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KEY PO INTS

� In the absence of
HBO1, H3K14ac is lost,
and hematopoietic
stem cells differentiate
into progenitors at the
expense of self-
renewal.

� HBO1 governs stem
cell quiescence and self-
renewal by promoting
gene transcription,
including Gata2, Mpl,
Erg, Pbx1, Meis1, and
Hoxa9.

The histone acetyltransferase HBO1 (MYST2, KAT7) is indispensable for postgastrulation
development, histone H3 lysine 14 acetylation (H3K14Ac), and the expression of embry-
onic patterning genes. In this study, we report the role of HBO1 in regulating hematopoi-
etic stem cell function in adult hematopoiesis. We used 2 complementary cre-recombinase
transgenes to conditionally delete Hbo1 (Mx1-Cre and Rosa26-CreERT2). Hbo1-null mice
became moribund due to hematopoietic failure with pancytopenia in the blood and bone
marrow 2 to 6 weeks after Hbo1 deletion. Hbo1-deleted bone marrow cells failed to repo-
pulate hemoablated recipients in competitive transplantation experiments. Hbo1 deletion
caused a rapid loss of hematopoietic progenitors. The numbers of lineage-restricted pro-
genitors for the erythroid, myeloid, B-, and T-cell lineages were reduced. Loss of HBO1
resulted in an abnormally high rate of recruitment of quiescent hematopoietic stem cells
(HSCs) into the cell cycle. Cycling HSCs produced progenitors at the expense of self-
renewal, which led to the exhaustion of the HSC pool. Mechanistically, genes important
for HSC functions were downregulated in HSC-enriched cell populations after Hbo1 dele-
tion, including genes essential for HSC quiescence and self-renewal, such as Mpl, Tek(Tie-2),

Gfi1b, Egr1, Tal1(Scl), Gata2, Erg, Pbx1, Meis1, and Hox9, as well as genes important for multipotent progenitor cells
and lineage-specific progenitor cells, such as Gata1. HBO1 was required for H3K14Ac through the genome and particu-
larly at gene loci required for HSC quiescence and self-renewal. Our data indicate that HBO1 promotes the expression
of a transcription factor network essential for HSC maintenance and self-renewal in adult hematopoiesis.

Introduction
Adult hematopoiesis is a coordinated process in which hemato-
poietic stem cells (HSCs) differentiate via cell lineage decision
steps into mature blood cells while at the same time maintaining
the HSC pool through self-renewal.1 In order to keep a stable
HSC pool and prevent HSC exhaustion, HSCs capable of long-
term reconstitution of an irradiated host (LT-HSCs) enter the cell
cycle, divide, and then return 1 or 2 daughter cells to quies-
cence (G0) until the next self-renewing cycle is required.1,2 In
mice, LT-HSCs divide infrequently3 and only occasionally con-
tribute to adult steady-state hematopoiesis.4,5 Both extrinsic sig-
nals originating from the HSC niche and cell-intrinsic factors play
important roles in maintaining HSC quiescence and regulating
self-renewal.1,2

HSCs are heterogeneous and can display distinct lineage bias
after transplantation.3,6,7 Epigenetic mechanisms, at least in

part, underlie this phenomenon8,9 and epigenetic regulators
have profound effects on HSC function.10 For example, the
DNA methyltransferase DNMT3a is required for HSC differentia-
tion but not HSC self-renewal.11 Posttranslational modifications
of histones, in particular histone methylation and acetylation, are
required for regulation of gene expression12 and have critical
roles in HSC function. For example, the methyltransferase mixed
lineage leukemia 1 protein (MLL1) is required for definitive
hematopoiesis, but interestingly its enzymatic activity appears to
be dispensable.13-15 Conversely, the MYST family lysine acetyl-
transferase 6A (KAT6A/MOZ/MYST3) is essential for HSC forma-
tion during embryogenesis and maintenance of adult HSCs,16-18

which requires its acetylation activity.19 Similarly, another MYST
protein, MOF (KAT8), is required for HSC maintenance and
engraftment.20 A complete understanding of HSC function
therefore necessitates detailed knowledge of the role of chro-
matin regulators in hematopoiesis.
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HBO1 (MYST2/KAT7) is a member of the MYST family of histone
acetyltransferases that includes KAT6A, KAT6B (MYST4/MORF/
QKF), MOF (MYST1/KAT8), and TIP60 (KAT5/HTATIP).21 HBO1
was first identified as a protein binding to the origin of ORC122

and proposed to be essential for cell proliferation.23 However,
embryonic tissues,24 embryonic fibroblasts,24 and adult thymo-
cytes25 can proliferate without HBO1.26 Instead, loss of HBO1
affects gene expression and cell viability during embryogene-
sis24 and T-cell development.25 Hbo1 germline deletion impairs
embryonic patterning gene expression and results in develop-
mental arrest at embryonic day 8.5 (E8.5).24 Hbo1 deletion dur-
ing T-cell development results in reduced numbers of peripheral
CD41 or CD81 cells but does not alter the T-cell receptor reper-
toire or block thymocyte maturation.25 Hbo1 has been shown to
be essential for the progression of leukemic stem cells, suggest-
ing that HBO1, like KAT6A and KAT6B, might be a clinically rel-
evant therapeutic target.27-29

