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Recombinant factor VIII (FVIII) products represent a life-saving intervention for patients
with hemophilia A. However, patients can develop antibodies against FVIII that prevent
its function and directly increase morbidity and mortality. The development of anti-FVIII
antibodies varies depending on the type of recombinant product used, with previous
studies suggesting that second-generation baby hamster kidney (BHK)-derived FVIII
products display greater immunogenicity than do third-generation Chinese hamster ovary
(CHO)-derived FVIII products. However, the underlying mechanisms responsible for these
differences remain incompletely understood. Our results demonstrate that BHK cells
express higher levels of the nonhuman carbohydrate a1-3 galactose (aGal) than do CHO
cells, suggesting that aGal incorporation onto FVIII may result in anti-aGal antibody
recognition that could positively influence the development of anti-FVIII antibodies.
Consistent with this, BHK-derived FVIII exhibits increased levels of aGal, which
corresponds to increased reactivity with anti-aGal antibodies. Infusion of BHK-derived,

but not CHO-derived, FVIII into aGal–knockout mice, which spontaneously generate anti-aGal antibodies, results in
significantly higher anti-FVIII antibody formation, suggesting that the increased levels of aGal on BHK-derived FVIII
can influence immunogenicity. These results suggest that posttranslational modifications of recombinant FVIII
products with nonhuman carbohydrates may influence the development of anti-FVIII antibodies.

Introduction
Patients who suffer from hemophilia A, an X-linked bleeding dis-
order that is characterized by a deficiency or absence of blood
coagulation factor VIII (FVIII), often receive FVIII protein replace-
ment therapy for the treatment or prevention of bleeding.1

Although this approach can decrease patient morbidity and
mortality, patients who receive FVIII replacement can develop
alloantibodies to FVIII that often eliminate its effectiveness.2,3

Although the advent of alternative treatment strategies for FVIII
replacement in patients with inhibitors is promising,4 inhibitors
continue to make it difficult to optimally manage bleeding
patients and can directly increase patient morbidity, mortality,
and overall cost of care.5-7

Previous studies suggest that a variety of genetic and environ-
mental factors likely influence the development of anti-FVIII anti-
bodies in patients.8-10 However, recent studies suggest that, in
addition to patient characteristics, distinct recombinant FVIII
products may intrinsically possess different levels of immunoge-
nicity. More specifically, several studies suggest that second-
generation FVIII products, which are derived recombinantly in
baby hamster kidney (BHK) cells, can result in statistically

significant increases in inhibitor development compared with
third-generation recombinant FVIII products produced in Chi-
nese hamster ovary (CHO) cells.11 However, the underlying
mechanisms responsible for the increased immunogenicity of
second-generation FVIII products remain incompletely under-
stood. Some of the most unique alterations that a glycoprotein
can experience following recombinant expression in distinct cell
lines are posttranslational modifications.12,13 Among glycan
modifications that can impact immunogenicity, the a1-
3galactose (aGal) terminal modification, which does not occur in
humans because of loss of activity of the glycosyltransferase
responsible for its synthesis,14,15 is expressed in all lower mam-
mals at varied levels. Because humans do not express this anti-
gen, naturally occurring anti-aGal antibodies develop,
presumably as a result of stimulation by microbial flora.16 Anti-
aGal antibodies are a major barrier to xenotransplantation and
are implicated in a variety of pathologies, including aGal syn-
drome, an immunoglobulin E anti-aGal antibody-mediated
allergy to red meat that is precipitated by tick bites.17,18

Because these antibodies may also influence the immunogenic-
ity of aGal-bearing proteins and BHK and CHO cells are derived
from lower mammals, variable incorporation of the nonhuman
aGal epitope may lead to increased immunogenicity observed
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among second-generation products compared with third-
generation FVIII products.

Study design
BHK or CHO cells were examined for aGal expression by Griffo-
nia simplicifolia lectin I isolectin B4 (IB4).19,20 FITC-IB4 lectin
staining cytometric analysis using a FACSCalibur was done as
previously described.21 Determination of N-glycan composition
for BHK-derived (Helixate) or CHO-derived (ADVATE) FVIII was
achieved by matrix assisted laser desorption ionization time of
flight analysis (Bruker).22 Each FVIII product was printed on a
nitrocellulose microarray slide, followed by interrogation with
IB4, serum, or antibody eluate and quantitative analysis (Scan
Array Express; PerkinElmer Lifer Sciences).23,24 Levels of anti-
aGal antibodies were determined by flow crossmatch using
aGal1 red blood cells (RBCs), as done previously for the evalua-
tion of other alloantibodies.25 Anti-aGal antibodies were
absorbed using aGal1 RBCs, followed by antibody elution using
standard procedures.26 Wild-type (WT) or aGal-knockout (KO)
recipients received 4 weekly injections of Helixate or ADVATE (2
mg,) followed by examination of anti-FVIII antibody formation by
enzyme-linked immunosorbent assay (ELISA), as outlined previ-
ously27 (see supplemental Methods for additional details, avail-
able on the Blood Web site).

