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KEY PO INTS

� Systemic IL-15 pro-
motes allogeneic cell
rejection by host T cells,
limiting clinical
responses to allogeneic
adoptive cellular
therapy.

� The cytokines delivered
affect the competitive
balance of host
immunity and in vivo
persistence of adoptive
NK cell therapy.

Natural killer (NK) cells are a promising alternative to T cells for cancer immunotherapy.
Adoptive therapies with allogeneic, cytokine-activated NK cells are being investigated in
clinical trials. However, the optimal cytokine support after adoptive transfer to promote
NK cell expansion, and persistence remains unclear. Correlative studies from 2 indepen-
dent clinical trial cohorts treated with major histocompatibility complex-haploidentical NK
cell therapy for relapsed/refractory acute myeloid leukemia revealed that cytokine sup-
port by systemic interleukin-15 (IL-15; N-803) resulted in reduced clinical activity, com-
pared with IL-2. We hypothesized that the mechanism responsible was IL-15/N-803
promoting recipient CD8 T-cell activation that in turn accelerated donor NK cell rejection.
This idea was supported by increased proliferating CD81 T-cell numbers in patients
treated with IL-15/N-803, compared with IL-2. Moreover, mixed lymphocyte reactions
showed that IL-15/N-803 enhanced responder CD8 T-cell activation and proliferation, com-
pared with IL-2 alone. Additionally, IL-15/N-803 accelerated the ability of responding
T cells to kill stimulator-derived memory-like NK cells, demonstrating that additional IL-15

can hasten donor NK cell elimination. Thus, systemic IL-15 used to support allogeneic cell therapy may paradoxically
limit their therapeutic window of opportunity and clinical activity. This study indicates that stimulating patient CD8
T-cell allo-rejection responses may critically limit allogeneic cellular therapy supported with IL-15. This trial was regis-
tered at www.clinicaltrials.gov as #NCT03050216 and #NCT01898793.

Introduction
Natural killer (NK) cells are a promising alternative to T cells for
allogeneic cellular immunotherapy because they have been
administered safely, naturally eliminate malignant cells, and are
amendable to cellular engineering.1 All NK products require sig-
naling through interleukin-2 (IL-2)/IL-15 cytokine receptor (IL-15R)
to promote their survival, expansion, and persistence.2 Enriched
conventional NK cell therapy has been tested in clinical trials for
patients with acute myeloid leukemia (AML), and have been sup-
ported mainly by low-dose IL-2.3,4 Memory-like (ML) NK cells,
which are induced after brief activation with the cytokines IL-12, IL-
15, and IL-18, are currently being advanced in the clinic and sup-
ported by low-dose IL-2.5-8 Studies suggest that a surge of endog-
enous IL-15 following lymphodepleting chemotherapy can
support transferredNK cells, and exogenous cytokinesmay be fur-
ther expand them in vivo.3,9,10 However, the optimal cytokine,
dose, and schedule to support transferredNKcells remain unclear.
Based on the importance of IL-15 for NK cell homeostasis and

function, coupled with a distinct IL-15:IL-15Ra transpresentation
receptor biology, IL-15R agonists have been advanced as an alter-
native to IL-2.11-14 Here, we investigated replacing IL-2 with the
longer acting IL-15R agonist N-803 (formerly known as ALT-803)
to promote NK cell persistence after transfer into patients. Unex-
pectedly, every 5-day systemic IL-15/N-803 administration limited
allogeneic NK cell therapy by expediting host T cell-mediated
rejection, resulting in reduced clinical activity.

