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KEY PO INT S

� Nuclear PKM2 is
upregulated in
neutrophils after the
onset of ischemic
stroke and promotes
neutrophil
hyperactivation.

� PKM2 deficiency in
myeloid cells improves
short- and long-term
stroke outcome by
limiting postischemic
cerebral thrombo-
inflammation.

There is a critical need for cerebro-protective interventions to improve the suboptimal out-
comes of patients with ischemic stroke who have been treated with reperfusion strategies.
We found that nuclear pyruvate kinase muscle 2 (PKM2), a modulator of systemic inflam-
mation, was upregulated in neutrophils after the onset of ischemic stroke in both
humans and mice. Therefore, we determined the role of PKM2 in stroke pathogenesis
by using murine models with preexisting comorbidities. We generated novel myeloid
cell–specific PKM22/2 mice on wild-type (PKM2fl/flLysMCre1) and hyperlipidemic back-
ground (PKM2fl/flLysMCre1Apoe2/2). Controls were littermate PKM2fl/flLysMCre– or
PKM2fl/flLysMCre–Apoe2/2 mice. Genetic deletion of PKM2 in myeloid cells limited
inflammatory response in peripheral neutrophils and reduced neutrophil extracellular traps
after cerebral ischemia and reperfusion, suggesting that PKM2 promotes neutrophil hyperac-
tivation in the setting of stroke. In the filament and autologous clot and recombinant tissue
plasminogen activator stroke models, irrespective of sex, deletion of PKM2 in myeloid cells in
either wild-type or hyperlipidemic mice reduced infarcts and enhanced long-term sensorimo-
tor recovery. Laser speckle imaging revealed improved regional cerebral blood flow in mye-

loid cell–specific PKM2-deficient mice that was concomitant with reduced post-ischemic cerebral thrombo-inflammation
(intracerebral fibrinogen, platelet [CD411] deposition, neutrophil infiltration, and inflammatory cytokines). Mechanistically,
PKM2 regulates post-ischemic inflammation in peripheral neutrophils by promoting STAT3 phosphorylation. To enhance
the translational significance, we inhibited PKM2 nuclear translocation using a small molecule and found significantly
reduced neutrophil hyperactivation and improved short-term and long-term functional outcomes after stroke. Collectively,
these findings identify PKM2 as a novel therapeutic target to improve brain salvage and recovery after reperfusion.

Introduction
At present, an acute ischemic stroke is managed by intravenous
thrombolysis with recombinant tissue plasminogen activator
(rtPA) and/or mechanical thrombectomy. Although both of
these approaches are effective, they have limitations. For exam-
ple, early arterial reocclusion and the more unsatisfactory long-
term outcome were observed in nearly 17% to 34% of patients
with stroke after administration of rtPA,1,2 suggesting modest
efficacy of intravenous thrombolysis. Although mechanical
thrombectomy is much more efficacious, �50% of patients who
were treated for acute stroke and who had large-vessel occlu-
sion have suboptimal outcomes.3 Altogether, these limitations
highlight the critical need for novel ancillary treatment that
effectively enhances the limited success of stroke reperfusion
therapies.

Because ischemic brain injury is aggravated by both thrombosis
and inflammation (thromboinflammation),4,5 an ideal target for
improving stroke outcome should be one that inhibits thrombo-
inflammatory responses without a significant risk of bleeding
complications. Recently, the glycolytic enzyme pyruvate kinase
muscle 2 (PKM2) has been implicated not only as a critical regu-
lator of aerobic glycolysis but also as an activator of transcription
of pro-inflammatory mediators, including interleukin-1b (IL-1b)
and IL-6.6-8 Pyruvate kinase (PK) exists in 4 different isoforms
(PKR, PKL, PKM1, PKM2) and is encoded by 2 distinct genes,
PKLR and PKM, in mammals. PKR is expressed in erythrocytes,
PKL in liver and kidney, and PKM1 is expressed in differentiated
adult tissues with high adenosine triphosphate requirement such
as heart, brain, and muscle. PKM2 is expressed in many tissues
including spleen, lung, and all cancer cell lines.9 During the past
few years, PKM2 has generated significant interest because of
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its upregulation in activated immune cells, smooth muscle cells,
and platelets.10-13 Unlike other isoforms of PK that exist and
function as tetramers, PKM2 exists in tetrameric and dimeric
forms composed of identical monomers but with different bio-
logical activities. In addition to its role in glycolysis, PKM2 also
possesses protein kinase activity.14,15 Upon stimulation, dimeric
PKM2 translocates to the nucleus where PKM2 catalyzes the
transfer of phosphate from phosphoenolpyruvate to serine, thre-
onine, or tyrosine residues on target substrates.15-18 The dimeric
PKM2 is known to promote inflammatory macrophage activa-
tion,12,19 autoimmune encephalomyelitis,20 and allergic airways
disease.7 Neutrophils, the most abundant white blood cells, are
among the first cells in the blood to respond to an acute ische-
mic insult, and they play a key role in stroke exacerbation.21-27

However, whether PKM2 promotes neutrophil hyperactivation
upon acute ischemic stroke and thereby mediates ischemic brain
injury remains unclear. In this study, we elucidated the role of
PKM2 in the pathogenesis of ischemic stroke. To enhance the
translational significance of this study, we specifically measured
the effect of sex, preexisting comorbidities, and the 2 forms of
reperfusion (filament mechanical occlusion and autologous clot
and rtPA).

