was further validated using
immunohistochemistry. Genomewide methylation analysis of DNMT3A-mutant vs wild-
type (WT) PTCL-TBX21 cases demonstrated hypomethylation in target genes regulating
interferon-g (IFN-g), T-cell receptor signaling, and EOMES (eomesodermin), a master

transcriptional regulator of cytotoxic effector cells. Similar findings were observed in a murine model of PTCL with
Dnmt3a loss (in vivo) and further validated in vitro by ectopic expression of DNMT3A mutants (DNMT3A-R882,
-Q886, and -V716, vs WT) in CD81 T-cell line, resulting in T-cell activation and EOMES upregulation. Furthermore,
stable, ectopic expression of the DNMT3A mutants in primary CD31 T-cell cultures resulted in the preferential
outgrowth of CD81 T cells with DNMT3AR882H mutation. Single-cell RNA sequencing(RNA-seq) analysis of CD31

T cells revealed differential CD81 T-cell subset polarization, mirroring findings in DNMT3A-mutated PTCL-TBX21 and
validating the cytotoxic and T-cell memory transcriptional programs associated with the DNMT3AR882H mutation. Our
findings indicate that DNMT3A mutations define a cytotoxic subset in PTCL-TBX21 with prognostic significance and
thus may further refine pathological heterogeneity in PTCL-NOS and suggest alternative treatment strategies for this
subset.

Introduction
Non-Hodgkin lymphomas (NHLs) derived from mature T cells
represent a highly heterogeneous group of malignancies with
varied morphological and clinical features. These entities repre-
sent �10% to 15% of NHLs in the Western world1,2 with an

increasing incidence of 4% per annum in the United States.3,4

The World Health Organization currently recognizes at least 29
categories of mature T cell and natural killer cell (NK)/NHLs with
angioimmunoblastic T-cell lymphoma (AITL) and peripheral
T-cell lymphomas–not otherwise specified (PTCL-NOS) account-
ing for .40% of diagnoses.5 Currently, T-cell NHLs (T-NHLs) are
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diagnosed with a discrete set of immunohistochemical markers
in combination with clinical and pathological features; however,
30% to 50% of cases cannot be classified using current meth-
ods and are categorized as PTCL-NOS, which represents the
most prevalent PTCL group.6,7

To better understand the pathobiology, in-depth genomic
approaches, including gene expression profiling (GEP),8-13 copy
number alteration analysis,14-16 and next-generation sequencing,
have been performed in major PTCL subgroups.17-20 These
efforts have generated robust molecular classifiers for PTCL enti-
ties and meaningful subclassification of PTCL-NOS.18 Transcrip-
tional profiling has demonstrated 2 major biological subgroups,
designated as PTCL-TBX21 and PTCL-GATA3, within PTCL-
NOS, suggesting distinct cells-of-origin (TH1/CD8

1 and TH2,
respectively)11,12,15 with significant differences in clinical out-
come and unique oncogenic drivers.15 The prognostic signifi-
cance has been further validated in an independent PTCL-NOS
cohort using immunohistochemistry approaches.21-24 In our
earlier studies, we identified 2 cytotoxic subtypes within
PTCL-NOS, one with transcriptomic signatures like NK-cell
and designated as gd-PTCLs upon detailed morphological
and immunohistochemical analysis.10 The second distinct cyto-
toxic subtype within PTCL-NOS, called cytotoxic (ab)-PTCL,
had transcriptomic signatures similar to CD81 T cells and
enrichment in interferon-g (IFN-g) signaling, including TBX21
and EOMES (eomesodermin) with inferior OS compared with
other PTCL-NOS.11 Subsequent studies revealed that latter
subtype was associated with PTCL-TBX21 and exhibited high
expression of cytotoxic molecules and a depleted tumor
milieu.11,12

While there are no singular defining genetic features of major
PTCL entities (with the exception of anaplastic lymphoma kinase
positive anaplastic large cell lymphoma), recurrent mutations in
epigenetic regulators25-27 and mutations leading to T-cell activa-
tion17,28-30 dominate the genomic landscape in major PTCL sub-
types. The most studied of these recurrent mutations (ie, TET2
and RHOAG17V or IDH2R172K) have been associated with a
T-follicular helper(TFH) phenotype and the latter being unique to
AITL.31-34 Conversely, less studied is the impact of mutations in
DNMT3A, a highly conserved DNA methyltransferase that cata-
lyzes the 5mC modification35 and interacts with histones and
transcription factors through several regulatory domains to regu-
late gene expression.36,37 DNMT3A mutations have been shown
to be prognostic and biologically significant in acute myeloid
leukemia (AML)38,39 and T-cell acute lymphoblastic leukemia
(T-ALL),40,41 warranting more intensive study in other hemato-
logical malignancies. While the DNMT3A mutational profile in
PTCL entities indicates loss of function, as aberrations target the
entire coding region, hotspot mutations (eg, DNMT3AR882) are
predicted to affect dimerization and protein: DNA interaction
has been observed and is preferentially found in PTCL-NOS as
compared with AITL.42,43 Herein, we examined DNMT3A muta-
tions in the molecular subgroups of PTCL12 and observed dis-
tinct biological and prognostic significance associated with
these mutations. PTCL-TBX21 cases with DNMT3A mutations
bore a resemblance to our previously described ab cytotoxic-
PTCL subgroup featuring a high expression of CD81 T-cell
signatures and the key transcription factor EOMES.