Results and discussion
To determine whether levels of aGal expression differ between
BHK and CHO cells, we first examined aGal antigen expression
by flow cytometric analysis with IB4, a lectin that is commonly
used to detect the aGal antigen.19,20 Using this approach, BHK
cells displayed a higher level of aGal antigen than did CHO cells
(Figure 1A), suggesting that BHK-derived FVIII may likewise pos-
sess higher levels of aGal. Because previous studies have
reported variable aGal levels on CHO cells,28-31 and IB4 may
exhibit some binding toward other glycans (http://www.
functionalglycomics.org), the very low level of IB4 binding
observed toward CHO cells may not reflect actual aGal expres-
sion or production of FVIII with aGal. To directly examine this,
BHK- and CHO-derived FVIII products were subjected to mass
spectrometric analysis for the aGal antigen. Consistent with
aGal expression on BHK cells and the relative lack of aGal on
CHO cells, aGal was observed on glycans harvested from FVIII
derived from BHK cells but not CHO cells (Figure 1B), similar to
previous analyses of FVIII glycosylation patterns.32

To determine whether the increased levels of aGal observed by
mass spectrometry reflect accessible aGal at the protein surface,
we next probed FVIII directly for aGal. To accomplish this, we
printed BHK-derived FVIII and CHO-derived FVIII in a microarray
format (Figure 1C), followed by analysis with IB4. Using this
approach, we found that BHK-derived FVIII possessed signifi-
cantly more reactivity by IB4 than did CHO-derived FVIII (Figure
1D), strongly suggesting that the aGal antigen present on BHK-
derived FVIII is accessible and, therefore, may influence the
development of inhibitors following BHK-derived FVIII exposure.

Naturally occurring anti-aGal antibodies are believed to facilitate
immune responses to aGal-containing glycoproteins.33-35 How-
ever, because WT mice express the aGal antigen they are toler-
ized to this antigen and, therefore, do not spontaneously generate

anti-aGal antibodies. To overcome this limitation, we used
aGal-KO mice, which are deficient in the a1-3 galactosyltransfer-
ase and, therefore, do not generate the aGal antigen.36 To deter-
mine whether aGal-KO mice spontaneously generate anti-aGal
antibodies, we first examined anti-aGal antibody levels in aGal-
KO mice vs WT mice. Unlike WT mice, aGal-KO mice readily and
spontaneously produced anti-aGal antibodies (Figure 2A), dem-
onstrating a lack of immunological tolerance to the aGal antigen.
To determine whether these naturally occurring antibodies can
recognize FVIII, we incubated serum from aGal-KO mice with
each FVIII in our microarray format. Serum isolated from aGal-KO
mice displayed enhanced reactivity toward BHK-derived FVIII
compared with CHO-derived FVIII (Figure 2B), suggesting
increased reactivity to the aGal antigen. To determine whether
the increased reactivity is due to aGal-reactive antibodies, we
examined serum specifically absorbed and then eluted from
aGal1 RBCs (Figure 2C). There was an increased reactivity toward
BHK-derived FVIII that was completely eliminated by serum
absorption on aGal1 RBCs, whereas the eluate restored the spe-
cific increase in reactivity toward BHK-derived FVIII (Figure 2D).
These results suggest that low-level IB4 binding to CHO cells and
CHO-derived FVIII likely reflects aGal-independent recognition
and that, consistent with mass spectrometric analysis, anti-aGal
antibodies specifically react with BHK-derived FVIII.