Study design
Patient samples
Samples from patients treated on an open-label, nonrandomized,
phase 1 dose escalation trial are included in this study (NCT-
01898793; Figure 1A; supplemental Tables 1 and 2, available on
the Blood Web site).7,8 Written informed consent was obtained
from all patients under aWashington University School of Medicine
institutional review board–approved clinical protocol. Additional
samples were tested from trials at the University of Minnesota
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Figure 1. N-803 promotes donor NK and recipient CD8 T-cell expansion in vivo. (A) WUSTL and UMN trial schemas. Briefly, relapsed/refractory AML patients
were lymphodepleted with fludarabine (25 mg/m3 3 5) on study days -6 to -2 and cyclophosphamide (60 mg/kg 3 2) on study days -5 and -4. On study day -1,
related, haploidentical donors were apheresed, NK cells were purified (WUSTL) or enriched (UMN) and activated with IL-12, IL-15, and IL-18 (WUSTL), IL-2 (UMN
cohort 1), or N-803 (UMN cohort 2). Products were washed and infused into patients on study day 0 (NK purity for each cohort indicated as a percentage).
Infused products were supported with IL-2 (WUSTL/UMN cohort 1) or N-803 (WUSTL/UMN cohort 2). (B) N-803 concentration in the PB from patients at the
indicated times. (C) Donor NK cell expansion over time, as determined by flow cytometry between IL-2- (blue) and N-803 (purple) supported WUSTL patients
(IL-2 n 5 6; N-803 n 5 7). (D) Fold reduction in cells from day 21 compared with maximal measure NK cells, typically days 8 through 14. (E) Representative overlay
viSNE plot of purified donor NK cells (baseline, BL), infusion product (activated, ACT), and in vivo differentiated donor ML NK cells assessed by mass cytometry.
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(UMN) institutional review board (NCT01106950, NCT03050216;
Figure 1A; supplemental Tables 1 and 2). Informed consent was
given by all patients and donors for treatment and prospective data
collection in accordancewithDeclaration of Helsinki.

N-803 serum concentration
N-803 serum concentration was determined as previously
described (supplemental Methods).15

Mass cytometry
Mass cytometry staining, acquisition and analyses were per-
formed as previously described (supplemental Methods; supple-
mental Table 3).8,13,16

MLRs
Mixed lymphocyte reactions (MLRs) were performed as previ-
ously described (supplemental Methods).17

51Cr release killing assay
Cytotoxicity assays were performed as previously described
(supplemental Methods).18

Results and discussion
Allogeneic cellular therapies are enthusiastically being explored in
clinical trials. However, the best cytokine to support these trans-
ferred cells is unclear. Here, patients with relapsed/refractory AML,
including MRD1 patients,19 were treated with major histocompati-
bility complex (MHC)-haploidentical, related donor-derived ML NK
cell infusions that were supported with IL-2 (N5 15) or N-803 (N5

8; NCT01898793; supplemental Tables 1 and 2; Figure 1A) at
Washington University in St Louis (WUSTL cohorts).8 In separate tri-
als at UMN (UMN cohort), comparable patients were treated with
CD3-depleted/enriched NK cells activated and supported in vivo
with IL-2 (NCT01106950; N5 32) or N-803 (NCT03050216; Figure
1A; N 5 7; supplemental Tables 1 and 2).4 Clinical response rates
by International Working Group criteria20 were significantly
different between the 2 treatment cohorts at WUSTL with 47%
(7/15)8 achieving complete remission (CR)/complete remission with
incomplete count recovery (CRi) with IL-2 support and 0% (0/8)
patients achieving CR/CRi with N-803 support given every 5 days
(P, .05; Figure 1A). For UMN, patients with IL-2 support had a 28%
CR/CRi (9/32),4 whereas patients supported with N-803 had 14%
CRi (1/7; Figure 1A; supplemental Tables 1 and 2). Despite AML
heterogeneity and the limitations in comparing these separate
studies, these findings suggest that supporting allogeneic/
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Figure 1 (continued) (F-J) WUSTL patient CD8 T cells from PBMC and bone marrow (BM) were assessed by mass cytometry at the indicated days after NK cell
infusion. (F-G) Summary data depicting recipient CD8 T-cell frequency (of CD451 lymphocytes) in the (F) PBMC (IL-2; day 7 n 5 8, day 14 n 5 3; N-802 n 5 6) and
(G) BM (day 7 n 5 4, day 14 n 5 3). (H) Summary data showing percent Ki-671 CD8 T cells in recipient BM at 7 and 14 days, after NK cell infusion (day 7 n 5 4, day 14
n 5 3). (I-J) Summary data showing absolute CD81 (I) and Ki671 CD8 (J) T-cell numbers in the PBMC at the indicated days after infusion (IL-2 day 7 n 5 8, day 14
n 5 3; N-802 n 5 6). (K-N) Patients treated on UMN trials using IL-2 activated NK cells supported in vivo with IL-2 (gold) or N-803 (red) were also assessed by mass
cytometry (see schema, supplemental Figure 2). Summary data depicting percent CD8 T cells from the (K) PBMC before (day 0) and the indicated days after NK cell
infusion (IL-2 day 0 n 5 6, day 7 n 5 3, day 14 n 5 6; N-802 day 0 n 5 3, day 7 n 5 2, day 14 n 5 3), (L) BM (IL-2 n 5 6; N-802 day 0 n 5 3, day 14 n 5 5). Summary
data depicting percent CD4 T cells from the (M) PBMC and (N) BM. Summary data were analyzed using 2-way analysis of variance. Mean is depicted with error
represented as standard error of the mean. P values are indicated within the graphs; no significant differences were detected in panels K-N.
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Figure 2. N-803 hastens T-cell activation and allogenic rejection in mixed lymphocyte reactions. (A) MLR experimental design. Briefly, PBMCs were carboxyfluorescein
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MHC-haploidentical NK cells with N-803 reduced the expected
outcomes for patients andwarranted further investigation.