Material and methods
Patient materials, molecular classification,
and data availability
Three hundred and thirty-five PTCL cases were included; sum-
mary information and data availability are included in supple-
mental Table 1. PTCL specimens were collected from the
Nebraska Lymphoma Study Group Registry and Tissue Bank,
the International Peripheral T-cell Lymphoma Consortium, or in
collaborative efforts. The details regarding the PTCL diagnosis
and full curation of these samples have been extensively
described.10-12,15,21,28,30 Cases with HG-U133 plus2 expression
data (Affymetrix, Inc) and their classification have been previ-
ously described.10-12,15,21,28,30

Sequencing and variant calling
The custom capture targeted, amplicon sequencing, RNA
sequencing (RNA-Seq), and variant calling were carried out in
accordance with our previous reports15,27,29

Overall survival (OS) outcome analysis
The estimation of the differences in OS was assessed using the
Kaplan-Meier method and log-rank test. All patients were treated
with cyclophosphamide, hydroxydaunorubicin, Oncovin, and pred-
nisone (CHOP) or a CHOP-based regimen, and statistical differ-
ences among subgroups were considered significant at P , .05.

Gene expression analysis
The GEP was generated using HG-U133-plus 2.0 arrays
(Affymetrix, Inc) or RNA-Seq. Data analysis is described in the
supplemental material.

DNA methylation data analysis
Methylated DNA immunoprecipitation sequencing (MeDIP-Seq)
was performed using the MeDIP-Seq kit from Diagenode.
Details on assay performance and analyses are described in the
supplement. Summary data can be found in supplemental
Tables 2-4.

Single-cell RNA-Seq
CD31 T cells were cultured for 3 days in the presence of
50 U/mL interleukin-2 (IL-2) and 0.53 CD3 and CD28 beads
(Gibco, Inc) to ensure high cell viability. We employed a recently
developed approach for single cell RNA-seq multiplexing44

(ie, CD31 T cells transduced with different DNMT3A mutants,
DNMT3AWT, DNMT3AR882H, DNMT3AV716D, and control CD31

T cells) labeled with sample-specific “hashtags” (ie, DNA-
barcoded antibodies) and performed CITE-seq (Cellular Indexing
of Transcriptomes and Epitopes by sequencing) simultaneously
to generate separate sequencing libraries. Details of cell culture,
expression vector antibodies, and sequencing procedures and
analysis are described in the supplemental material and
supplemental Table 5.

Statistical analyses
Statistical tests and P value cutoffs for OS and bioinformatics anal-
yses are as described above. For all else, comparisons between 2
groups were conducted using a 2-tailed Student t test, and com-
parisons between $3 groups were conducted using a one-way
ANOVA with corrections for multiple comparisons within Graph-
Pad Prism 8. P values , .05 were considered significant.
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Data sharing
Data can be found at accession numbers GSE204877 (me-DIP)
and GSE204876 (RNA-seq).

Results
Patient cohort, molecular classification, and
DNMT3A mutation spectrum in molecular
PTCL subtypes
PTCL-NOS cases (n 5 159) were classified using our GEP signa-
tures (Figure 1A and supplemental Table 6)11,12,15 and subclassi-
fied into either PTCL-TBX21 (n 5 80) or PTCL-GATA3 (n 5 61)
following exclusion of PTCL cases with TFH phenotype5,45 (PTCL-
TFH) (n 5 18 cases). These cases (n 5 18) and AITL cases
(n 5 176) were included for comparative purposes. The clinical
features and OS data (available for n 5 234 cases) are similar to
previously published reports (Figure 1B).11,12,15,21,45

Targeted-, whole-exome–, and RNA-Seq approaches were
used to interrogate DNMT3A mutations in the PTCL-TBX21
and PTCL-GATA3 subtypes and PTCLs with TFH origin