Materials and methods
Detailed information on materials and methods is available in
the supplemental data (available on the Blood Web site).

Human participants
The study involving human participants was previously approved
by the Institutional Review Board at the University of Iowa, and
informed consent was obtained from patients or their
surrogates.

Mice
The PKM2fl/fl mouse strain was initially provided by Matthew G.
Vander Heiden (Massachusetts Institute of Technology, Boston,
MA).28 To generate myeloid cell–specific PKM2-deficient mice
(PKM2fl/flLysMCre1/2), PKM2fl/fl mice were crossed with
LysMCre1/1 mice (supplemental Figure 1A). To generate
myeloid cell–specific PKM22/2 mice on a hyperlipidemic
apolipoprotein E-deficient (Apoe2/2) background (PKM2fl/fl

LysMCre1/2Apoe2/2), PKM2fl/fl Apoe2/2 mice were crossed with
LysMCre1/2Apoe2/2 mice. Littermate PKM2fl/flLysMCre2/2 and
PKM2fl/flLysMCre2/2Apoe2/2 mice were used as controls.

Filament and embolic stroke models
Mice were anesthetized with 1% to 1.5% isoflurane mixed with
medical air. After a midline incision, the right common carotid
artery was temporarily clamped, and a silicon monofilament
(702245PK5re Doccol) or a single homologous embolus (�15
mm) was inserted via the external carotid artery into the internal
carotid artery up to the origin of the middle cerebral artery.
Reperfusion was achieved by removing the filament after 60 or
30 minutes and opening the common carotid artery (for the fila-
ment model) or by infusion of rtPA (10 mg/kg, 10% volume by
bolus and remaining slow infusion for 30 minutes) for embolic
model. Laser Doppler flowmetry was used for each mouse to
confirm the successful induction of ischemia and reperfusion.

Results
Human and mouse circulating neutrophils exhibit
increased PKM2 nuclear translocation after acute
ischemic stroke
Evidence suggests increased PKM2 nuclear translocation in can-
cer cells and in the activated immune cells when they are stimu-
lated with agonists.6,12,16,19 We determined whether PKM2
nuclear translocation increases in neutrophils in the setting of
ischemic stroke. Western blot analysis revealed an �threefold
increase in nuclear PKM2 levels in peripheral neutrophils of
patients with ischemic stroke treated with mechanical thrombec-
tomy compared with healthy controls (Figure 1A). The baseline
characteristics of the patients and recanalization status are pro-
vided in supplemental Table 1. Similarly, a time-dependent
increase (up to 6 hours) in nuclear PKM2 expression was
observed in peripheral neutrophils isolated from the wild-type
(WT) mice that underwent 60 minutes of cerebral ischemia fol-
lowed by 3, 6, or 23 hours of reperfusion (Figure 1B). Con-
versely, peripheral monocytes did not exhibit increased nuclear
PKM2 levels after stroke in mice (supplemental Figure 2).

PKM2 promotes neutrophil hyperactivation after
ischemic stroke in mice
We evaluated inflammatory status in the peripheral monocytes
and neutrophils of WT mice at an early time point (6 hours) after
reperfusion. Enzyme-linked immunosorbent assay revealed
increased levels of inflammatory cytokines, including tumor
necrosis factor-a (TNF-a), IL-1b, and IL-6 in both monocytes and
neutrophils (P , .05 vs sham; supplemental Figure 3). Notably,
a marked increase in TNF-a, IL-1b, and IL-6 levels was observed
in neutrophils when compared with monocytes after stroke
(Figure 3). We focused on neutrophils because nuclear PKM2
was upregulated in peripheral neutrophils but not in monocytes
at 6 hours after stroke (Figure 1; supplemental Figure 2).
Increased pro-inflammatory cytokine status was associated with
increased neutrophil extracellular traps (NETs) (supplemental
Figure 4A) and expression of several pro-inflammatory genes,
including MPO (myeloperoxidase), elastase, HIF1a, and P65
(supplemental Figure 4B), suggesting that cerebral ischemia and
reperfusion promote neutrophil hyperactivation. To confirm a
definitive role for PKM2 in neutrophil hyperactivation in the con-
text of ischemic stroke, we generated novel myeloid
cell–specific PKM2-deficient mice (PKM2fl/flLysMCre1/2; supple-
mental Figure 1A). Genomic polymerase chain reaction con-
firmed the presence of LysMCre gene in PKM2fl/fl mice
(supplemental Figure 1B). By using western blotting, we con-
firmed the absence of PKM2 in neutrophils from PKM2fl/fl