HBO1 is the enzymatic component of a chromatin modifying
protein complex together with a variety of alternative adaptor
proteins that may include JADE or BRPF and ING family pro-
teins together with MEAF6.23,30-33 HBO1, depending on the
presence of JADE or BRPF proteins, specifically acetylates his-
tone H4 or histone H3, respectively.30,33 Furthermore, the levels
of HBO1 occupancy on gene loci have been shown to be corre-
lated positively with the level of gene expression.31,34 HBO1 is
crucial for H3K14 acetylation (H3K14ac) in fetal liver erythro-
blasts,31 mouse embryonic development,24 and T-cell develop-
ment25 and promotes gene transcription.

In this study, we have used inducible and tissue-specific genetic
deletion to investigate the function of HBO1 in the hematopoi-
etic system. Our data indicate that HBO1 promotes expression
of multiple genes encoding a hematopoietic transcription factor
network essential for HSC quiescence and self-renewal in adult
hematopoiesis.

Material and methods
Mice
Experiments were approved by the Walter and Eliza Hall Institute
Animal Ethics Committee and conformed to the Australian Code
of Practice. Mice (C57BL/6 background) were used between 9 to
14weeks of age and kept in a 12-hour light and 12-hour dark cycle
at 22�C. The ethical endpoint was determined as .15% weight
loss and anemia. Mice that had reached the ethical endpoint were
euthanized.

Flow cytometry and competitive
transplantation assays
Flow cytometry was performed as described in supplemental
Methods, available on the Blood Web site; cells were identified
using cell surface markers (supplemental Table 1). One million
to 5 million viable bone marrow cells at test-competitor ratios of
4:1 to 1:1 were injected into the lateral tail veins of lethally irradi-
ated (2 doses: 5.5 Gy separated by 3 hours) CD45.1 C57BL/6
congenic recipients as previously described.18

Assays of committed progenitors
2.5 3 104 control bone marrow cells or cells lacking HBO1 were
cultured in 1 mL of 0.3% agar and stimulated using purified

growth factors: stem cell factor (SCF, 100 ng/mL), erythropoietin
(2 U/mL), and/or interleukin-3 (IL-3, 10 ng/mL). Cultures were
incubated at 37�C for 7 days, then fixed, stained, and counted
as described.35

In vitro HSC culture and NUMB staining
Lineage2, cKIT1, SCA11 (LSK)CD1501 fluorescence-activated
cell sorter (FACS)-sorted cells were plated on 8-well chamber
slides coated with green fluorescent protein (GFP)-labeled OP9
feeder cells. Cells were cultured in StemSpan serum-free
medium (Stem Cell Technologies) with SCF (30 ng/mL) and FLT-
3 ligand (30 ng/mL) overnight. Nocodazole (20 nM) was added
after �16 hours. Cells were cultured for a further 24 hours and
stained for NUMB (Cell Signaling; 1:100) and GFP (Invitrogen;
1:400) as described.36,37 Cells were counterstained with 49,6-dia-
midino-2-phenylindole (DAPI). Images were taken with Zeiss Axi-
oplan2 or Zeiss LSM 780 confocal microscope.

RNA-seq and analysis
RNA (50 ng) isolated from FACS-sorted LSK or progenitor cells
was used to generate barcoded sequencing libraries. Paired-
end 80 bp RNA-sequencing (RNA-seq) short reads were gener-
ated using NextSeq500 (Illumina), between 20 million and 48
million read pairs for each sample. Reads were aligned to the
Mus musculus genome (mm10) using Rsubread.38 The number
of read pairs overlapping mouse Entrez genes was summarized
using featureCounts and Rsubread’s built-in National Center for
Biotechnology Information gene annotation.

CUT&Tag sequencing
CUT&Tag sequencing was performed to detect H3K14ac levels
in Hbo1fl/fl;Mx1-Cre vs Hbo1fl/1;Mx1-Cre control mouse LSK
cells as described39 with Drosophila melanogaster Schneider
cell spike-in. The distribution of HBO1 genome occupancy was
assessed in control cells.

Statistical analyses
Statistical analyses, other than the RNA-seq analysis, were car-
ried out using SigmaStat 3.5 (Systat Software Inc, USA). Data
were analyzed using 2-tailed Student t tests.

Further experimental details are provided in supplemental
Materials.