(ie, PTCL-TFH–like and AITL) (n 5 288) (Figure 1C and supple-
mental Table 1). DNMT3A mutations were observed in �30%
of PTCL entities, consistent with the earlier studies
(Figure 1C).46,47 However, there was a marked difference in the dis-
tribution of the mutated residues within the functional domains of
DNMT3A (ie, N-terminal, PWWP, ATRX-DNMT3-DNMT3L (ADD),
and methyltransferase) in the molecular subtypes (Fisher’s exact,
P , .01) (Figure 1D). DNMT3A mutations in AITL were observed
throughout the coding region and infrequently at the R882
hotspot residue within the methyltransferase (MTase) domain
(n 5 4 mutations, 6% of mutant cases). In contrast, DNMT3A
mutations in PTCL-NOS molecular subtype cases were almost
exclusively within functional domains and featured the R882H/C
hotspot mutation at rates comparable to T-ALL40,41 and AML48

(n 5 8 mutations, �28% of mutant cases). In addition, several
novel mutations within the dimerization region (defined as
S881-R887) (n 5 12 mutations across n 5 11 cases, �38% of
mutant cases) were present in PTCL-NOS molecular subtypes.
When the mutation spectrum was correlated with molecular
subtypes, there was a skewed distribution, with mutations in the
MTase domain and dimerization region (n 5 16 cases, �84% of
mutant cases) most prominently seen in the PTCL-TBX21
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Figure 1. DNMT3A mutations in peripheral T-cell lymphoma entities. (A) Heatmap of the molecular PTCL classification signatures. (B) Kaplan-Meier curve of the OS
of PTCL cases included in this study. (C) Lollipop plot of DNMT3A mutations in PTCL-NOS molecular subtypes (top) and PTCLs of TFH origin (bottom). Lollipops
represent mutated residues; cases with .1 mutation plotted are identified numerically. Mutations in the dimerization region (S881-R887) past R882 (884, 885, 886, and
887) are stacked above for visual clarity. (D) Graph of the distribution of DNMT3A mutations per PTCL entity.
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subtype, whereas aberrations outside the MTase domain were
mostly present in PTCL-GATA3 subtype (Figure 1C-D). Among
AITL, PTCL-GATA3, and PTCL-TBX21, there was no difference
in DNMT3A variant allele frequencies and DNMT3A mutations
regardless of type or localization, and they did not influence gene
expression in PTCL cases analyzed (supplemental Figure 1A-C).
Since DNMT3A mutants show cooccurrence with TET2 mutations
in AITL,25 we observed such cooccurrence in the PTCL-TBX21 sub-
type, albeit less frequently, with similar observations with respect
to RHOAG17V mutations when compared with other molecular
PTCL entities (supplemental Figure 1E-F).

Prognostic significance of DNMT3A mutations
Several studies have shown an association of DNMT3A muta-
tions with poor clinical outcomes in myeloid neoplasms38,49 or
T-ALL.40,41 We observed a significant association of DNMT3A
mutations with inferior OS in the entire PTCL cohort (P 5 .004)
(Figure 2A). When correlated with molecular subtypes, a

nonsignificant trend was observed in AITL and TFH lymphomas
(P 5 .1) (Figure 2B), with no significant difference in PTCL-
GATA3 (Figure 2C). Strikingly, DNMT3A mutations in PTCL-
TB21 were significantly associated with inferior OS (P , .001)
(Figure 2D), with these samples presenting with a similarly poor
outcome to the PTCL-GATA3 subtype (Figure 2E). When analyz-
ing the entire cohort, the mutations in the protein dimerization
region of DNMT3A (residues S881-R887) were observed to be
associated with the worst OS (Figure 2F), but the exclusion of
these samples did not influence the prognostic significance of
other DNMT3A mutations (Figure 2F).

DNMT3A mutations associate with a T-cytotoxic
group within the PTCL-TBX21 subtype
As shown above, DNMT3A mutations show prognostic signifi-
cance in PTCL-TBX21. Therefore, we analyzed GEP data of the
DNMT3A-mutant (DNMT3A-MT) vs wild-type (DNMT3A-WT)
cases in PTCL-TBX21 (Figure 3A and supplemental Table 7).
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Figure 2. Prognostic significance of DNMT3A Mutations in peripheral T-cell lymphoma entities. (A) Kaplan-Meier curve of the OS of DNMT3A-MT and WT cases
for the entire PTCL cohort. All patients were treated with a CHOP-based regimen. (B) OS for DNMT3A-MT and WT cases for PTCLs of TFH origin (AITL n 5 89,
PTCLTFH-like 5 15). (C) OS for DNMT3A-MT and WT cases for PTCL-GATA3. (D) OS for DNMT3A-MT and WT cases for PTCL-TBX21. (E) OS comparison of PTCL-
TBX21 and PTCL-GATA3 cases with respect to DNMT3A mutation status. (F) OS of DNMT3A mutants within the dimerization region (881-887), other DNMT3A mutants,
and WT cases for the entire PTCL cohort. MT, mutant.
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We observed an upregulation of several CD81 T-cell genes
associated with cytotoxic function (eg, EOMES, GZMA, KLRC4,
and CD8B) in DNMT3A-MT PTCL-TBX21 cases, with these
genes being highly expressed in activated (in vitro stimulation)
CD81 T cells (supplemental Figure 2A). Gene set enrichment
analysis50 and cell-type signature analyses (CIBERSORT51 and
xCell52) revealed DNMT3A-MT cases had an enrichment for
activated CD81 T-cell genes, CD41 memory T-cell genes, IFN-
g gene signatures, T-cell receptor (TCR) signaling genes, and
proliferation signatures, suggesting an increased cytotoxic phe-
notype in DNMT3A-MT PTCL-TBX21 cases (Figure 3B and sup-
plemental Figure 2B-C).

