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KEY PO INTS

� Preclinical mouse
modeling of cGVHD
demonstrates
persistent alterations in
behavior.

� CNS cGVHD presents
with immunological
features distinct from
CNS acute GVHD,
indicative of divergent
mechanisms.

Graft-versus-host disease (GVHD) remains the leading cause of nonrelapse mortality after
allogeneic stem cell transplantation for hematological malignancies. Manifestations of
GVHD in the central nervous system (CNS) present as neurocognitive dysfunction in up to
60% of patients; however, the mechanisms driving chronic GVHD (cGVHD) in the CNS are
yet to be elucidated. Our studies of murine cGVHD revealed behavioral deficits associated
with broad neuroinflammation and persistent Ifng upregulation. By flow cytometry, we
observed a proportional shift in the donor-derived T-cell population in the cGVHD brain
from early CD8 dominance to later CD4 sequestration. RNA sequencing of the
hippocampus identified perturbations to structural and functional synapse-related gene
expression, together with the upregulation of genes associated with interferon-g
responses and antigen presentation. Neuroinflammation in the cortex of mice and humans
during acute GVHD was recently shown to be mediated by resident microglia-derived
tumor necrosis factor. In contrast, infiltration of proinflammatory major histocompatibility

complex (MHC) class II1 donor bone marrow (BM)–derived macrophages (BMDMs) was identified as a distinguishing
feature of CNS cGVHD. Donor BMDMs, which composed up to 50% of the CNS myeloid population, exhibited a
transcriptional signature distinct from resident microglia. Recipients of MHC class II knockout BM grafts exhibited
attenuated neuroinflammation and behavior comparable to controls, suggestive of a critical role of donor BMDM
MHC class II expression in CNS cGVHD. Our identification of disease mediators distinct from those in the acute phase
indicates the necessity to pursue alternative therapeutic targets for late-stage neurological manifestations.

Introduction
Chronic graft-versus-host disease (cGVHD) is the leading cause
of nonrelapse mortality after otherwise curative allogeneic stem
cell transplantation (SCT) for hematological malignancies.1,2

cGVHD can be inflammatory and/or fibrotic with organ-specific
or multiorgan symptomatology, and complex and protean pre-
sentations make diagnosis challenging.3 Manifestations of
cGVHD in the central nervous system (CNS) have recently been
recognized as a clinical entity independent of complications
associated with pretransplantation conditioning and immunother-
apy.4 Up to 60% of adult SCT survivors experience neurocogni-
tive dysfunction, evidenced by impaired learning and memory,
concentration deficits, and emotional changes, including anxiety
and depression,5 with reports of underlying cerebral vascular
pathologies and encephalitis.4 Although recent studies have
begun to elucidate the pathophysiology of CNS acute GVHD

(aGVHD),6,7 we report here the first preclinical evidence of
CNS cGVHD. GVHD is considered the primary determinant of
after transplant quality of life8; therefore, understanding the
effects of complex immunopathology on brain function serves
to identify targets for potential preventative and therapeutic
treatments.

Consistent with alloreactive donor T cells driving peripheral GVHD
pathology,9,10 murine and nonhuman primate CNS aGVHD mod-
els showed that alloreactive T cells infiltrate the CNS and induce
neuronal damage.6,7,11 Postmortem brain samples and experi-
mental disease models, such as in Alzheimer’s disease and multi-
ple sclerosis/experimental autoimmune encephalitis, suggest
that CNS infiltration of pathogenic T cells with associated
proinflammatory cytokine production is a common feature of
chronic neuroinflammation.12,13 CNS damage and disease
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typically involve activation of tissue-resident microglia. As long-
lived macrophages, microglia conduct dynamic immune sur-
veillance, among other functions, including provision of trophic
support and regulation of synaptic plasticity.14,15 Inflammatory
stimuli induce a reactive phenotype characterized by morpho-
logical changes and cytokine release. Microglia may restore a
quiescent state after activation or contribute to ongoing inflam-
mation,16 exemplified by the recent description of microglial
tumor necrosis factor (TNF) production as a critical mediator of
CNS aGVHD.7 Additionally, disease models demonstrate a det-
rimental contribution of CNS-infiltrating bone marrow
(BM)–derived macrophages (BMDMs),17 similar to cutaneous
cGVHD induction by infiltrating donor-derived macrophages.18

Although CNS-infiltrating macrophages adopt microglial mor-
phology and identifying surface marker (eg, ionized calcium
binding adaptor molecule-1 [Iba1]) expression, widespread
profiling suggests a functionally and transcriptionally distinct
population.19,20 Elucidating resident microglia phenotype and
function and the temporal contribution of donor BMDMs will
be instrumental for understanding biological disease mecha-
nisms and informing effective therapeutic strategies late after
transplant.

The necessity for a controlled immunological environment to
maintain optimal brain function underlies the hypothesis that
GVHD-induced inflammatory changes are modulating behav-
iors. Here, we aimed to characterize CNS cGVHD and pro-
vide the first evidence of prolonged behavioral deficits
dependent on sustained inflammation. Overall, we confirm
the brain as a novel cGVHD target organ where neuroinflam-
mation is characterized by dysregulated cytokine production
and infiltration donor-derived major histocompatibility com-
plex (MHC) II–expressing macrophages.