To determine whether the aGal antigen on BHK-derived FVIII
may influence FVIII immunogenicity, we first sought to remove
aGal antigen by enzymatic cleavage. However, attempts to
remove aGal failed, because the conditions required for effi-
cient aGal removal also rendered the FVIII protein inactive,
likely as a result of protein denaturation. As a result, we instead
sought to simply compare the immunogenicity of BHK-derived
FVIII following injection into aGal-KO or WT mice to directly
examine whether aGal influences inhibitor development. Using
this approach, aGal-KO or WT recipients received multiple
injections of BHK-derived FVIII, followed by examination for
anti-FVIII antibodies by ELISA. Anti-FVIII antibody levels were
significantly increased following BHK-derived FVIII injection into
aGal-KO mice compared with WT recipients (Figure 2E). To
determine whether similar differences in the immunogenicity
occur following injection of CHO-derived FVIII into aGal-KO vs
WT recipients, we next examined the immune response follow-
ing injection of CHO-derived FVIII. In contrast to the results
observed following BHK-derived FVIII injection, no difference in
the development of anti-FVIII antibodies was observed following
CHO-derived FVIII exposure (Figure 2F).

These results suggest that the increased levels of aGal on BHK-
derived FVIII result in increased anti-aGal antibody binding and
anti-FVIII antibody formation. These results have implications for
the development of optimal FVIII products and therapeutic gly-
coproteins in general. Although the protein sequence of a
recombinant glycoprotein may be identical or nearly identical to
a human-derived glycoprotein, use of nonhuman cell lines to
generate large quantities of recombinant glycoproteins may
inadvertently result in the incorporation of nonhuman glycans
that can directly impact the immunogenicity of the therapeutic
product. These results suggest that analysis of FVIII glycosyla-
tion should be a key component of manufacturing quality con-
trol, especially when considering that metabolic variations and
genetic drift can impact the glycosylation of a given cell.13 Fur-
thermore, hemophilia patients exposed to tick bites who are at
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Figure 1. BHK-derived FVIII possesses higher levels of the aGal antigen than does CHO-derived FVIII. (A) BHK or CHO cells were incubated with FITC-IB4 lectin,
followed by examination of IB4 binding by flow cytometric analysis. Blue lines represent IB4 binding, and gray shaded areas indicate no stain control. (B) Mass
spectrometry analysis for aGal bearing N-glycans from BHK-derived FVIII (Helixate) or CHO-derived FVIII (ADVATE). Highlighted peaks correspond to biantennary
N-glycans decorated with 1 or 2 aGal residues. (C) Schematic diagram of microarray construction, interrogation, and analysis for examining possible lectin and antibody
interactions with BHK-derived or CHO-derived FVIII. (D) Quantitative analysis of IB4 binding following incubation with a microarray populated with ADVATE and
Helixate. ����P , .0001, Student t test. FSC, forward scatter; RFU, relative fluorescence unit; SSC, side scatter.
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Figure 2. BHK-derived FVIII exhibits increased reactivity with aGal-KO serum and increased immunogenicity in aGal-KO mice. (A) Anti-aGal antibodies were
evaluated by flow crossmatch analysis using aGal1 RBCs. Results are reported as mean fluorescence intensity (MFI). (B) Incubation of serum from aGal-KO mice with
microarray containing BHK-derived FVIII (Helixate) or CHO-derived FVIII (Advate), followed by analysis of bound antibody. (C) Schematic diagram outlining the method
used to absorb and elute aGal-specific antibodies from the serum of aGal-KO mice. (D) Evaluation of serum preabsorption, postabsorption on aGal RBCs, and
antibody eluate obtained following elution of serum specifically absorbed onto aGal1 RBCs. (E) Evaluation of anti-FVIII antibody levels by ELISA following injection of
BHK-derived FVIII into WT or aGal-KO recipients. (F) Evaluation of anti-FVIII antibody levels by ELISA following injection of CHO-derived FVIII into WT or aGal-KO
recipients. ���P , .001, ����P , .0001, Student t test (A-B,E-F); ���P , .001, ����P , .0001, 1-way analysis of variance with Tukey’s post test (D). ns, not significant;
RFU, relative fluorescence unit.
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risk for red meat allergies may also experience an increased
probability of developing anaphylactic reactions following
second-generation FVIII exposure.17,18 Although these results
do not suggest that nonhuman glycan incorporation is entirely
responsible for the development of anti-FVIII antibodies follow-
ing recombinant FVIII exposure, they do suggest that such a
modification may influence FVIII immunogenicity and possibly
other adverse events following FVIII exposure. As a result, care-
ful consideration and characterization of the distinct cell sources,
which may differ in their levels of aGal expression,14,28-31 and,
more importantly, the level of aGal on FVIII products them-
selves, may be beneficial when seeking to produce optimal FVIII
products for patients with hemophilia A.
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