LysMCre1/2 mice (Figure 1C). To simplify, from this point
onward, littermate PKM2fl/fl LysMCre2/2 mice will be referred as
PKM2fl/fl mice. Next, we subjected PKM2fl/flLysMCre1/2 and lit-
termate control PKM2fl/fl mice to 1 hour of cerebral ischemia
and 6 hours of reperfusion. Because upregulated pro-
inflammatory cytokine status was associated with increased
NETosis in the setting of ischemic stroke, we determined
whether PKM2 modulates NETosis by aggravating pro-
inflammatory response. Peripheral neutrophils isolated 6 hours
after reperfusion were stimulated with a suboptimal concentra-
tion of phorbol 12-myristate 13-acetate (PMA;10 ng/mL). The
percentage of NET-positive cells was reduced in PKM2fl/fl

LysMCre1/2 mice (P , .05 vs PKM2fl/fl mice; Figure 1D). Further-
more, we found significantly reduced levels of inflammatory
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cytokines TNF-a, IL-1b, and IL-6 and a reduction in the expres-
sion of pro-inflammatory genes, including MPO, elastase,
HIF1a, IL-1b, and p65 in peripheral neutrophils after 6 hours of
reperfusion in PKM2fl/flLysMCre1/2 mice (P , .05 vs PKM2fl/fl

mice; Figure 1E-F). Together, these results suggest that PKM2
potentiates neutrophil hyperactivation after ischemic stroke.

Myeloid cell–specific PKM22/2 mice exhibit
reduced infarct area and improved long-term
sensorimotor outcome
To evaluate the role of PKM2 in stroke outcomes, PKM2fl/fl

LysMCre1/2 and littermate PKM2fl/fl male and female mice were
subjected to 1 hour of ischemia and 23 hours of reperfusion in the
filament model. Both male and female PKM2fl/flLysMCre1/2 mice
exhibited smaller infarcts and better neurologic outcomes on day
1 when compared with littermate controls (supplemental Figure
5). Infarcts and neurologic scores were comparable between
PKM21/1LysMCre1 and PKM2fl/fl mice (supplemental Figure 6),

ruling out nonspecific effects of LysM-Cre recombinase expression
on stroke outcome.

Current Stroke Therapy Academic Industry Roundtable (STAIR)
guidelines for preclinical assessment of novel therapeutic targets
for stroke recommend evaluating underlying mechanisms for
stroke progression, with an assessment of response to treatment
in at least 2 different stroke models in both sexes with preexisting
comorbidities that adequately mimic the human physiology.29,30

Following STAIR recommendations, we generated PKM2fl/fl

LysMCre1/2 mice and littermate control PKM2fl/fl LysMCre2/2

mice on the hyperlipidemic Apoe2/2 background. We chose the
preexisting comorbid condition of hyperlipidemia because it is
known to exacerbate ischemic damage and worsen the sensori-
motor deficit by promoting endothelial dysfunction, inflamma-
tion, oxidative stress, and neuronal death,31 and thereby
enhancing stroke sensitivity. All the mice were fed a regular chow
diet after weaning until age 8 to 10 weeks, an age at which no
significant vascular lesions are found (data not shown) to minimize
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Figure 1. Nuclear PKM2 is elevated in peripheral neutrophils after a stroke in humans and in WT mice and regulates neutrophil hyperactivation. (A) Top:
schematic of experimental design. Bottom: western blot analysis of PKM2 in the cytosolic and nuclear fraction from the peripheral neutrophils isolated from the patients
with acute ischemic stroke who underwent successful mechanical thrombectomy. The quantitative data for cytosolic and nuclear PKM2 intensity (normalized to the
intensity of lamin-B1/glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are shown on the right. (B) Top: schematic of experimental design. Bottom: western blot
analysis of PKM2 in the cytosolic and nuclear fraction from the peripheral neutrophils of male WT mice. The quantitative data for cytosolic and nuclear PKM2 intensity
(normalized to the intensity of lamin-B1/GAPDH at each time point) are shown on the right. (C) Western blot analysis of PKM2 from neutrophils derived from the bone
marrow of male mice. (D) Immunofluorescence analysis of NETs from peripheral neutrophils isolated 6 hours after reperfusion. Neutrophils were stimulated with a
suboptimal concentration of PMA (10 ng/mL), and NETs were visualized by using SYTOX Green stain. Scale bars, 100 mm. Quantification is shown on the right.
(E) Inflammatory cytokines in peripheral neutrophils isolated 6 hours after reperfusion from each group as analyzed by enzyme-linked immunosorbent assay (ELISA).
(F) Gene expression analysis for the neutrophils isolated 6 hours after reperfusion as analyzed by reverse transcriptase polymerase chain reaction. Data are from 2-way
repeated measures analysis of variance (ANOVA) (Kruskal-Wallis test) followed by Fisher’s least significant difference (LSD) test; panels (A-B); or an unpaired Student
t test (D-F). Data are mean 6 standard error of the mean (SEM); n 5 4-6 (A-B); n 5 4-5 (D-E); n 5 6 (F). AU, arbitrary units; HIF1-a, hypoxia-inducible factor 1-a; MCAO,
middle cerebral artery occlusion; MMP9, matrix metallopeptidase 9; mRNA, messenger RNA; NS, not significant; TICI, thrombolysis in cerebral infarction.
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the potential confounding effects of advanced atherosclerotic
lesions that can impair collateral flow and indirectly influence the
stroke outcome. Body weight, plasma cholesterol, triglycerides,
and complete blood counts were comparable between these
groups (supplemental Tables 2 and 3).