Materials and methods
Mice
Female mice between ages 8 and 12 weeks were used, housed
in sterilized microisolator cages with acidified autoclaved water
(pH, 2.5) and food available ad libitum. Strains used are listed in
supplemental Table 1. Experiments were approved by and per-
formed in accordance with the QIMR Berghofer Animal Ethics
Committee (Brisbane, Queensland, Australia).

BM transplantation
On day 0, recipients underwent 1100 (B6D2F1) or 1000 cGy
(C57BL/6) split-dose total-body irradiation (casesium-137 source)
and received 5 3 106 (B6D2F1) or 10 3 106 (C57BL/6) T cell–
depleted (TCD) BM alone (non-GVHD controls) or with 0.5 3 106

C57BL/6 (B6D2F1) or 5 3 106 BALB/c (C57BL/6) splenic T cells
enriched by BioMag (Qiagen) bead depletion of non-T cells to
induce GVHD.21 MHC II knockout (KO) donor grafts contained
TCD BM only. Mice were monitored daily to evaluate clinical
GVHD scores as previously published.22

Behavioral testing
Rotarod grip strength,23 active place avoidance task,24 forced
swim (FST),25 open field,26 elevated plus maze,27 and novel object
recognition28 tests began on either day 14, 35, or 70 after trans-
plant. Detailed methodology is included in the data supplement.

Flow cytometry and cell sorting
Surface staining of single cell suspensions of digested brain was
performed in fluorescence-activated cell sorting (FACS) buffer
(phosphate buffered saline, 2% fetal calf serum, and 5 mM of
EDTA) at room temperature for 15 minutes in darkness. The
antibodies used are listed in supplemental Table 2. Flow cyto-
metric acquisition was performed with an LSRFortessa cytometer
(BD Biosciences), and data analyzed using FlowJo software (ver-
sion 10). Cell sorting was performed using an FACSAria III Cell
Sorter (BD Biosciences).

Statistics
GraphPad Prism software (version 7.0) was used to conduct all
statistical analyses. An unpaired 2-tailed Student t test was used
for comparison of 2 groups, and a 1-way analysis of variance
(ANOVA) with Tukey multiple comparisons was used for GVHD
groups across 3 time points. Longitudinal behavior data were
analyzed with repeated measures 2-way ANOVA with Bonferroni
post hoc comparison, and clinical scores were analyzed with a
2-way ANOVA with Bonferroni multiple comparisons test. All
data are presented as mean 6 standard error of the mean, with
significance at P , .05.

Details of behavioral tests, devices used, and standard procedures
including tissue procurement and processing, flow cytometry,
immunofluorescence and imaging acquisition, cell quantification,
quantitative real-time polymerase chain reaction (oligonucleotide
sequences listed in supplemental Table 3), and RNA sequencing
(RNA-seq) are provided in the data supplement.

Results
cGVHD induces persistent behavioral deficits
We used established MHC-mismatched cGVHD models10

(Figure 1A-B), where transfer of a low T-cell dose induces nonle-
thal disease with subsequent development of sclerodermatous
skin pathology after transplant (supplemental Figure 1A-D). Pre-
ceded by low-grade aGVHD, cGVHD develops in both models
by day 35, with persistent pathology evident in the later stages of
disease (days 70-100). To measure neurological manifestations of
cGVHD, we first used a battery of behavioral tests in the B6 into
B6D2F1 model. cGVHD mice showed normal grip strength (sup-
plemental Figure 1E) and exploratory behavior (supplemental
Figure 1F) in the rotarod and open field tests, respectively, with
no evidence of anxiety-like behavior in the elevated plus maze
(supplemental Figure 1G). In support of recent findings,7 GVHD
mice demonstrated poor recognition memory in the novel object
recognition test at day 14; however, this did not persist into the
chronic stages of disease (supplemental Figure 1H). However,
using the FST to assess the behavioral response of cGVHD mice
to an aversive situation,29 we confirmed in our model the previous
report that aGVHD mice (day 14) exhibit increased mobility as a
dysfunctional response in the FST30 (supplemental Figure 1I).
Moreover, testing at both early and late phases of cGVHD (days
35 and 70, respectively) demonstrated significantly increased
mobility in cGVHD mice compared with TCD controls (Figure 1C).
Extending these findings, we confirmed dysfunctional responses
in the FST during the acute phase (day 14; supplemental Figure
1J) and at both early- and late-stage cGVHD using the BALB/c
into B6 model (Figure 1D). We next used the active place avoid-
ance paradigm to assess spatial learning and memory, which
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have been extensively shown to depend on the integrity of the
hippocampus.31,32 This task requires mice to integrate visuospatial
room cues to avoid a concealed shock zone on a rotating plat-
form.24 We first confirmed that TCD mice effectively completed

