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Glycosylphosphatidylinositol (GPI) anchors correctly localize 1% to
2% of human proteins to the cell membrane. Although biosynthe-
sis of GPI anchors is commonly inactivated by somatic Phosphati-
dylinositol glycan anchor biosynthesis class A (PIGA) mutations in
hematopoietic precursors in paroxysmal nocturnal hemoglobinuria
(PNH), constitutional PIGA mutations are rare and have been
implicated in severe impairment of neurologic development. Here
we uncover that hypomorphic constitutional PIGA mutations cause
a novel subtype of hereditary hemochromatosis (HH) by severely
limiting GPI anchorage of hemojuvelin and ceruloplasmin.

HH is a genetic iron overload disease caused by dysfunction of
the hepcidin/ferroportin regulatory axis due to mutations in sev-
eral, mainly liver-expressed genes (high Fe [HFE], transferrin
receptor 2 [TfR2], hemojuvelin [HJV], hepcidin [HAMP], or ferro-
portin [FPN]). The most common HH subtype, with high preva-
lence in the White population, presents with an adult onset and
chronic phenotype and is caused by the HFE p.C282Y mutation.
The non-HFE HH subtypes are relatively rare and typically mani-
fest during juvenile age. Hepcidin, the key regulator of systemic
iron homeostasis, binds to the iron exporter ferroportin,

triggering its degradation to inhibit iron export from duodenal
enterocytes, hepatocytes, and macrophages. Inappropriately
low hepcidin levels hallmark HH and explain increased intestinal
iron absorption, progressive iron accumulation, and damage of
parenchymal organs. A severe, juvenile HH subtype is caused
by mutations in HJV, a GPI-anchored protein that enhances the
bone morphogenetic protein /small mothers against decapenta-
plegic (SMAD) signaling pathway by functioning as a bone mor-
phogenetic protein coreceptor.1 Some HH-like phenotypes still
lack a molecular basis.

In this study, we present the discovery of a novel mutation
causing juvenile HH. We investigated a pediatric male patient
(patient 1), who, in addition to early-onset epilepsy, severe
developmental delay, and intellectual disability, demonstrated
early systemic iron overload, meeting the diagnostic criteria for
juvenile non-HFE HH.2 Of note are the very high transferrin
saturation (TSAT), diminished transferrin, and high serum iron
and ferritin levels in the upper normal range. Together with
low plasma hepcidin levels, these findings were suggestive of
HH.
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In this patient, exome sequencing failed to detect known
HH-associated mutations and instead identified a constitutional
hemizygous missense mutation in the X-linked PIGA. Using
next-generation panel sequencing, we could confirm this
finding in 2 additional patients (patients 2 and 3), who were
initially brought to medical attention because of their neu-
rologic symptoms. Further assessment revealed signs of
iron overload (Table 1), which then led to their referral to
pediatric hematology. The clinical information of the 3
patients is summarized in Table 1. Supplemental Figure 1
(available on the Blood Web site) displaying the pedigrees of

all 3 patients shows a pattern consistent with X-chromosomal
inheritance.

PIGA catalyzes the first step of GPI anchor biosynthesis, a pro-
cess that is important for the dynamics and cell membrane
attachment of approximately 150 human proteins.3 Somatic
PIGA mutations have been described in patients with PNH
(Online Mendelian Inheritance in Man [OMIM] 300818), a clonal
hematopoietic stem cell disorder hallmarked by severe defi-
ciency of GPI anchors that manifests with hemolytic anemia,
thrombosis, and bone marrow failure.4 Constitutional PIGA

Table 1. Genetic, clinical, and biochemical features in 3 patients with constitutional PIGA deficiency

Patient 1 Patient 2 Patient 3

Constitutional PIGA mutation c.230G.A (p.R77Q) c.1031T.C (p.L344P) c.380 C.T (p.S127L)

Inheritance Maternal Maternal Maternal

Sex Male Male Male

Age at time of data collection 13 y 7 y 2 y

Degree of developmental delay Moderate Severe Severe

Hypotonia No Yes Yes

Age at seizure onset 11 mo 9 mo 6 mo

Seizure type and severity Focal and generalized tonic-
clonic seizures partially
controlled by valproate,
stiripentol, and clobazam

Focal and generalized tonic-
clonic seizures partially
controlled by topiramat,
zonisamid and levetiracetam

Focal and atonic seizures, seizure
free under the administration
of topiramat and lacosamid

Brain anomalies No Multifocal cortical dysplasia of
the right hemisphere (possibly
explained by a hemizygous
pcdh19 variant)