Using the filament stroke model, susceptibility to cerebral ische-
mia and reperfusion injury were evaluated after 1, 3, and 7 days
of reperfusion (Figure 2A). We observed significantly reduced
infarct area in PKM2fl/flLysMCre1/2Apoe2/2 mice at day 1 (P ,

.05 vs PKM2fl/flApoe2/2 mice; Figure 2B). Consistent with these
results, at day 7, PKM2fl/flLysMCre1/2Apoe2/2 mice exhibited a
better survival rate (�70%) compared with PKM2fl/flApoe2/2

mice (Figure 2C). Next, using the same set of mice, we evalu-
ated the modified neurologic severity score (mNSS) based on

spontaneous activity, symmetry in limb movement, forepaw out-
stretching, climbing, body proprioception, responses to vibrissae
touch (on the scale of 3 to 18; higher score indicates a better
outcome), and motor function using an accelerated rota-rod
test. We observed that PKM2fl/flLysMCre1/2Apoe2/2 mice
exhibited improved neurologic outcome and motor function on
days 1, 3, and 7 compared with PKM2fl/flApoe2/2 mice (Figure
2D-E). Laser Doppler flow measurements (supplemental Table 4)
and physiological parameters (supplemental Table 5) were simi-
lar among groups before, during, and after ischemia. No gross
differences in cerebrovascular anatomy were observed between
groups (supplemental Figure 7). To determine whether the
observed phenotype is reproducible in another model, we used
an autologous clot model treated with rtPA (embolic model).
Consistent with the filament stroke model, PKM2fl/flLysMCre1/2
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Figure 2. Deletion of PKM2 in myeloid cells improves stroke outcome in the filament and embolic models in a preexisting comorbid condition of hyperlipid-
emia. (A) Schematic of experimental design. (B-E) Filament model; n 5 10-11 male mice. (B) Left: representative magnetic resonance imaging from 1 mouse of each
genotype on day 1. White is the infarct area. Right: corrected mean infarct area of each genotype. (C) Survival rate between day 0 and day 7 after 60 minutes of transient
ischemia. (D) mNSS in the same mice at days 1, 3, and 7 based on spontaneous activity, symmetry in the movement of 4 limbs, forepaw outstretching, climbing, body
proprioception, and responses to vibrissae touch (higher score indicates a better outcome). (E) Fall latency in the accelerated rota-rod test. (F-I) Embolic model; n 5 10
male mice. (F) Infarction (%), (G) survival rate, (H) mNSS, and (I) fall latency. (F) Left: representative magnetic resonance imaging from 1 mouse of each genotype on day
1. White is the infarct area. Right: corrected mean infarct area of each genotype. The animals that successfully completed the particular neurologic test were included in
the analysis (see exclusion/inclusion criteria in “Methods”). Data are from an unpaired Student t test, mean 6 SEM (B-F) or median 6 range (D-E,H-I). Comparison of sur-
vival curves was evaluated by log-rank (Mantel-Cox) test (C,G) or by repeated measures ANOVA (Kruskal-Wallis test) followed by Fisher’s LSD test (D-E,H-I).
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Apoe2/2 mice exhibited improved stroke outcome in the
embolic model (Figure 2F-I).