this task in a manner similar to naïve age-matched controls, thus
indicating intact working spatial memory (supplemental Figure
1K). Compared with TCD controls, however, cGVHD mice exhib-
ited learning deficits evidenced by increased entries into the
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Figure 1. cGVHD induces prolonged behavioral deficits. (A) Schematic of transplantation regime. Lethally irradiated B6D2F1 (H2b/d) recipient mice received 5 3 106 TCD
BM with no T cells or with 0.5 3 106 CD31 T cells from C57Bl/6 (H2b) donors to induce low-grade nonlethal cGVHD. (B) Schematic of transplantation regime. Ten 3 106 BM
with or without 5 3 106 CD31 T cells from a BALB/c (H2d) donor were transplanted into lethally irradiated C57Bl6 (H2b) recipients. (C) Time B6D2F1 recipients spent swimming
(mobile) in the forced swim test at days 35 and 70 after transplant (day 35: n 5 6-8 mice per group; representative of 2 independent experiments; day 70: n 5 9-10 mice per
group). (D) Time C57Bl6 recipients spent swimming (mobile) in the forced swim test at days 35 and 70 after transplant (n 5 8-9 mice per group). Performance of cGVHD and
TCD mice in the active place avoidance task for assessment of spatial learning in 20-minute sessions across 5 days beginning at day 35 (E) or 70 (F) after transplant (n 5 9-10
mice per group). Recorded parameters include improvement from day 1 to 5 expressed as a percentage (calculated based on the difference in the number of entries into the
shock zone), total number of entries into the shock zone per day, and maximum time spent avoiding the shock zone per day. Data are presented as mean 6 standard error
of the mean. Statistics: unpaired Student t test for differences between GVHD and TCD mice (improvement) (B,D-F), and repeated measures 2-way analysis of variance
followed by Bonferroni post hoc comparison (entries, avoidance time) (E-F). *P , .05, **P , .01, ****P , .0001.
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Figure 2. cGVHD induces T-cell infiltration and a proinflammatory cytokine profile in the brain. Messenger RNA expression of selected proinflammatory cytokines
detected by quantitative real-time polymerase chain reaction in the thick coronal section (A) and hippocampus (B) of GVHD and TCD mice at days 35 and 70 after
transplant (n 5 6-15 mice per group; data pooled from 2 independent experiments). Expression calculated relative to the Hprt gene and reported as a fold change of
the mean of the TCD group. (C) Schematic of transplantation regime. Lethally irradiated B6D2F1 recipient mice received 5 3 106 BM from C57Bl/6 donors ubiquitously
expressing GFP and 0.5 3 106 sort-purified CD90.21 T cells from C57Bl/6 donors ubiquitously expressing RFP. (D) Representative dot plots indicating gating strategy
for identifying live CD90.21 CD4 and CD8 T-cell subsets within the CD45hiCD11b2 population, gated on forward and side scatter. Cells were isolated from digested
coronal brain segments of transplant recipients at days 14, 35, and 70 after transplant. (E-I) Quantification of lymphocyte populations in dissociated GVHD brains at
days 14, 35, and 70 after transplant. (E) CD90.21 proportion of the CD45hiCD11b2 population. (day 14: n 5 6; data pooled from 2 independent experiments; day 35:
n 5 3; data from 1 independent experiment; day 70: n 5 17; data pooled from 4 independent experiments). (F) Absolute number of CD90.21 T cells within the
CD45hiCD11b2 population (day 14: n 5 8; data pooled from 3 independent experiments; day 35: n 5 6; data pooled from 2 independent experiments; day 70:
n 5 16; data pooled from 4 independent experiments). (G) Proportions of CD41 and CD81 T cells within the CD90.21 population (day 14: n 5 5; data pooled from 2
independent experiments; day 35: n 5 7; data pooled from 2 independent experiments; day 70: n 5 16; data pooled from 4 independent experiments). (H)
Comparison of the proportions of CD81 T cells derived from the T-cell (red) and BM (green) grafts (days 14 and 35: n 5 3 mice per time point; day 70: n 5 7; data
pooled from 3 independent experiments). (I) Comparison of the proportions of CD41 T cells derived from the T-cell (red) and BM (green) grafts (days 14 and 35: n 5 3
mice per time point; day 70: n 5 7; data pooled from 3 independent experiments). Data are presented as mean 6 standard error of the mean. Significant differences
calculated using unpaired Student t test (A-B) or 1-way analysis of variance with Tukey multiple comparisons test (E-H). *P , .05, **P , .01, ***P , .001, ****P , .0001.
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Figure 2. (continued)
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shock zone and less time spent avoiding the shock zone (Figure
1E-F). Improvement over the 5-day testing period beginning at
day 70 (Figure 1F) was significantly reduced in cGVHD mice com-
pared with TCD controls. Conclusively, these novel data indicate
that cGVHD mice exhibit pronounced alterations in behavior per-
sisting late after transplant.

cGVHD is associated with neuroinflammation,
local proinflammatory cytokine production, and
T-cell infiltration
Proinflammatory cytokine mediation of effector pathways is critical
to the development of systemic cGVHD,33 and cytokine dysregu-
lation is also a common feature of neuroinflammatory diseases.34

Analysis of the brain inflammatory milieu by quantitative real-time
polymerase chain reaction at day 35 demonstrated Ifny, Il1b, Tnf,
and Ccl2 upregulation in cGVHD mice compared with TCD con-
trols (Figure 2A). Having observed deficits in hippocampal-
dependent spatial learning, we additionally profiled the isolated
hippocampus and observed similar trends (Figure 2B). At day 70,
cGVHD brains demonstrated elevated Ifng and Ccl2, with Ifng
also upregulated in isolated hippocampi (Figure 2A-B), findings
that were recapitulated in the BALB/c into B6 model (supplemen-
tal Figure 2A-B). Notably, Tnf expression was attenuated at day
70, indicating a restricted contribution to aGVHD7 and early
cGVHD (day 35) pathologies. Recipients of NZ-eGFP BM grafts
supplemented with B6.RFP1 T cells were used for flow cytometric
profiling of the CNS inflammatory infiltrate (Figure 2C). Digestion
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Figure 3. Temporal and regional changes in donor-derived T-cell infiltration. (A) Schematic of coronal brain section (based on Paxinos and Franklin35) indicating the
regions examined with immunofluorescence: hippocampus, habenula, meninges, cortex, and choroid plexus (located in the lateral ventricular spaces). Blue shaded
region of the hippocampus identifies the dentate gyrus (DG) containing the granule cell layer (GCL). Surrounding regions include the cornu ammonis 1 (CA1) and 3
(CA3). (B-F) Representative images of donor RFP1 T-cell infiltrate in brain regions of interest, with respective quantification at days 14, 35, and 70 after transplant:
meninges (B), choroid plexus (in lateral ventricle outlined by white dashes) (C), cortex (D), hippocampus (E), and habenula (F) (day 14: n 5 4-7; data pooled from 2
independent experiments; day 35: n 5 6-7; data pooled from 2 independent experiments; day 70: n 5 9-11; data pooled from 2 independent experiments). Original
magnification 320; scale bars, 50 mm. Data are presented as mean 6 standard error of the mean. Significant differences calculated with 1-way analysis of variance with
Tukey multiple comparisons test. *P , .05, **P , .01, ***P , .001.