With this dose and schedule of N-803, high IL-15 levels could be
detected for weeks (Figure 1B), consistent with prior studies.13

Donor ML NK cell expansion was monitored using donor- or
recipient-specific anti-HLA monoclonal antibodies by flow cytom-
etry (Figure 1C).7,8 Despite similar NK cell doses (supplemental
Figure 1A,B), donor NK cells supported with N-803 had a higher
number of cells present at peak expansion (days 7-14) in line with
prior reports,13,14 but were rapidly reduced (Figure 1C,D).
Although total NK cell numbers are not significantly different at
day 21 (mean 6 standard deviation; 4.2 6 2.6 N-803 vs 87.4 6

118.0; P 5 .086), these data suggest that N-803 promoted
increased numbers of NK cells in the peripheral blood (PB) at
early timepoints but not persistence, compared with IL-2. Mass
cytometry revealed that NK cells supported with N-803 in vivo
were distinct from purified donor NK cells and infusion product
(Figure 1E). N-803-supported ML NK cells demonstrated the
expected multidimensional ML NK cell phenotype (supplemental
Figure 1C).8 These data indicated that NK cells were similar in
the IL-2 and N-803 cohorts, suggesting other factors within the
recipient contributed to poor responses and NK cell loss follow-
ing N-803 support.

CD8 T cells also respond to IL-15 (N-803) in vivo, although to a
lesser extent than NK cells.13 Mass cytometry revealed that recipi-
ent T cells in the PB and bonemarrow were significantly increased
in frequency with N-803 support compared with IL-2 (Figure
1F,G), corresponding to increased proliferation (Ki-67) in the recip-
ient bone marrow CD8 T cells (Figure 1H), a trend in increased
total PB CD8 T cells (Figure 1I), and increased total Ki-671 CD8 T
cells in the PB (Figure 1H). Although the IL-2 UMN cohort samples
were limited, similar results were observed in comparing the UMN
studies (Figure 1K,L; supplemental Tables 1 and 2), and CD4 T
cells were not differentially regulated (Figure 1M,N). Together,
these data suggest that N-803 activated recipient CD8 T cells to a
greater extent than low-dose IL-2. We hypothesized this resulted
in accelerated NK cell rejection, thereby shortening the opportu-
nity for NK cell anti-AML responses.

To determine if IL-15 could impact allogeneic rejection by T cells
in vivo, MLRs were performed (Figure 2A). PB mononuclear cells
(PBMCs) were incubated with irradiated allogenic stimulator cells
with IL-2 (10 U/mL), N-803, or with IL-2 and N-803 concentra-
tions.21 T-cell proliferation and activation were assessed by flow
cytometry (Figure 2B-D; supplemental Figure 3). N-803/IL-15 sup-
ported earlier proliferation (carboxyfluorescein diacetate succini-
midyl ester dilution) and upregulation of activation markers CD25
and CD38 on both T-cell subsets. However, by day 11, there were
no significant differences between the IL-2 and N-803 incubated

conditions. These data indicated thatN-803/IL-15 promote acceler-
ated activation against allogeneic target cells. Next,MLNKcells dif-
ferentiated from the allogeneic stimulator cells were used as targets
in short-term cytotoxicity assays, where PBMCs from theMLR at day
10 were used as the effectors (Figure 2E). Effector T cells activated
in the presence of N-803 exhibited significantly increased ML NK
cell killing, comparedwith IL-2 (Figure 2F). The increased killing was
mediated by CD8 T cells because cytotoxicity was abrogated when
MHC-I was blocked (Figure 2G; supplemental Figure 3).22 Modest
contributions from FAS/FAS-L to target cell killing were also
detected (Figure 2H,I; supplemental Figure 3). Together, these
data indicate that N-803 promotes a faster, more robust T-cell
response against allogenic NK cells, mediated in part by CD8
T cells.