No

Other congenital anomalies Hypospadia glandis, primary
enuresis nocturna

Cryptorchidism, cortical visual
impairment, ichthyosis, hyper-/
hypopigmentation on the
neck, widely spaced teeth

Somatomegaly

Biochemical

Ferritin (mg/L) 188 (RR: 7-140) 96 (RR: 7-140) 79 (RR: 2-63)

Transferrin saturation (%) (RR:
16-45)

96 87 70

Transferrin (g/L) (RR: 2.0-3.6) 1.87 1.97 2.23

Serum iron (mmol/L) (RR: 14-32) 45.1 43.2 39.0

Hepcidin (ng/mL)17 2.9 (R:16.58-74.57) 4.82 (R:6.78-118.86) 3.1 (R:10.32-115.73)

FerriScan (MRI) (mg/g dry
tissue) (RR: 0.17-1.8)

4.0 1.8 NA*

Serum transaminases (U/L) Normal Normal Elevated (GOT 57 (RR: , 56);
GPT 69 (RR: , 39))

Serum alkaline phosphatase
(U/L)

243 (RR: 118-518) 223 (RR: 86-315) 411 (RR: 75-316)

Deficiency of GPI-anchored
proteins and GPI anchors

# CD48 on a subpopulation of B-
and T-lymphocytes
(nonsignificant, 0.22%)

# CD157 on a subpopulation of
monocytes (nonsignificant;
0.13%)

# CD58 and CD59 on a
subpopulation of reticulocytes
(not significant due to a very
low number of reticulocytes)

c.230G.A (p.R77Q): ClinVar18 VCV000810512, likely pathogenic; PolyPhen-219 prediction, probably damaging; c.1031T.C (p.L344P): ClinVar VCV000444793, uncertain significance;
PolyPhen-2 prediction: probably damaging; c.380 C.T (p.S127L): ClinVar, not annotated; PolyPhen-2 prediction, likely damaging.

NA, not available; R, range; RR, reference range.

*Not indicated at the age of 2 y because sedation would be necessary.
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Figure 1. PIGA deficiency impairs hepcidin (HAMP) upregulation upon HJV overexpression. (A) Schematic representation of the PCR cassette integration in exon
(Ex) 2 of PIGA. (B) mRNA levels of PIGA in PIGA WT and PIGA KO cells, normalized to parental Hep3B cells (dashed line). PIGA mRNA expression was normalized to
the housekeeping gene GAPDH. (C) Western blot analysis of PIGA in parental Hep3B, PIGA WT, and PIGA KO cells. Vinculin was used as a loading control.
(D) Fluorescence-activated cell sorter (FACS) analysis representing the percentage of CD59 hycoerythrin-positive cells in PIGA WT and PIGA KO clones. (E) FACS
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**/##P , .01, ***/###P, .001, ****/####P, .0001; *comparisons inside each group; #relative to comparisons to the corresponding WT counterpart.
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mutations causing PIGA deficiency are very rare and show a
wide phenotypic spectrum including epileptic seizures, pro-
found developmental delay, intellectual disability, and multiple
congenital malformations.5 In line with previously described
children with constitutional PIGA mutations, our patients do not
show clinical or biochemical signs of PNH (details in supplemen-
tal Table 1) and do not meet the flow cytometric criteria for this
condition. This is likely explained by residual activity of the
hypomorphic mutations identified here, which result in a less
severe reduced function than the acquired somatic null muta-
tions causing PNH. This interpretation is consistent with the
observation that not all blood cell lineages show a reduction of
GPI-anchored proteins (Table 1).

PIGA deficiency has, thus far, not been known to cause HH hall-
marked by hepcidin deficiency. However, HJV is a GPI-anchored
protein,6 and we and others7 hypothesized that iron overload
could be caused by a failure to attach GPI anchors to HJV and a
subsequent inability to appropriately induce hepcidin expression
by hepatocytes.

To test this hypothesis, we performed Clustered Regularly Inter-
spaced Short Palindromic Repeats (CRISPR)/Cas12a-mediated
knockout (KO)8 of PIGA in Hep3B liver cells and analyzed their
capacity to control hepcidin expression. The PIGA gene is local-
ized on the X chromosome, and therefore, we selected Hep3B
cells that are derived from a male patient with hepatocellular
carcinoma and consequently only contain 1 X chromosome.9