1394 blood® 3 MARCH 2022 | VOLUME 139, NUMBER 9 ADAMS et al

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/139/9/1389/1889129/bloodbld2021011671.pdf by guest on 08 June 2024



of GVHD brains at days 14, 35, and 70 after transplant revealed
significant T-cell infiltration that comprised �60% of the CD451

cells at day 14 and gradually decreased over time (Figure 2E-F).
Consistent with reports in aGVHD,6 CD81 T cells were predomi-
nant at day 14 (Figure 2G); however, over time, a gradual
increase in the proportion and absolute number of CD4 T cells
was noted (Figure 2G). Initial brain-infiltrating CD81 T cells origi-
nated primarily from the donor graft T-cell compartment (Figure
2H). By day 70, however, 20% of the CD41 T compartment was
derived from BM, suggestive of prolonged low-grade infiltration
(Figure 2I). To further identify parenchymal brain regions of inter-
est and possible cellular routes of infiltration, 5 brain structures35

were investigated for the presence of RFP1 donor graft T cells
(Figure 3A). Both the meninges and choroid plexus represent
points of access for inflammatory infiltrate,36,37 and at day 14, sig-
nificant T-cell infiltrate was observed in both of these sites (Figure
3B-C). Although T-cell numbers markedly declined in the menin-
ges by day 35, infiltration in the choroid plexus persisted to day
70. Parenchymal localization peaked at day 35 in the cortex (Fig-
ure 3D) and hippocampus (dentate gyrus region; Figure 3E), with
reductions evident in both regions by day 70. In addition, we

observed a similar trend when examining the habenula nuclei,
which are diversely involved in many neuromodulatory systems,
regulate cognitive and motivational processes, and are known to
be dysfunctional in depression.38 Collectively, these data suggest
a persistent inflammatory milieu in CNS cGVHD with features dis-
tinct from those in aGVHD.

Microglia activation and donor-derived MHC II1

macrophage infiltration are key mediators of
CNS cGVHD
Inflammatory insults to the brain induce activation of microglia as
resident immune effector cells, commonly accompanied by
BMDM infiltration.39,40 Having observed prolonged Ccl2 upregu-
lation and CD41 T-cell skewing by day 70, we sought to establish
perturbations to and contributions of macrophage populations in
CNS cGVHD. Using flow cytometry, we examined the temporal
composition of the CD45dimCD11b1Ly6G2 myeloid population
in brains from of B6.Csf1r-mApple41 ! Csf1r-eGFPxDBA2 F1
(MacGreen-F142) transplant recipients (Figure 4A-B). Infiltrating
donor (mApple) BMDMs were notable by day 35, and by day
70, they comprised �50% of the CD45dimCD11b1Ly6G2 cells
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Figure 4. Differential expression of MHC class II by donor-derived macrophages and host microglia late after transplant. (A) Schematic of transplantation regime
for the identification of donor macrophages and host microglia. Lethally irradiated DBA2xF1.Csf1r-eGFP (H2b/d) mice received 5 3 106 TCD BM with no T cells or with
0.5 3 106 CD31 T cells from C57Bl/6.Csf1r-mApple (H2b) donors to induce low-grade nonlethal cGVHD. (B) Representative flow cytometric dot plots for the
identification of donor macrophages (mApple) and host microglia (MacGreen) within the CD45dimCD11b1 population from digested coronal sections of the brains of
cGVHD mice at days 14, 35, and 70 after transplant. Gated on forward and side scatter to identify live (Sytox Blue2) CD451Ly6G2 cells. (C) Proportions of host
microglia and donor BMDMs within the CD45dimCD11b1 population in cGVHD brains (day 14: n 5 3; day 35: n 5 7; data pooled from 2 independent experiments;
day 70: n 5 13; data pooled from 4 independent experiments). (D) Representative histograms of MHC class II expression on TCD microglia compared with GVHD host
microglia and donor BMDMs at days 35 and 70 after transplant. (E) Fold change of MHC class II mean fluorescence intensity (MFI) on GVHD host microglia and donor
BMDMs relative to TCD host microglia at days 35 and 70 posttransplantation (day 35: n 5 7; data pooled from 2 independent experiments; day 70: n 5 9; data
pooled from 2 independent experiments). (F) Representative 3100 original magnification confocal images demonstrating differential expression of MHC class II by
donor macrophages (green arrows) and host microglia (white arrows) in situ in the hippocampus of GVHD and TCD mice 70 days after transplant. B6.Csf1r-eGFP
donors used to facilitate identification of donor-derived macrophages (GFP1/Iba11) compared with resident microglia (GFP2/Iba11). Nuclei counterstained with
49,6-diamidino-2-phenylindole (DAPI). Original magnification 3100; scale bar, 10 mm. (G) Findings replicated in a second model of cGVHD (day 70 after transplant)
where BALB/c donor BM plus CD31 T cells were transplanted into B6.Csf1r-eGFP recipients. MHC class II expression restricted to donor Iba11/GFP2 BMDMs (green
arrows) and absent from host Iba11/GFP1 microglia (white arrows). Original magnification 3100; scale bar, 10 mm. Data presented as mean 6 standard error of the
mean. Statistical significance calculated by 1-way analysis of variance with multiple comparisons (C) or unpaired Student t test (E). **P , .01, ***P , .001.
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(Figure 4C). In situ staining for Iba-1 at day 35 revealed a reactive
phenotype of cortical and hippocampal host microglia (supple-
mental Figure 3A-D), evidenced by an amoeboid soma and thick-
ened bushy dendrites,43 in comparison with the ramified
morphology of TCD microglia. However, FACS analysis of MHC II
expression demonstrated that host microglial activation was tran-
sient. In contrast, donor BMDMs retained high levels of MHC II
expression and coexpressed increased levels of costimulatory
markers CD80, CD86, and CD40 and the phagocytosis marker
CD68 (supplemental Figure 4A-E). Confocal imaging confirmed
that by day 70, in all regions examined (Figure 4F-G [hippocam-
pus]; supplemental Figure 5 [cortex, habenula, and choroid
plexus]), MHC II expression was restricted to donor BMDMs, and
host microglia had returned to a homeostatic phenotype. Impor-
tantly, complementary analysis at day 100 demonstrated long-
term persistence of altered microglial/macrophage populations as
indicated by increases in total Iba-11 cell numbers and donor
BMDMs in the choroid plexus, hippocampus (including the CA1
and CA3 regions), and habenula of cGVHD mice in both models
(Figure 5; supplemental Figures 6 and 7). Comparatively, donor
BMDM infiltration through the meninges dissipated after day 35,
and donor BMDM infiltration into the cortex was not significant at
either time point, suggesting the early increase in Iba11 cells
likely reflects an activated-induced expansion of the host
microglia.