Because higher mortality was observed in hyperlipidemic mice
after 1 hour of ischemia, we could not determine long-term
outcomes up to 4 weeks. Therefore, we reduced ischemia time
from 60 minutes to 30 minutes and evaluated sensorimotor
recovery up to 4 weeks (Figure 3A). Consistent with the results of
60 minutes ischemia, PKM2fl/flLysMCre1/2Apoe2/2 mice
exhibited reduced infarct area and improved neurologic outcome
(mNSS) from 1 week up to 4 weeks (P, .05 vs PKM2fl/fl Apoe2/2;
Figure 3B-C). Next, we performed a cylinder test, a sensorimotor
test to assess asymmetry in forelimb use during vertical
exploratory behavior inside a glass cylinder.We found significantly
enhanced sensorimotor recovery up to 4 weeks in PKM2fl/fl

LysMCre1/2Apoe2/2 mice (P , .05 vs PKM2fl/flApoe2/2;
Figure 3D). Furthermore, PKM2fl/flLysMCre1/2Apoe2/2 mice
exhibited improved motor function and improved motor strength
up to 4 weeks (P , .05 vs PKM2fl/flApoe2/2; Figure 3E-F). Next,
we performed a corner test, which is a combined postural,
sensory, and motor function test. PKM2fl/flLysMCre1/2Apoe2/2

mice exhibited reduced functional deficits (P , .05 vs PKM2fl/fl

Apoe2/2; Figure 3G). Together, these results suggest that dele-
tion of PKM2 in myeloid cells enhances the poststroke long-term
sensorimotor recovery.

Apoe deficiency in mice promotes blood-brain barrier break-
down and neuronal death, disrupts cerebrovascular reflexes,
and worsens ischemic perfusion defect.31,32 To rule out the role
of Apoe deficiency in PKM2-dependent worsening of stroke out-
come, we evaluated stroke outcome in another hyperlipidemic
model: low-density lipoprotein receptor–deficient (Ldlr2/2) mice
using a bone marrow transplantation approach (supplemental
Figure 8A). Complete blood counts did not differ between the
groups (supplemental Table 6). We observed significantly
improved stroke outcome in Ldlr2/2 mice that were transplanted
with bone marrow cells of PKM2fl/flLysMCre1/2 mice when com-
pared with Ldlr2/2 mice that were transplanted with bone mar-
row cells of control PKM2fl/fl mice (supplemental Figure 8B-C).

Myeloid cell–specific PKM22/2 mice exhibited
improved local cerebral blood flow and reduced
postischemia and postreperfusion
thromboinflammation
To determine whether improved stroke outcome in the PKM2fl/fl

LysMCre1/2Apoe2/2 mice was associated with reduced post-
ischemia and reperfusion, cerebral thrombosis, and improved
local cerebral blood flow, laser speckle imaging was performed at
different time points. We found that regional cerebral blood flow
was improved at 30, 60, and 120 minutes after reperfusion in
PKM2fl/flLysMCre1/2Apoe2/2 mice (P, .05 vs PKM2fl/fl Apoe2/2

mice; Figure 4A). Consistentwith these results, we observed signif-
icantly reduced intracerebral fibrinogen, platelet (CD411) deposi-
tion, and reduced thrombotic index in the PKM2fl/flLysMCre1/2

Apoe2/2 mice (Figure 4B-C). To evaluate poststroke inflamma-
tion, we quantified MPO levels, neutrophil elastase levels, NF-kB
activity, and cerebral neutrophil influx and cytokines. Peripheral
neutrophils of PKM2fl/flLysMCre1/2Apoe2/2 mice exhibited sig-
nificantly reduced MPO and elastase levels, decreased NF-kB
activity, and reduced neutrophil infiltration and cytokine levels in

the infarcted and peri-infarct regions (P, .05 vs PKM2fl/flApoe2/2

mice; Figure 5A-C; supplemental Figure 9A-B). Human studies
and experimental stroke models suggest that monocytes are
recruited into the ischemic area of brain, most abundantly at days
3 to 7 after stroke, so we analyzed brain monocyte and macro-
phage content at day 3 after stroke. By using immunohistochemis-
try, we found reduced macrophage content (CD681 cells) in
infarcted regions of PKM2fl/flLysMCre1/2Apoe2/2 when com-
pared with control PKM2fl/flLysMCre1/2 mice (supplemental
Figure 10).

PKM2 is known to phosphorylate STAT3 and regulate the
expression of several pro-inflammatory genes.6,10 We deter-
mined PKM2 interaction with STAT3 in neutrophils. Immunopre-
cipitation showed that PKM2 interacts with STAT3 (Figure 5D).
Immunoblot analysis revealed increased STAT3 phosphorylation
in neutrophils isolated from control PKM2fl/flApoe2/2 mice with
stroke compared with mice with sham control (Figure 5E, after 6
hours of reperfusion). Conversely, we observed significantly
reduced STAT3 phosphorylation in neutrophils isolated from
PKM2fl/flLysMCre1/2Apoe2/2 mice compared with PKM2fl/fl