Results
To determine HBO1 functions in adult hematopoiesis, we exam-
ined mice in which Hbo1 exon 1 (flanked by loxP sites24) was
deleted using 2 different cre-recombinase transgenes,Mx1-Cre40

(Hbo1Mx1Cre hereafter) or Rosa26-CreERT241 (Hbo1CreER here-
after). Two different cre-recombinases were used to control for the
specific effects of induction of each cre-recombinase, as well as for
the induction treatments (poly[I:C], tamoxifen). Excision of exon 1
generates a null allele.24

Hbo1 deletion causes lethality and a loss of
hematopoietic stem cells in adult mice
In order to determine the long-term effect of Hbo1 deletion on
hematopoiesis and survival, Hbo1 deletion was induced with
tamoxifen in Hbo1CreERmice (Figure 1A). Hbo1fl/1;CreER control
mice did not show obvious signs of illness during the 6-week study
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period. In contrast, Hbo1fl/fl;CreER mice showed pale foot pads,
hunched posture, inactivity, and loss of appetite. They reached the
ethical endpoint between 2 and 6 weeks after the first tamoxifen
treatment (Figure 1B). Histology of the sternums showed fewer

bone marrow cells and increased adipose infiltration in Hbo1fl/fl;
CreER mice (Figure 1C). The number of peripheral, lymphocytes,
and monocytes were significantly reduced by 29%, 32%, and 83%,
respectively, in Hbo1fl/fl;CreER mice compared with Hbo1fl/1;
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Figure 1. Hbo1 deletion causes hematopoietic failure and death. (A) PCR genotyping (wild-type [WT] Hbo1 allele product 190 bases; floxed Hbo1 allele 283 bases;
deleted Hbo1 allele 358 bases24) showing Rosa26-CreERT2 (CreER)-mediated Hbo1 deletion in bone marrow from Hbo1fl/1;CreER and Hbo1fl/fl;CreER mice (n 5 7
animals per genotype) treated 33 with tamoxifen (150 mg/kg body weight [BW] per dose, doses 48 hours apart). Samples were collected from 1 pair of age- and
gender-matched Hbo1fl/1;CreER and Hbo1fl/fl;CreER mice when each Hbo1fl/fl;CreER mouse reached the ethical endpoint. (B) Kaplan-Meier survival curve after
CreER-mediated Hbo1 deletion; representative sections from n 5 7 animals per genotype examined. (C) Hematoxylin- and eosin-stained sternum sections displaying
the bone marrow (n 5 7 animals per genotype). (D) Peripheral blood analysis results (n 5 7 animals per genotype). (E) Representative FACS plots of LSK cells and
HSCSLAM, MPPSLAM, and progenitor cells in the bone marrow of Hbo1fl/1;CreER and Hbo1fl/fl;CreER mice (n 5 7 animals per genotype); percentage of viable cells
indicated. Data are displayed as mean 6 standard error of the mean (SEM) and were analyzed using a 2-tailed Student t test. Detailed flow cytometry gating strategies
are displayed in supplemental Figure 1. HCT, hematocrit; HGB, hemoglobin; RBC, red blood cell count; WBC, white blood cell count.
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CreERmice (Figure 1D).Hbo1fl/fl;CreERmice had a�56% to�67%
reduction in hematocrit, red blood cell number, hemoglobin, and
platelets (Figure 1D). These results indicated that loss of HBO1

caused a multilineage defect. FACS analyses showed a �87% re-
duction in CD1501CD482 HSCs inHbo1fl/fl;CreERmice compared
with Hbo1fl/1;CreER mice (0.005 6 0.001% vs 0.03 6 0.003% of
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Figure 2. Hbo1 deletion causes a marked reduction in HSCs and progenitor cells, whereas peripheral white blood cell counts are still normal. Hbo1fl/1;CreER
and Hbo1fl/fl;CreER mice (n 5 3 animals per genotype) were gavaged 33 with tamoxifen (150 mg/kg BW per dose, doses 24 hours apart for the 3 day collection or 48
hours apart for the 7 day collection). Bone marrow was collected 3 days (A-B) or 7 days (C-D) after the first tamoxifen treatment. (A,C) Bone marrow stem cell and
progenitor subtypes as indicated and assessed by flow cytometry. (B,D) Peripheral blood analysis (Advia). Data are displayed as mean 6 SEM and were analyzed using
a 2-tailed Student t test. Detailed flow cytometry gating strategies are displayed in supplemental Figure 1. Results using a different cre-recombinase transgene,
Mx1-Cre, are displayed in supplemental Figure 3.
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live cells, P5 .00002; Figure 1E), supporting the notion that Hbo1
deletion leads toHSCs exhaustion.