Donor-derived macrophages and host microglia
exhibit differential transcriptional profiles in the
GVHD brain
Identification of a heterogeneous brain myeloid population with
differential MHC II expression in cGVHD mice warranted further
investigation to understand functional properties of each subset,
with the intent of identifying appropriate markers or pathways for
therapeutic targeting. Again, using B6.Csf1r-mApple donors and
MacGreen-F1 recipients at day 70 after transplant, donor
(mApple1GFP2) and host (mApple2GFP1) CD45dimCD11b1

Ly6G2 cells were sorted from brains of cGVHD and TCD BM con-
trol mice for bulk RNA-seq (Figure 6A). Consistent with previous
reports characterizing resident microglia and infiltrating macro-
phages,20,44 GVHD donor BMDMs maintained a transcriptional
signature distinct from GVHD host microglia, differentially
expressing 5356 genes, with 2647 transcripts upregulated and
2709 downregulated (false discovery rate, ,0.05; Figure 6B). A
hallmark feature of microglia activation is the downregulation of
signature genes.44 However, comparison of host microglia sub-
sets from GVHD and TCD BM controls showed comparable
expression of transcripts, including Cx3cr1, P2ry12, Sall1,
Tmem11, and Siglech20 (Figure 6C), providing strong evidence
that host microglia return to a more homeostatic state late after
transplant, in line with markedly reduced MHC II expression. In
contrast, these signature genes were lowly expressed or
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completely absent in donor BMDMs, with differential expression
of CX3CR1 and P2RY12 validated by flow cytometry (Figure 6D).
Additionally, donor BMDMs exhibited a distinct profile, with tran-
scripts for Apoe, Ccr2, and Cd38, and an overlapping perivascular
macrophage signature based on Cd163 and Lyve1 expression.45

Gene ontology enrichment analysis indicated a strong gene

profile related to cell adhesion and migration, chemotaxis, and
inflammatory responses in GVHD BMDMs compared with GVHD
host microglia (Figure 6E). In line with this, GVHD donor BMDMs
showed notably high expression of markers related to ECM deg-
radation, including members of the MMP and Adam families46

(Figure 6F). The expression of a class of stimulatory CD300
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molecules, involved in leukocyte response regulation,47 was
almost exclusive to BMDMs (Figure 6F). This family shows similar
functions to members of the triggering receptor expressed on
myeloid (TREM) cell family,47 such as Trem1, also found to be
upregulated in GVHD donor BMDMs and previously identified as
a marker of pathogenic brain-infiltrating macrophages.44 Given
our earlier findings of prolonged Ifng upregulation, we further
probed this signature and found a striking upregulation of genes
induced or regulated by interferon-g (IFN-g) signaling in the
donor BMDMs (Figure 6G). Additionally, GVHD BMDMs and
microglia differentially expressed genes for various cytokines,
including Il1b and Il6 (Figure 6H). Coinciding with recent
reports,16 resident microglia showed no in vivo Il10 expression.