Thus, to corroborate the cytotoxic immunophenotype, surface-
antigen staining (ie, CD81 and CD41) was assessed in 22
PTCL-TBX21 cases (19 via immunohistochemistry, 3 via flow
cytometry), and cytotoxic maker staining (ie, TIA and GZMB) in
10 PTCL-TBX21 cases (Figure 3C and supplemental Table 8).
CD41 T-cell positivity was observed in 64% (14 of 22), and
CD81 positivity was observed in 32% (7 of 22), with 1 case as
double-negative. Fifty-seven percent (n 5 4/7) of PTCL-TBX21
cases with CD81 T-cell immunophenotype were DNMT3A-MT
and associated with increased CD81 T-cell gene signatures (sup-
plemental Figure 2D). Forty-three percent (6/14) of PTCL-TBX21
cases with a CD41 T-cell immunophenotype were DNMT3A-
MT, with these cases showing high expression of key cytotoxic/
effector genes (eg, EOMES, GZMA, and CD2) and an increased
CD41 T-cell memory signature (supplemental Figure 2E).

To further explore the relationship between DNMT3A mutations
in PTCL-TBX21 and the cytotoxic phenotype, we validated our
gene expression findings detailed above in an additional
PTCL-TBX21 cohort with RNA-seq data (n 5 33) (supplemental
Figure 2F-H) and analyzed the ab cytotoxic-PTCL (CT-PTCL) sig-
nature in our earlier PTCL cohort (n 5 40) as described previ-
ously (supplemental Figure 3A).11,12 Interestingly, of the 7
sequenced cases expressing the CT-PTCL signature in the high-
est quartile, 5 cases (71%) had DNMT3A mutations (supplemen-
tal Figure 3B). As anticipated, CD81 T-cell signatures showed
the highest concordance with both CT-PTCL signature expres-
sion (supplemental Figure 3C) and independent association with
OS in PTCL-TBX21 (supplemental Figure 3D). Of note, other
cell-type signatures, including CD41 T-cell memory or macro-
phage, were enriched in cases in the highest quartile of CT-
PTCL signature expression but showed no prognostic signifi-
cance (supplemental Figure 3E). Similar results were observed in
the RNA-seq PTCL-TBX21 cohort and combined cohorts (sup-
plemental Figure 3F-G), indicating the association of high
expression of CD81 T-cell signatures with DNMT3A-MT PTCL-
TBX21 was robust and capable of prognostic stratification.
DNMT3A-MT cases in the AITL and PTCL-GATA3 molecular

entities showed similar T-cell activation signatures but not the
enhanced cytotoxic phenotype demonstrated in PTCL-TBX21
(supplemental Figure 4A-H).

To understand how the DNMT3A-MT–mediated methylation
may impact cytotoxic gene expression in PTCL-TBX21, we per-
formed MeDIP-Seq analysis of cases with DNMT3A mutations
(n 5 3 DNMT3AR882H and n 5 1 DNMT3AQ886Stop) vs DNMT3A-
WT (Figure 3D) and integrated the corresponding cohort GEP
data to identify differentially methylated regions (DMRs) that
were concurrent with changes in gene expression (Figure 3E,
supplemental Figure 5A, and supplemental Tables 9-10).
We observed that hypomethylated regions associated with
increased gene expression in the DNMT3A-MT PTCL-TBX21
samples were enriched for pathways involving TCR signaling
(eg, LCK), IFN-g signaling (eg, CD2 and CD96), and IL-2 signal-
ing (eg, GZMH) (Figure 3E-F). Of note, we identified a hypome-
thylated DMR for the transcription factor EOMES, which was
associated with its increased gene expression in DNMT3A-MT
samples (Figure 3E-F). Analysis of hypermethylated DMRs asso-
ciated with decreased expression of genes within DNMT3A-MT
PTCL-TBX21 samples identified enrichment for pathways involv-
ing IL-6 signaling (eg, IL6), regulation of apoptosis (eg, PERP),
and the actin cytoskeleton (eg, CAV3 and CRP) (Figure 3E-F and
supplemental Figure 5B).