Apoe2/2 mice (Figure 5E). Because activated STAT3 is known to
maintain constitutive NF-kB activity by prolonging NF-kB
nuclear retention,33 we analyzed NF-kB phosphorylation. We
found that NF-kB phosphorylation significantly increased in neu-
trophils isolated from control PKM2fl/flApoe2/2 mice with stroke
compared with mice with sham surgery. PKM2fl/flLysMCre1/2

Apoe2/2 mice exhibited reduced NF-kB phosphorylation in
neutrophils compared with PKM2fl/fl Apoe2/2 mice in the setting
of stroke (Figure 5E). Together, these results suggest that PKM2
regulates postischemic inflammation by promoting STAT3 phos-
phorylation in neutrophils. Next, we determined the effect of
PKM2 deletion on glycolytic proton efflux rate (glycoPER) in neu-
trophils by using a Seahorse extracellular flux analyzer. We
observed that neutrophils from the myeloid cell–specific PKM2-
deficient mice exhibit reduced glycoPER at baseline and when
stimulated with PMA (100 nM) (supplemental Figure 11).

ML265 treatment significantly reduces PKM2
nuclear translocation and neutrophil activation
after acute ischemic stroke
To evaluate the therapeutic significance of targeting PKM2 in
improving stroke outcome after reperfusion, we used ML265, a
small molecule that inhibits PKM2 nuclear translocation by induc-
ing PKM2 tetramerization.34 We first determined the in vivo dose
of ML265 that was required to significantly inhibit PKM2 nuclear
translocation in neutrophils after stroke. ML265 was administered
at 10, 25, or 50 mg/kg 5 minutes after reperfusion, and neutro-
phils were isolated 6 hours after reperfusion (Figure 6A). We
found that ML265 at 25 or 50 mg/kg significantly inhibited PKM2
nuclear translocation in neutrophils (Figure 6B). We therefore
selected a minimal dose of 25 mg/kg for further study and evalu-
ated inflammatory status in the peripheral neutrophils at 6 hours
of reperfusion. We observed significantly reduced levels of TNF-a,
IL-1b, and IL-6 and reduced NETosis (P , .05 vs vehicle;
Figure 6C-D). Next, we determined whether ML265 inhibits
glycolytic rate in neutrophils from the WT mice. We found ML265
(at 10 mM or 50 mM) did not reduce glycoPER in PMA (100 ng)–
activated neutrophils (supplemental Figure 12), suggesting that
improved stroke outcome after ML265 treatment is most likely
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Figure 3. Myeloid cell–specific PKM22/2 mice exhibit improved long-term sensorimotor recovery up to day 28. (A) Schematic of experimental design. (B) Left:
representative magnetic resonance imaging from 1 mouse of each genotype on day 1 in filament model. White is the infarct area. Right: corrected mean infarct area of
each genotype. (C) mNSS in the same mice at weeks 1, 2, 3, and 4 based on spontaneous activity, symmetry in the movement of 4 limbs, forepaw outstretching, climb-
ing, body proprioception, and responses to vibrissae touch (higher score indicates a better outcome). Sensorimotor recovery in the same mice as analyzed by asymme-
try index in cylinder test (D), fall latency in accelerated rota-rod test (E), motor strength in hanging-wire test (F), and right turn ratio in corner test (G). The data in panels
C-G are in box plots and the horizontal bars indicate median value. The animals that successfully completed the particular neurologic test were included in the analysis
(see exclusion/inclusion criteria in “Methods”). Data are mean 6 SEM (B) or median 6 range (C,G); n 5 10 male mice (B,G). Data are from an unpaired Student t test
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mediated because of the reduced thromboinflammation rather
than decreased glycolytic rate in neutrophils.

ML265-treated mice exhibited improved
long-term sensorimotor outcomes
We assessed stroke outcomes in ML265-treated mice. Male 10-
to 12-week-old WT mice were randomly assigned to receive
either ML265 (25 mg/kg) or vehicle, and susceptibility to ische-
mia or reperfusion injury was evaluated after 60 minutes of
ischemia and up to 4 weeks of reperfusion in the filament model
(Figure 7A). The schematic of the study design is shown in sup-
plemental Figure 13. Treatments were performed 5 minutes
after reperfusion; the individuals who performed the surgery and
monitored behavioral outcomes were blinded to the treatments.
A significant reduction in infarct area (�31%) was observed in
ML265-treated mice compared with control-treated mice
(Figure 7B). Next, using the same cohort of mice, we evaluated
neurological outcome (mNSS) for up to 4 weeks. We found
that the ML265-treated group exhibited significantly improved
mNSS compared with the vehicle-treated group (Figure 7C). To
evaluate the long-term sensorimotor outcome, we performed
corner test, rota-rod test, and hanging wire tests. We found
that the ML265-treated group exhibited significantly improved
long-term sensorimotor outcome compared with the vehicle-
treated group (Figure 7D-F), whereas the mortality rate did not