Differential expression of Tnf in GVHD and TCD host microglia
compared with GVHD donor BMDMs is likely attributable to
homeostatic glial TNF production for synaptic scaling.48 Collec-
tively, these results delineate donor BMDMs and resident micro-
glia as transcriptionally distinct populations, where persistent
BMDM infiltration and activation mark a unique signature in the
cGVHD brain.

RNA-seq reveals molecular synaptic changes in
the cGVHD hippocampus and defines a critical
role for donor MHC II
To identify targetable pathways related to cellular infiltration
and inflammation that may contribute to altered behavior in
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cGVHD mice, we conducted bulk RNA-seq on the hippocampi
of GVHD and TCD mice at day 80 after transplant. After removal
of outliers based on principal component analysis, downstream
differential gene expression analysis identified 381 significantly

differentially expressed genes (false discovery rate, ,0.05; Fig-
ure 7A), with 147 genes found to be upregulated in GVHD and
207 genes downregulated. Gene set enrichment analysis found
that the 10 most significantly upregulated gene sets, as
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Figure 6. Donor-derived macrophages remain a transcriptionally and functionally distinct cell type in the CNS. (A) Schematic of transplantation regime for the
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identified through the Gene Ontology database, were related to
general immune responses (supplemental Table 4). Confirming
our previous findings of a strong IFN-g response during cGVHD,
the hallmark gene set within gene set enrichment analysis

revealed significant upregulation of the IFN-induced proteins
Ifi44, Ifit3, and Ifit1 in GVHD hippocampi (Figure 7B). Ingenuity
pathway analysis also showed upregulation in the GVHD hippo-
campus of molecules related to antigen presentation (Figure 7C;
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Figure 7. Transcriptional changes in the hippocampus in cGVHD and attenuation of neuroinflammation by donor MHC II KO. (A) Heatmap representing log2
counts-per-million (logCPM) values of 381 differentially expressed genes (false discovery rate [FDR], ,0.05) based on RNA-seq analysis of isolated hippocampi from
TCD and GVHD mice 70 days after transplant (n 5 3 per group). Expression across each gene has been scaled so that mean expression is 0 and standard deviation is
1. (B-C) Heatmap of logCPM values from TCD and GVHD mouse hippocampi for genes related to the IFN-g response hallmark gene set (B) and antigen presentation
(C) as identified by ingenuity pathway analysis of RNA-seq data (n 5 3 per group). (D) Heatmap of logCPM values for genes involved in synaptic signaling as identified
by Gene Ontology analysis (0045202). Enrichment plot from gene set enrichment analysis demonstrating downregulation of genes associated with the
neuron-to-neuron synapse in GVHD compared with TCD. (E) Quantification of synaptophysin puncta expression in the hippocampus at days 35 (n 5 8 mice per group;
pooled from 2 independent experiments) and 70 (n 5 6-11 mice per group) after transplant. (F) Schematic for the transplantation of WT (PTPxC57Bl/6) or MHC II
KO.B6 (H2b) bone marrow depleted of T-cells into irradiated DBA2xF1 (H2Dd) recipients. (G) Clinical scores of transplant recipients (n 5 11-12 mice per group; data
pooled from 2 independent experiments). (H) Representative images of hematoxylin and eosin staining of skin from recipient mice at day 70 after transplant showing
dermal thickening and loss of subcutaneous fat as evidence of scleroderma. Original magnification 320; scale bar, 300 mm. (I) Time spent floating (immobile) and
swimming (mobile) in the forced swim test (n 5 4 mice per group) at day 70. (J) Representative confocal images of Iba11 cells in the hippocampus at day 70 after
transplant. Resident microglia express GFP and are indicated with white arrows. Original magnification 320; scale bar, 50 mm. (K) Representative confocal images
demonstrating morphological similarities in the resident microglia phenotype of recipients of MHC II KO TCD BM and WT TCD BM. Original magnification 3100; scale
bar, 10 mm. (L-M) Messenger RNA expression of selected genes detected by quantitative real-time polymerase chain reaction in the coronal brain section (L) and
hippocampus (M) of transplant recipients at day 70 after transplant. Reported as the fold change of the expression from the WT TCD BM group, calculated relative to
the Hprt gene (n 5 3-6 mice per group). Data are presented as mean 6 standard error of the mean (SEM). Significant differences calculated using 2-way analysis of
variance (G) or unpaired Student t test (E,M). *P , .05, ***P , .001. DAPI, 4’,6-diamidino-2-phenylindole; FOV, field of view; NES, normalized enrichment score.
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supplemental Table 5), including subunits of both MHC I (Hs-T23,
H2-K1, and H2-Q7) and MHC II (H2-Ab1 and H2-Dmb1), as well
as the MHC class II transactivator CIITA and Ctss, required for
degradation of antigenic proteins to peptides for MHC II
presentation.49

As a molecular correlate for altered behavior, changes to synap-
tic structure and function are widely reported in various neurode-
generative and inflammatory CNS conditions.50 The Gene
Ontology database identified an ontology related to synapse
structure and function containing 15 genes downregulated in the
GVHD hippocampus (Figure 7D). Perturbations to the expression
of genes transcribing trafficking proteins (Arhgap33),51 compo-
nents of the neurotransmitter release machinery (Prrt2),52 cell
adhesion molecules (Nrxn2 and Nlgn2),53 and postsynaptic
receptor subunits (Grin2D)54 indicate the stability, activity, and
number of functional synapses may be compromised. To fur-
ther investigate the premise of synapse disruption in vivo, we
quantified synaptophysin (Figure 7E) and PSD-95 (data not
shown) expression in the hippocampus as indicators of the pre-
and postsynapse, respectively. Although no differences were
evident in PSD-95 protein expression, by day 35, the GVHD
hippocampus showed a trend toward reduced synaptophysin
puncta density compared with TCD BM controls, which was
significantly reduced at day 70. This is suggestive of a prefer-
ential disruption to the presynaptic compartment, suggesting
that alterations to hippocampal synaptic structure and trans-
mission may contribute the observed behavioral phenotype in
cGVHD.