As human PTCLs have high heterogeneity, we investigated a
murine model wherein homozygous or heterozygous loss of
Dnmt3a in the hematopoietic stem cell compartment leads to the
development of a CD81 T-cell lymphoma in a subset of mice
(supplemental Figure 6A).53,54 Malignant CD81 T-cells showed an
upregulation of cytotoxic molecules (eg, Gzma and Gzmb) and
transcription factors associated with CD81 T-cell development
and effector function (ie, Tbx21 and Eomes) when compared with
WT CD81 T cells (supplemental Figure 6B). GEP analysis identi-
fied pathways involving Tbx21-signaling, IFN-g signaling, and
T-cell activation in murine neoplastic CD81 T cells (supplemental
Figure 6C), similar to the findings in human PTCL as shown
above. DNA methylation analysis demonstrated that hypomethy-
lated genes were enriched for pathways involving TCR stimulation
(eg, Zap70, Lck, and Fyn), costimulation (eg, Cd28), and TH1
responses (eg, Rela, Ifng, Nfkb1, and Prf1) (supplemental Figure
6D) with concurrent hypomethylation observed for the transcrip-
tion factors Tbx21 and Eomes (supplemental Figure 6D).

Validation of functional impact of DNMT3A-MT
proteins in T-cell lines
To examine our findings in vitro, we generated several
DNMT3A-MT constructs (ie, R882H, V716D, and Q886Stop
mutations) and stably expressed them in the CD81 PTCL
cell line T8ML155 (Figure 4A and supplemental Figure 7A).

Figure 3. DNMT3A-MT PTCL-TBX21 cases are enriched for an activated CD81 cytotoxic phenotype. (A) Heatmap of differentially expressed genes between
DNMT3A-MT and WT PTCL-TBX21 cases. (B) Gene set enrichment analysis (GSEA) for DNMT3A-MT PTCL-TBX21 cases as compared with WT cases. Pathway diagrams
containing differentially expressed genes of interest are displayed within shaded regions. (C, top) Representative images of CD4 and CD8 tumor antigen staining in
PTCL-NOS cases. Images are taken at identical high-power magnifications. (C, bottom) Bar graph of the frequency of immunohistochemistry positivity for n 5 10
PTCL-TBX21 cases with respect to DNMT3A mutation status. (D) Pooled metagene plot for MeDIP-Seq profiles of DNMT3A-MT PTCL-TBX21 cases as compared with
WT cases. Lines represent sample-type average log2 (peaks per bp per gene) for indicated regions, and shading represents standard error among samples. (E) Box
plots of the log2 ratio (observed/expected) for 5mC peaks within the indicated genomic regions. (F) Heatmap of concordant differentially expressed and methylated
genes. (G) University of California, Santa Cruz (UCSC) genome browser visualization of MeDIP-Seq peaks in DNMT3A-MT samples and WT samples for the listed genes.
Gene diagrams represent the position of TSS relative to displayed genomic regions. Histograms display median-centered expression of genes of interest. Sequencing
and GEP status are denoted by the in-figure key. TSS, transcriptional start site; TTS, transcriptional termination site; MT, mutant.
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Consistent with previous reports,36,56-59 expressions of DNMT3A-
MT proteins led to subtle decreases in global-5mC content com-
pared with vector and expression of exogenous WT DNMT3A
protein (Figure 4A-C and supplemental Figure 7A-B). We then
generated both MeDIP-Seq and RNA-Seq data sets to
perform an integrative analysis (Figure 4B-D and supplemental
Tables 11-13). Hypomethylated regions associated with
increases in gene expression in the DNMT3A-MT T8ML1 cell
lines were enriched for cytotoxic genes (ie, IFN-g– and
NF-kB–annotated genes) and genes involved in T-cell activa-
tion while hypomethylated genes showing downregulation
were enriched for genes associated with TGFb and the TH2
pathway (eg, GATA3, CCR3, and ICOS) (Figure 4D-F and sup-
plemental Figure 5B).