Here we show that every 5-day IL-15/N-803 support resulted in
sustained levels of IL-15 in serum and had the unintended con-
sequence of shortening the window of opportunity allogeneic
NK cells had to mediate their antitumor responses. Although
N-803 administration resulted in higher short-term NK cell levels
in the PB at peak expansion, as expected from the first-in-
human trial,13 this did not result in improved outcomes, suggest-
ing that NK cell persistence is an important parameter for clinical
efficacy. In other studies at Washington University, weekly N-803
has been successfully used to support NK cell expansion and
durability for .2 months, when the NK cells and the T cells are
immune compatible (from the same donor).10,23 Additionally,
Cooley et al observed that the route and type of IL-15 adminis-
tration could be important. Subcutaneous recombinant human
IL-15 dosing lead to higher, more prolonged IL-15 concentra-
tions and increased the incidence of cytokine release syndrome
and immune effector cell-association neurotoxicity syndrome,
compared with IV application, without improving clinical
responses, likely from enhanced T-cell activation.14 Miller et al
described an association between increased IL-15 serum levels
following lymphodepletion and allogeneic NK cell expansion.3

However, the endogenous IL-15 levels observed after lympho-
depletion are much lower than those achieved with subcutane-
ous N-803 administration. This suggests that low doses of IL-15
may not negatively impact allogeneic NK cell persistence, but
this remains to be tested. As enthusiasm for NK cellular thera-
pies rises, strategies that promote NK cell persistence in vivo
are of great interest.24 Multiple groups are now engineering
IL-15 into their NK cellular products.24,25 The effective local
IL-15 concentration generated by these engineered products
may promote NK cell persistence, as well as recipient T-cell acti-
vation and thus NK cell allo-rejection. The IL-15 mechanism
reported here will assist in interpreting the allogeneic NK cell
persistence within these trials as data become available. These
data provide a warning about systemic IL-15 combined with allo-
geneic effector cells because it clearly impacts the balance

Figure 2 (continued) from stimulator donor were 12/15/18-activated and allowed to differentiate into ML-NK in parallel. (B-C) CD8 T cells were examined by flow
cytometry from days 4 through 11 after incubation with allogenic stimulators. (B) Representative histograms depicting proliferation (CFSE dilution) and activation
markers CD25 and CD38. (C) Summary data from panel B. (D) Summary data from CD4 T cells as examined in panels B and C. (E-I) 51CR-release killing assays using
MLR-stimulated PBMCs (R; responder) as effectors against allogeneic in vitro differentiated ML NK cells as targets. (E) Killing assay schema. PBMCs were harvested
from MLR on day 10 and cocultured with 51Cr-pulsed ML NK cells (matched to original allogenic stimulator [S] cells; S-ML NK) and killing assessed. (F) Summary
data from panel E. (G-I) PBMCs incubated with IL-2 and 35 ng/mL N-803 were incubated with anti-MHC-I (G), anti-FAS-L (H), or anti-TRAIL (I) before addition of
labeled ML-NK targets and allogenic killing assessed in the presence of blocking antibodies. N 5 6 normal donor responders, 4 normal donor stimulator/targets in 2
independent experiments. Data were analyzed using 2-way analysis of variance, *P , .05, **P , .01, ***P , .001. Unless indicated (purple asterisk), statistics are for
each condition, compared with IL-2 only condition. Purple asterisk indicates significance for 35 ng/mL N-803 1 IL-2 compared with IL-2 only. Mean is depicted with
error represented as standard error of the mean.
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between recipient T cells and donor cells, and suggests the gc
cytokine, route, dose/interval, and formulation are important fac-
tors to consider for each therapy.
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