Given the upregulation of genes related to antigen presentation
in the hippocampus of cGVHD mice, along with BMDM macro-
phage infiltration, we investigated whether donor MHC II
expression was critical for driving the robust cGVHD neuroin-
flammatory profile. Allogeneic MHC II KO BM transfer (Figure
7F) induced spontaneous late cGVHD (Figure 7G) characterized
by scleroderma (Figure 7H), attributable to a failure of peripheral
regulatory T cells.10 Strikingly, recipients of MHC II KO TCD BM
showed no increase in mobile behavior in the FST compared
with recipients of wild-type (WT) TCD BM (Figure 7I). Microglia
density and phenotype in all regions of the brain (Figure 7J-K;
supplemental Figure 8A-D) and proinflammatory cytokine mes-
senger RNA levels (Figure 7L-M) were similar between recipients
of MHC II KO vs WT TCD BM. Furthermore, recipients of MHC
II KO BM supplemented with WT T cells (supplemental Figure
8E-F) demonstrated improved behavior in the FST at day 35
(supplemental Figure 8G) compared with recipients of WT BM
plus T cells. Notably, MHC II deficiency did not diminish brain
Ifng messenger RNA levels (supplemental Figure 8H), indicating
that IFN-g signaling functions upstream of and may be required
for55 MHC II expression by donor BMDMs to promote CNS
cGVHD behavioral perturbations.

Discussion
cGVHD represents a complicated clinical entity, with neurologi-
cal manifestations remaining critically understudied despite a
known impact on patient quality of life.56 Difficulties in proper
diagnosis and management of CNS cGVHD are perpetuated by
an absence of preclinical investigation into the mechanisms
underpinning cerebral pathologies and neurocognitive dysfunc-
tion observed in patients.4 Here, we describe the immune

landscape in CNS cGVHD and begin to elucidate disease medi-
ators that may represent viable therapeutic targets.

The primary clinical predictor of cGVHD is preceding aGVHD, with
important distinctions in underlying pathology determining het-
erogeneous target organ effects.2,10 Understanding temporal
CNS disease changes will be critical for informing therapeutic
strategies. Recently, several studies have investigated aGVHD
effects on the brain from days 7 to 21 after transplant highlighting
T-cell infiltration, proinflammatory cytokine production, and
microglia activation as immune mediators of cognitive defi-
cits.6,7,30 Using our low-dose T-cell model allowed evaluation of
subtle aGVHD characteristics followed by cGVHD pathology late
after transplant. The main features and divergences of aGVHD
and cGVHD in the CNS are summarized and compared in Table 1.
We observed peak CD81 T-cell infiltration into the brain at day 14,
supporting reported findings in murine and nonhuman primate
models.11,30 The progressive decline in T-cell numbers by day 70
and proportional shift to a CD41 T-cell phenotype suggest two
potential phenomena. Firstly, early immune cell infiltrationmay be
sufficient to initiate CNS disease, but prolonged inflammation
may only require low-grade infiltration. Secondly, disease mecha-
nisms driven by donor antigen-presenting cells are prominent in
the brain only in cGVHD, paralleling peripheral mechanisms and
indicating a clear divergence from aGVHDpathology.57

The persistent elevation of IFN-g in the brains of cGVHD mice
raises an interesting prospect given dichotomous roles for IFN-g
in transplantation and GVHD biology.21 High IFN-g expression
was maintained at day 70, despite reduced T-cell infiltration,
likely indicative of an alternative source and supportive of a role
for IFN-g in controlling donor T-cell expansion in allogeneic SCT
settings.58 However, in the CNS niche, IFN-g impairs hippocam-
pal neurogenesis and plasticity, mediated by direct action on
microglia, leading to cognitive deficits.59 Spatial learning and
memory, a process intimately dependent on hippocampal neu-
rogenesis32 and homeostatic microglia function,60 were pro-
foundly altered in cGVHD mice, particularly at day 70. This
suggests that the attenuation of IFN-g overexpression by recep-
tor blockade, cell-specific KO, or inhibition of downstream JAK/
STAT may offer benefit for reducing inflammation and conse-
quently improving cognitive function. Selective inhibition of
JAK1/2 (ruxolitinib) has improved patient responses compared
with standard therapy in steroid-refractory cGVHD.55 Although
exact mechanisms of action are still being studied, our data sug-
gest the reported reductions in IFN-g61 after ruxolitinib treat-
ment would likely result in attenuated downstream MHC II
expression and thus improve CNS cGVHD outcomes.