We inserted a polymerase chain reaction cassette (Figure 1A)
containing 2 selection markers, puromycin and iScarlet, into
exon 2 of the gene, disrupting the PIGA open reading frame in
PIGA KO clones. Reference cells were either clones that under-
went the same CRISPR/Cas12a-mediated procedure, but in
which PIGA was not ablated (from now on referred to as PIGA
wild-type [WT] clones) or parental Hep3B cells (Figure 1B-C). To
demonstrate efficient and specific inhibition of GPI anchoring of
proteins in PIGA KO cells, we performed flow cytometry analysis
for cell surface expression of the GPI-anchored protein CD59, a
diagnostic marker analyzed in patients with somatic PIGA muta-
tions and PNH.4 As shown in Figure 1D, CD59 is only detectable
in PIGA WT but not in PIGA KO cells. We next investigated the
functionality of HJV in PIGA KO cells. Because specific, high-
affinity antibodies against HJV are not available, we overex-
pressed a Flag-tagged version of the protein and analyzed HJV
surface expression by flow cytometry analysis using an anti-Flag
antibody. Our data show an almost complete absence of cells
with HJV surface expression in PIGA KO clones (Figure 1E),
whereas HJV is readily detectable on the surface of PIGA WT
cells. Consistently, only WT cells show the expected upregula-
tion of hepcidin in response to HJV overexpression,10 whereas
PIGA KO cells fail to do so. Importantly, simultaneous transfec-
tion of HJV with a PIGA expression construct rescues hepcidin
expression in PIGA KO cells (Figure 1F) and raises other markers
of SMAD signaling, such as SMAD6 and SMAD7 expression
(supplemental Figure 2). We next coexpressed the PIGA muta-
tions identified in our patients (Table 1) or those described in
patients reported previously with severe neurologic pheno-
types.7,11 Importantly, PIGA KO cells show significantly lower
hepcidin mRNA levels on HJV overexpression with all PIGA
mutants (L344P, R77Q, L110del, and R412*) in comparison with
the PIGA WT construct (Figure 1G). These data directly demon-
strate the functional deficiency of the patients’ PIGA alleles and

offer a molecular explanation for the increased TSAT and other
iron overload parameters observed in our patients with the
L344P and R77Q mutations. Of note, hepcidin mRNA levels are
particularly low upon overexpression of the PIGA L110del and
R412* mutations, conceivably accounting for the iron overload
phenotype previously observed in the patients described by
Swoboda et al7 with the PIGA L110del mutation. In comparison
with patients with constitutional PIGA mutations displaying a
more severe phenotype (exemplified by the R412* stop-gain
mutation12), the data of the rescue experiments (Figure 1G) and
the less severe clinical phenotype of the affected patients indi-
cate that the missense mutations of our patients retain a higher
residual function, thus likely explaining the milder neurologic
phenotype allowing for sufficiently long survival to develop the
iron overload phenotype. Moreover, our findings suggest that
germline hypomorphic mutations in additional critical genes for
the biosynthesis of GPI anchors may also cause iron overload
over time, as has been recently demonstrated by Tremblay-
Lagani�ere et al.13 Interestingly, PIGA KO clones not only lack
HJV but also show reduced levels of ceruloplasmin (CP), a fer-
roxidase required for efficient cellular iron export. Although the
failure to express appropriate levels of HJV explains low hepci-
din levels and iron accumulation, iron overload may be further
aggravated by reduced CP protein expression (Figure 1H).
Importantly, a GPI-anchored form of this enzyme is also
expressed by astrocytes in the mammalian central nervous sys-
tem.14 The neurologic phenotype in patients with inactivating
PIGA mutations is generally attributed to the impaired attach-
ment of GPI-anchored proteins involved in brain development
to the cell membrane. These proteins include the HJV homologs
repulsive guidance molecule a (RGMa) and RGMb/DRG11-
responsive axonal guidance and outgrowth of neurite
(DRAGON), which mediate axon guidance and growth and the
formation of neuronal networks and are expressed in the central
nervous system and other tissues.15 Decreased CP levels and
cellular iron overload may further aggravate the neurologic
symptoms of patients with constitutional PIGA mutations (eg,
hypotonia and movement disorders), reminiscent of
observations in patients with aceruloplasminemia.16 In addition,
these patients are expected to have high levels of
non–transferrin-bound iron (NTBI), the free toxic form of iron,
because of an excessively high TSAT, which will further damage
various cell types including neuronal cells.

Taken together our results connect neurologic deficits and iron
overload in a novel way and uncover a new form of HH in
patients with neurologic deficits and its likely molecular basis,
showing that the functionality of 2 GPI-anchored proteins
involved in maintaining iron homeostasis, HJV and CP, is
impaired by PIGA mutations. These findings call for clinical
assessment and treatment of potential iron overload in patients
with constitutional PIGA mutations and long-term survival.
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