Functional assessment of the identified dysregulated pathways
revealed that expression of DNMT3A-MT proteins or knock-
down of DNMT3A lead to increased proliferation in T8ML1 cells
(Figure 4G-H and supplemental Figure 7C-D), with higher basal
phosphorylation of TCR proteins such as LCK and SLP-76 as
well as downstream signaling pathways (Figure 4I and supple-
mental Figure 7E-G). Concurrent with findings described previ-
ously, we observed hypomethylation of EOMES at a CpG site
within the promoter region that corresponded to increases in
protein expression (Figure 4J and supplemental Figure 7H) and
concurrent upregulation of its paralogue TBX21 and downregu-
lation of the crossregulated GATA3 (Figure 4G and supplemen-
tal Figure 7I-J). For further investigation, we modified CD41

Jurkat T cells to express DNMT3AR882H using CRISPR/Cas9
methods (supplemental Figure 8A-B). In these cells, we identi-
fied concomitant decreases in 5mC levels with increased expres-
sion of EOMES without modulation of CD41/CD81 coreceptor
expression (supplemental Figure 8C-E). Thus, consistent with our
observations in human PTCL-TBX21 tumor samples and the
murine model of CD81 PTCL development, we identified hypo-
methylation in EOMES in DNMT3A-MT cells coupled with the
increased protein expression, suggesting that DNMT3A muta-
tion may in part regulate an EOMES-driven cytotoxic transcrip-
tional program in T cells.

In vitro analysis of DNMT3AR882H mutation in
primary CD31 T cells demonstrates skewed cell
culture advantage to CD81 T cells
To understand how DNMT3A-MT–induced signaling changes will
alter primary T cells in vitro, we stably transduced CD31 T-cell
cultures (Figure 5A and supplemental Figure 9A-B) and observed
an increased outgrowth of CD81 T cells in DNMT3AR882H

CD31 T cells compared with other DNMT3A mutants (ie,
DNMT3AV716D and DNMT3AQ886Stop), WT, knockdown, and
empty vector over a 14-day culture period (P , .05) (Figure

5B-C). To further interrogate these changes, we used single-
cell RNA-sequencing (ScRNA-seq) on representative CD31

T-cell cultures (Figure 5D-G and supplemental Figure 9C-I).
ScRNA-Seq analysis identified 8 clusters (numbered c0-c7,
resolution 5 0.4) within the CD31 T-cell cultures with
DNMT3AR882H T cells most prevalent in clusters c0, c5, and c7
(Figure 5D-E, supplemental Figure 9J, and supplemental
Tables 14 and 15). These clusters were enriched for genes
involving both T-cell activation (eg, FYN and JUN) and compo-
nents of the cytotoxic signature (eg, CRTAM, CD84, and
CTSW) (Figure 5G), with further validation of the master tran-
scription factor EOMES (supplemental Figure 9K-L). For unbi-
ased immunophenotypic analysis, we used SingleR to assign
cellular identity by comparison with reference data sets61

(Figure 5E-F). SingleR identified the increased CD81 T-cell pro-
portion in DNMT3AR882H T cells and annotated these CD81

T cells as predominantly T-central memory (TCM) with a fraction
of effector memory (TEM) cells (Figure 5F). While all analyzed
T-cell cultures featured the presence of CD81 TCM cells, TEM
cells were fewer than the DNMT3AR882H T cells (Figure 5F), a
finding further validated by flow cytometry in CD81 T cells using
a-CD45RO and a-CCR7 (Figure 5H). Additionally, an expansion
of the CD41 TEM population was noted in DNMT3AV716D T cells
in comparison with other samples (Figure 5F).

Discussion
PTCLs represent a challenging disease clinically and scientifi-
cally, highlighting the need to further understand PTCL pathobi-
ology and improve dismal clinical outcomes. GEP studies have
recognized likely cell-of-origin counterparts within PTCL-NOS
corresponding to recognized TH-cell effector subtypes desig-
nated as PTCL-TBX21 and PTCL-GATA3.11,12 While recent
genomics studies implicated distinct driver mutations/oncogenic
pathways in these subtypes,62 the mutation profile is led by epi-
genetic regulators TET2, a methylcytosine dioxygenase, and
DNMT3A, a de novo methyltransferase.15 While the cooccur-
rence of these mutations in PTCLs is paradoxical, the loss of
5hmC because of TET2 mutation and DNA hypomethylation
because of DNMT3A loss in key target genes may act synergisti-
cally in lymphomagenesis.63,64 Consistent with earlier stud-
ies15,25,27,46 our findings showed DNMT3A mutations in entire
functional domains of the protein in AITL, whereas in PTCL-
TBX21 and DNMT3A mutations skewed toward the MTase
domain and the R882H/C hotspot. In contrast, mutations in the
PTCL-GATA3 subtype were observed primarily in the N-terminal
and PWWP domains. The distinct prevalence of the
DNMT3AR882H/C variant in PTCL-NOS compared with AITL is
intriguing. Earlier studies have shown the R882 mutation results
in a hypomorphic protein that acts in a dominant–negative man-
ner.59,65,66 The frequent identification of the DNMT3AR882H/C