In parallel with clinical reports,62 our findings indicate long-term
behavioral changes in cGVHD mice, in conjunction with early
microglia activation, donor BMDM infiltration, and sustained
molecular disruption of the synapse. Microglia are responsible
for the cytokine-dependent maintenance of the CNS microenvi-
ronment and response to brain insults, but they can perpetuate
inflammation during disease.63 TNF production by activated
microglia drives aGVHD primarily in the cortex,7 and elevated
TNF expression in our day-35 cGVHD likely reflects a continua-
tion of this acute pathology. Although Mathew et al7 demon-
strated improved behavioral outcomes with microglial TNF
reduction in aGVHD mice, inherent attenuation of TNF expres-
sion and a resting microglia phenotype by day 70 in cGVHD
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brains with maintained behavioral deficits indicate additional
and/or alternative inflammatory mediators. Striking changes to
the myeloid proportions in the brain by day 70 with increased
donor BMDMs, coinciding with hippocampal transcriptional sig-
natures of IFN-g responses and antigen presentation, with the
resultant reduction in resident microglia, identify this population
as a therapeutic target. BMDMs in the brain parenchyma have
been reported in various CNS pathologies and are known to
express a distinct transcriptional signature from that of resident
microglia, although their functional contribution to disease
remains controversial.64 It still remains unclear if and how pertur-
bations to the CNS myeloid compartment contribute to the
observed behavioral changes in cGVHD mice, given maintained
higher cognitive functioning in both the absence of resident
microglia65 and presence of infiltrating macrophages.64 However,
neuroinflammation is known to contribute to persistent changes
in neuronal function, leading to cognitive deficits,66 and the role
for donor antigen-presenting cells in perpetuating systemic
cGVHD is well defined.67 RNA-seq data revealed upregulation of
genes related to ECM degradation in donor BMDMs, which are
known to compromise blood-brain barrier integrity through

vascular damage and disrupt neuronal signaling by altering cell-
ECM interactions and modulating neurotransmitter receptor
activity.44,68 cGVHD BMDM gene clusters aligning with those
previously associated with neurodegenerative diseases such as
Alzheimer’s69 suggest this population likely differs functionally
from resident microglia, and their disruption to the brain macro-
phage pool may be detrimental. Dependence of microglia and
macrophages on CSF-1/CSF-1R signaling18,70 offers a targetable
axis for pharmaceutical depletion. Antibody blockade of CSF-1R
signaling improved sclerodermatous cGVHD in preclinical mouse
models,18 leading to a clinical trial to test efficacy in patients (reg-
istered at www.clinicaltrials.gov as #NCT03604692). Importantly,
timing of delivery to deplete BMDM monocyte precursors and
the integrity of the blood-brain barrier to determine the availabil-
ity of a blocking antibody in the brain are important considera-
tions, additionally warranting comparison with small-molecule
inhibitors of CSF-1R that can access the brain parenchyma. Inves-
tigation of BMDM responses to the brain microenvironment and
immune challenges will prove invaluable for modulating their
function and residence in the CNS, with potential implications for
disease settings beyond GVHD.

Table 1. Summarized comparison of features associated with aGVHD and cGVHD in the brain

Feature

Time of assessment posttransplantation, d

7-216,7,11,30 35 and 70-100

aGVHD cGVHD

Behavioral modifications Normal grip strength and motor
coordination6 (rotarod)

Normal grip strength and motor coordination
(rotarod)

Increased mobility in FST (d 7 and 14)30 Increased mobility in FST (d 35 and 70)

Impaired spatial learning and memory (Morris
water maze task, d 21)6

Impaired spatial learning and memory (active
place avoidance task, d 35 and 70)

Increased anxiety (elevated plus maze, d 14) Intact recognition memory

Impaired recognition memory (d 19)7 Normal performance on elevated plus maze

Reduced exploratory behavior (d 21)19 Normal exploratory behavior

Cytokine mediators TNF, IL-67,30 IFN-g, IL-1b, CCL2

T-cell infiltration dynamics T-cell infiltration across d 7-14, high numbers
of CD81 with primarily effector memory
phenotype6,7,11

T-cell infiltration peak at d 14 with
proportional skew toward CD4 phenotype
by d 70

Microglia/macrophages Resident microglia activation (d 14):
morphological change, increased Iba11

cell count, increased expression of MHC
II7

Resident microglia activation (d 35):
morphological change, increased total
Iba11 cell count

Increased frequency of CD45hiCD11b1

monocytes (donor derived) at d 147
Increased donor-derived macrophage

infiltration, highest at d 70 with loss of
CD45 expression overtime; defined
transcriptionally as distinct from resident
microglia

Gene expression Resident microglia upregulate genes involved
in antigen presentation (d 14)7

Antigen presentation upregulated in
hippocampus (d 70)

d 14: GVHD microglia downregulate CX3CR1
(lineage marker), indicating activation7

d 70: GVHD resident microglia return to
phenotype resembling TCD microglia, with
expression of CX3CR1 and P2RY12; donor-
derived macrophages maintain activation
status

IL, interleukin.
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In summary, this study is the first to define features of the CNS
immune landscape in cGVHD, instigated by early T-cell infiltra-
tion and late effects associated with broad infiltration of MHC
II1 donor BMDMs, suggestive of pathological features distin-
guishable from aGVHD. Although we have investigated these
features in multiple brain regions, additional studies would ben-
efit from examining other possible mechanisms, such as a role
for humoral disturbances in the hypothalamic-pituitary axis in
CNS inflammation and behavior,71,72 and expanding to the
peripheral nervous system to investigate neuropathic manifesta-
tions. However, given the increasing emergence of clinical
reports documenting neurocognitive dysfunction in patients with
cGVHD, our findings have major implications for understanding
CNS pathology late posttransplantation and identifying novel
targets, distinct from those in aGVHD, to pursue as therapeutic
strategies.
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