differ between the groups (Figure 7G). Next, we evaluated the
effect of targeting PKM2 treatment on stroke outcome in the
preexisting comorbid condition of hyperlipidemia. Male mice
8 to 10 weeks old were randomly assigned to receive either
ML265 (25 mg/kg) or vehicle, and stroke outcomes were evalu-
ated. We found that ML265 treatment significantly reduced
infarct area and improved neurologic score in PKM2fl/flApoe2/2

mice but not in PKM2fl/flLysMCre1/2Apoe2/2 mice (supplemen-
tal Figure 14). Comparable stroke outcome in ML265-treated
PKM2fl/fl LysMCre1/2Apoe2/2 mice and vehicle-treated PKM2fl/fl

LysMCre1/2Apoe2/2 suggests that ML265 most likely improves
stroke outcomes by inhibiting nuclear PKM2 translocation in mye-
loid cells.

Discussion
In the past, several strategies have been used to improve stroke
outcomes after reperfusion, including neuroprotective, antioxi-
dant, and anti-inflammatory agents.35 However, most of the strat-
egies have failed in large clinical trials, mainly because of the
complexity of human stroke, lack of rigor with the preclinical
assessment of these agents, and the design and implementation
of the clinical trials.36 Notably, several preclinical studies used
young, healthy mice without preexisting comorbidities. More-
over, with the notable exception of the ESCAPE-1 trial,37 no
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phase 3 trial was designed to determine whether neuroprotec-
tion could ameliorate the consequences of reperfusion by salvag-
ing penumbras.38 In this study, we implemented several STAIR/
RIGOR recommendations to overcome methodologic shortcom-
ings, and we demonstrated a mechanistic role for nuclear PKM2
in ischemic stroke pathogenesis. We believe that these findings
are novel and may have clinical significance for several reasons.
First, nuclear PKM2 was upregulated in peripheral neutrophils
after ischemic stroke in humans and mice, which contributes to
neutrophil hyperactivation. Second, using novel myeloid cell–
specific PKM2-deficient mice and filament and embolic models
of stroke, we provide in vivo evidence that PKM2modulates cere-
bral ischemia and reperfusion injury in both healthy participants
and in patients with preexisting comorbid conditions by regulat-
ing thromboinflammation. Third, as a translational potential, we
demonstrated that therapeutic inhibition of nuclear PKM2 translo-
cation improves stroke outcome and enhances long-term sensori-
motor recovery in mice. Our findings provide the until now
unidentified role of neutrophil PKM2 in regulating neutrophil
hyperactivation and poststroke thromboinflammation.

Inflammation predisposes to ischemic stroke and can trigger
several pathogenic aspects that are detrimental to brain salvage
and recovery after reperfusion. Gene expression profile changes
rapidly in blood after stroke in humans and occurs predomi-
nantly in neutrophils.39 These homeostasis changes in neutro-
phils, associated with stroke severity, may play an instrumental
role by contributing to systemic inflammation. Neutrophils
increase stroke severity by several mechanisms, including trig-
gering capillary sludging, generating free radicals, secreting
inflammatory mediators, and enhancing thrombosis via the for-
mation of neutrophil-platelet aggregates and NETs.27,40,41

Herein, we demonstrated that genetic deletion of PKM2 in
myeloid cells reduced inflammatory cytokines (TNF-a, IL-1b, and
IL-6) and downregulated several proinflammatory genes (MPO,
elastase, HIF1a, and IL-1b) within neutrophils after cerebral
ischemia or reperfusion. Importantly, we demonstrated that
either deletion of PKM2 in myeloid cells or inhibition of nuclear
PKM2 translocation with small-molecule ML265 improved short-
and long-term functional outcome. IL-6 in stroke patients is
known to be associated with poor clinical outcomes.42 TNF-a
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Figure 5. PKM2 mediates poststroke inflammation by promoting phosphorylation of STAT3 in neutrophils. (A) Left: representative image of flow cytometric analy-
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and IL-1b are known to enhance leukocyte migration to the
ischemic region, promote necrosis, increase endothelial dysfunc-
tion, disrupt the blood-brain barrier and increase edema forma-
tion after stroke.43 Together, these observations suggest that
nuclear PKM2 in neutrophils drives post-ischemic inflammatory
response by upregulating several pro-inflammatory genes and
thereby exacerbates stroke outcome.