Figure 4. Expression of DNMT3A mutations in a cytotoxic CD81 PTCL cell line. (A, top) Representative Western blot of MYC-tagged DNMT3A. (A, bottom)
Representative histogram of 5mC (MFI) in indicated T8ML1 cells. (B) Box plots of the log2 ratio (observed/expected) for 5mC peaks within the indicated genomic
regions. (C) Pooled metagene plot for MeDIP-Seq profiles of DNMT3A-MT (R882H, V716D, and Q886Stop) and DNMT3A-WT (WT, EV) cell lines. Lines represent
sample-type average log2 (peaks per bp per gene) for indicated regions, and shading represents standard error among samples. (D) Heatmap of concordant
differentially expressed and methylated genes. (E) Supervised heatmap of representative differentially expressed and methylated genes. (F) UCSC genome browser
visualization of MeDIP-Seq peaks in DNMT3A-MT samples and DNMT3A-WT samples for the listed genes. Gene diagrams represent the position of TSS relative to
displayed genomic regions. (G) Normalized cell growth for T8ML1 cells with indicated DNMT3A alterations. Symbols represent mean 6 standard error, n 5 3 independent
experiments. (H-J) Representative histograms of (H) DNMT3A expression, (I) phosphorylation status of LCK (pY505) and SLP-76 (pY128) under normal culture conditions,
and (J) expression of T-cell development transcription factors. Representative histograms and blots are taken from n 5 3 independent experiments. TSS, transcriptional
start site; TTS, transcriptional termination site; MT, mutant; EV, empty vector.
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variant in PTCL-PBX21 suggests it may have a unique role in its
pathogenesis, signifying that a better understanding of the func-
tional impact of mutant alleles would provide valuable insight
into how these T-cell malignancies develop.

In this study, DNMT3A mutation status showed different
impacts on prognosis dependent on the molecular PTCL sub-
types in patients treated with CHOP-based therapies. In the

PTCL-TBX21 subtype, DNMT3A mutations were associated
with a significantly worse prognosis, but this association was
not seen in AITL or PTCL-GATA3. While reports have identified
DNMT3AR882 mutations to be associated with poor responses
to therapy in AITL,67 it has not been convincingly demonstrated
to be an independent factor. Further, the highly aggressive
nature of PTCL-GATA3 makes prognostic stratification of this
molecular subtype difficult.15 Analysis of future cohorts with a
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Figure 5. In vitro and ScRNA-Seq analysis of DNMT3A mutations in primary CD31 T-cell cultures. (A, top) Representative Western blot of MYC-tagged DNMT3A.
(A, bottom) Representative histogram of DNMT3A expression (MFI) and 5mC concentrations (MFI) in CD31 T-cell cultures. (B) Representative flow cytometry plots for
indicated cell types at listed time points. (C) Single-positive CD81 T-cell percentages in vitro over indicated times in listed cell types (symbols represent mean 6 stan-
dard error from n 5 4 total donors covering n 5 3 individual experiments) (D-E) UMAP (uniform manifold approximation and projection) plot of Seurat-identified clusters
in CD31 T-cell cultures. (E) Seurat-identified clusters annotated by SingleR for sample composition and immune cell identity. (F) Bar graph of the proportion of immune
cell identities per sample as annotated by SingleR. (G) Violin plots of representative genes enriched in Seurat-identified clusters c0, c5, and c7. (H) Flow cytometry plots
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larger population and more complete clinical information (eg,
International Prognostic Index status availability) are needed to
validate the current observations.

In our GEP findings, DNMT3A mutations in PTCL-TBX21 were
associated with enrichment of T-cell memory signatures and
CD81 T-cell signatures among PTCL-TBX21, and a CD81/cyto-
toxic gene expression phenotype is associated with worse OS
in PTCL-TBX21. Thus, the poorer prognosis associated with
DNMT3A mutations in PTCL-TBX21 seemed to be related to
cases exhibiting the cytotoxic phenotype. Clinically, these find-
ings should prompt further investigation into targeted treatment
strategies for PTCLs with cytotoxic phenotypes, as current treat-
ment approaches are clearly inadequate. Routine sequencing of
PTCLs upon diagnosis in conjunction with clinically applicable
gene signature-based molecular tools (eg, for molecular classifi-
cation) may greatly improve PTCL patient stratification and allow
better clinical trials or treatment. For alternative treatments,
cytotoxic PTCLs may benefit from therapy strategies mirroring
that of NK/T-cell lymphomas,68-70 and while counterintuitive,
hypomethylating agents (eg, azacitidine and decitabine) have
shown promise in AML patients with DNMT3A mutations.71-73

To understand methylation differences due to DNMT3A muta-
tions, we performed MeDIP-Seq on a small subset of cases and
observed that DNMT3AR882/Q886 cases had hypomethylation of
genes enriched in pathways associated with T-cell receptor and
TH1/CD8

1 signaling compared with DNMT3A-WT cases. Similar
findings were seen when analyzing murine CD81 tumors, indi-
cating these pathways may play an important role in DNMT3A-
mediated lymphomagenesis and are activated partly through
the dysregulation of genes in these pathways. However, while
pathway analyses between GEP and MeDIP both implicate TCR

signaling and CD81 T cells, different GEPs were observed in AITL
and PTCL-GATA3. These differences suggest DNMT3A mutations
may play a role in T-cell activation and differentiation in PTCL, but
the resulting effector programs may be dependent on coexisting
epigenetics/mutations and the tumor microenvironment and
require further studies in different model systems.49,74,75

With both human and murine tumor-sample gene expression
and methylation data demonstrating an association of DNMT3A
mutations with TCR activation and several T-cell phenotypes,
we sought to validate these findings in an in vitro setting. While
few model systems exist for T-cell lymphoma, we were able
to use the sole CD81 PTCL cell line, T8ML1,55,76 to experimen-
tally investigate alterations due to DNMT3A. We observed
expression of DNMT3A-MT proteins leads to changes in the
methylation landscape wherein an accumulation of focal areas
of hypomethylation were identified in distinct regulatory
regions (eg, promoters, CpG islands) as opposed to genome-
wide hypomethylation of all CpGs.35,54,56,57,59,60,77 Expression
of DNMT3A-MT proteins led to changes in T-cell development
transcription factors, in agreement with previously conducted
studies outlining a role for DNMT3A as a regulator of TH1/
CD81 signaling responses.78-82 Integrated analysis of GEP and
MeDIP data in T8ML1 cells demonstrated an overlap between
high expression of T-cell activation and cytotoxic signatures
with hypomethylation of overlapping genes; however, an indi-
vidual gene-level understanding of this relationship remains to
be determined.49,74,75

In healthy CD31 T-cell cultures, we observed an expansion of
CD81 T cells in the DNMT3AR882H-modified cell cultures,
a finding not seen in other DNMT3A mutants or control sub-
jects. In the absence of other oncogenic signals (which would be
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Figure 5. (continued)
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present in a neoplastic cell line system), the hotspot R882 muta-
tion may serve as a more foundational event to initiate T-cell
lymphomagenesis and may exert a stronger polarization signal
than other DNMT3A mutations examined in this study. ScRNA-
Seq analysis of cultures of DNMT3AR882H-modified CD31 T cells
validated the enhanced cytotoxic transcriptional program associ-
ated with DNMT3AR882H and provides a rationale for a similar
approach in the further investigation of different DNMT3A muta-
tions (eg, mutated residue within the coding region) in primary
cell models regarding T-cell differentiation and plasticity. The
expanded CD81 T cells in DNMT3AR882H cells were annotated
mostly TCM cells with a cluster of TEM. In contrast, the
DNMT3AV716D T cells had a predominant expansion of CD41

Treg and TEM cells. Thus, 2 of the expanded CD31 populations
in the DNMT3A-MT cultures mirrored the 2 differentially
expressed signatures identified in our PTCL-TBX21 cohort
(ie, CD81 T cells and CD41 T memory cells). DNMT3A has
been shown to be a critical regulator of the memory–phenotype
in T cells following activation,81 but different mutants could have
discrete influences on T-cell differentiation and may thus have
unique implications in their differential association with PTCL
entities. Additionally, upregulation of EOMES is a consistent
observation in our human and murine CD81 Dnmt3a-loss
tumors, the DNMT3A-MT T8ML1 and Jurkat cells, and the
DNMT3A-MT normal CD31 T-cell cultures. With EOMES being
a master transcription factor for cytotoxic T cells and involved in
T-cell memory function,83 this known DNMT3A target84 could
play an important role in DNMT3A-MT–associated PTCL
and warrants further study into the mechanisms by which
EOMES may influence both CD81 and CD41 T cells with
DNMT3A mutations.

In conclusion, a distinct DNMT3A mutation spectrum is associ-
ated with molecular PTCL subtypes, and DNMT3A variants
affecting MTase and dimerization domain are enriched in the
PTCL-TBX21 subtype, and the R882 variant is particularly corre-
lated with cytotoxic differentiation and inferior clinical outcome.
Regions of hypomethylation associated with DNMT3A variants
can influence T-cell activation, growth, and differentiation
through dysregulated gene expression (eg, EOMES) but the
identification and validation of specific critical genes in each of
these functional alterations need further investigations.
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