After a stroke, the ischemic core undergoes permanent necrotic
cell death while the salvageable penumbral tissue is prone to fur-
ther neuronal cell death as a result of multiple mechanisms that
include excitotoxicity, oxidative stress, ionic imbalance, and inflam-
mation.44 Although intravenous thrombolysis and mechanical

thrombectomy are the pillars of acute stroke care, they do not tar-
get the mechanisms that can cause secondary brain damage in
the penumbral tissue. Moreover, the no-reflow phenomenon,
which is characterized by secondary microvascular cerebral throm-
bosis (primarily platelets and neutrophils), and penumbral tissue
damage despite successful recanalization are still unique prob-
lems. Herein, we observed that PKM2 regulates the formation of
NETs in the setting of ischemic stroke and myeloid cell–specific
deficiency of PKM2 improved regional cerebral blood flow after
reperfusion. Collectively, these observations suggest that PKM2
may potentiate post-ischemic secondary thrombosis, by promot-
ing NET formation, in addition to inflammation. NETs, which are
composed of chromatin and antimicrobial proteins (histones,
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myeloperoxidase, and elastase), are known to contribute to stroke
pathogenesis.25,27,45 Indeed, we found reduced expression of
MPO and elastase in peripheral neutrophils of myeloid
cell–specific PKM2-deficient mice after stroke. The precise

mechanism by which PKM2 potentiates formation of NETs remains
unclear and is still an area needing investigation. However, we
speculate that nuclear PKM2 may promote NETosis by aggravat-
ing the proinflammatory environment.
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15-16 mice. Data are from an unpaired Student t test (B), or 2-way repeated measures ANOVA (Kruskal-Wallis test) followed by Fisher’s LSD test (C,F). Comparison of
survival curves was evaluated by log-rank (Mantel-Cox) test (G).
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We also investigated the molecular mechanism by which mye-
loid cell–specific PKM2 promotes stroke exacerbation. Unlike
other isoforms of PK that exist and function as stable tetramers,
PKM2 subunits form tetramers and dimers composed of the
same monomers but with different biological activities. Evidence
suggests that only dimeric PKM2 can enter the nucleus to exert
protein kinase activity. Nuclear PKM2 interacts with STAT3,
enhances its phosphorylation at Y705, and is known to contrib-
ute to cell proliferation in cancer cells15 and inflammatory cyto-
kine production in macrophages.19 Although it is known that
PKM2 interacts with STAT3 in other cell types, the role of PKM2
in STAT3 phosphorylation in peripheral neutrophils in the con-
text of stroke is not defined. In this study, we observed that simi-
lar to other cell types, PKM2 interacts with STAT3 in neutrophils.
Genetic deletion of PKM2 significantly reduced phosphorylation
of STAT3 levels in peripheral neutrophils after stroke. STAT3 reg-
ulates granulocyte colony-stimulating factor (G-CSF)–dependent
accumulation of immature bone marrow neutrophils and acute
G-CSF–induced neutrophil mobilization,46 indicating the key role
of STAT3 in neutrophil function during a pro-inflammatory envi-
ronment. In addition, STAT3-deficient neutrophils have a cell-
autonomous defect in migration toward ligands for CXCR2, as
well as defective secretion of MPO.47 We found reduced MPO
and elastase levels after stroke in PKM2-deficient neutrophils in
line with these observations. Crosstalk between STAT3 and
NF-kB has been reported by several studies, including activation
of STAT3 by NF-kB–regulated factors such as IL-6.33,48 Recently,
it was shown that activated STAT3 maintains constitutive NF-kB
activity by prolonging NF-kB nuclear retention.33 Consistent with
these observations, we found that PKM2 deficiency in peripheral
neutrophils results in reduced NF-kB phosphorylation, reduced
NF-kB activity, and decreased proinflammatory cytokine produc-
tion after ischemic stroke. Although neutrophils from myeloid
cell–specific PKM2-deficient mice exhibited reduced glycolytic
rate, neutrophils after ML265 treatment did not exhibit reduced
glycolysis, suggesting that most likely the PKM2/STAT3/NF-kB
axis regulates neutrophil hyperactivation after cerebral ischemia
and thereby contributes to stroke severity.

The strength of this study is that we determined the role of
PKM2 by using both genetic and pharmacologic approaches in
2 different stroke models, in both sexes and in mice with
comorbidities. Despite its strengths, our study has limitations.
First, PKM2 is expressed by other cell types, including endothe-
lial cells, monocytes, macrophages, T cells, and platelets. The
possibility of potential unexpected and adverse physiological
adverse effects of blocking nuclear PKM2 in other cell types
cannot be ruled out. Nevertheless, we speculate that such a
scenario is unlikely because of the acute nature (single-dose) of
the ML265 treatment. Second, previous studies by other
groups have suggested an important role of macrophages49

and T cells in stroke pathogenesis.50 Thus, the possibility of
macrophage or T-cell–derived PKM2 in mediating stroke out-
come cannot be completely ruled out. Extending these studies
to other species (eg, hypertensive rats) may further validate the
therapeutic potential of these novel findings. In summary, we
have demonstrated a mechanistic role of PKM2 in regulating
neutrophil hyperactivation and acute ischemic stroke.
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