Loss of HBO1 causes a rapid decline in
hematopoietic stem and progenitor cells (HSPCs)
before defects are observed in the
peripheral blood
We used 2 methods to assess HSCs in detail: the HSCSLAM

population42 (lineage2, cKIT1, SCA11, CD1501, CD482 5 LSK.
CD1501CD482) and the double-negative HSC population (HSCDN

5 LSK.CD342FLT3243-46; detailed gating strategy in supplemental
Figure 1).

Three days after commencing the induction of Hbo1 deletion
with tamoxifen, CD34 and FLT3 double-negative HSCDN, short-
term repopulating HSC (ST-HSCs: LSK.CD341FLT32), hematopoi-
etic progenitor cells 1 and 2 (HPC1: LSK.CD1502CD481; HPC2:
LSK.CD1501CD481), and cKIT1SCA12 progenitor cells were

significantly reduced in the Hbo1fl/fl;CreER bone marrow com-
pared with Hbo1fl/1;CreER controls (eg, threefold HSCDN and
twofold reduced progenitor cell number; Figure 2A). In contrast,
bone marrow cellularity and numbers of CD1501CD482 HSCSLAM

and multipotent progenitors (MPP: LSK.CD341FLT31; MPPSLAM:
LSK.CD1502CD482) were not affected at this early time point
(Figure 2A). Likewise, none of the peripheral blood parameters
measured were different between genotypes (Figure 2B).

Seven days after induction of Hbo1 deletion with tamoxifen,
all stem and progenitor cell populations (excepting the
MPPSLAM cells) were significantly reduced between two- and
sixfold; HSCDN and HSCSLAM numbers were reduced by 82%
and 49%, respectively (Figure 2C). In contrast, peripheral
blood parameters remained similar between genotypes
(Figure 2D). Poly(I:C)/Mx1Cre-mediated deletion of Hbo1
also resulted in a reduction in HSCDN, HSCSLAM, HPC2, and
cKIT1SCA12 progenitor cells 7 days after treatment (supple-
mental Figure 2). Apart from overlapping effects on these
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Figure 3. HBO1 is required for the repopulating ability of HSCs. (A-E) Two million bone marrow donor cells from Hbo1fl/1;CreER or Hbo1fl/fl;CreER mice (CD45.21;
n 5 4 animals per genotype) were collected 1 week after the first dose of tamoxifen and transplanted with 0.5 million WT competitor cells (CD45.11) into 3 lethally irra-
diated C57BL/6 congenic recipients (CD45.11, 2 doses of 5.5 Gy separated by 3 hours). (A) Experimental design and timeline. (B) Percentage contribution of CD45.21
donor cells to peripheral white blood cells over time after transplantation assessed by flow cytometry. (C) Representative FACS plots indicating contribution of competi-
tor cells (CD45.11) and donor cells (CD45.21) in peripheral blood 16 weeks after bone marrow transplantation. (D-E) Representative FACS plots and enumeration of the
contributions of competitor and donor cells in the HSPC compartments of the bone marrow. Percentages of parental gate are indicated on the FACS plots. Data are
displayed as mean 6 SEM and were analyzed using a 2-tailed Student t test. The same experiment but using the Mx1-Cre to delete Hbo1 is displayed in supplemental
Figure 4.
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cell populations, differences were observed in the effects of
Mx1Cre-mediated deletion of Hbo1 compared with CreER-
mediated deletion, including a reduction in peripheral white
blood cell count. The differences may be due to an interac-
tion between Hbo1 deletion and an interferon response
induced by poly(I:C) (supplemental Figure 2).

HBO1 is required for the repopulation capacity
of HSCs
We performed competitive transplantation experiments to test
the repopulating ability of HSCs lacking HBO1. Hbo1fl/1;CreER
and Hbo1fl/fl;CreER mice were injected with 3 doses of tamoxi-
fen, and their bone marrow was transplanted 7 days after the
first injection (Figure 3A). Donor cells (2 3 106, CD45.21)
together with WT competitor cells (5 3 105, CD45.11) were
injected into lethally irradiated recipient mice (CD45.11). Periph-
eral blood was analyzed at 4, 8, 12, and 16 weeks after trans-
plantation. As expected, Hbo1fl/1;CreER donor cells competed
effectively and contributed 56% to 86% of peripheral blood cells

in bone marrow chimeras 12 to 16 weeks after bone marrow
transplantation (Figure 3B-C). In contrast, no contribution above
background levels of Hbo1fl/fl;CreER donor cells was detected in
peripheral blood 4 to 16 weeks after transplantation (0.3 6

0.1% at 16 weeks, Figure 3B-C). There was no contribution of
Hbo1fl/fl;CreER donor cells to HSPC compartments (HSCSLAM,
0.01 6 0.01%; progenitors, 0.05 6 0.01%, Figure 3D-E). Similar
results were obtained after Mx1Cre-mediated deletion of Hbo1
(supplemental Figure 3). Heterozygous deletion of Hbo1 in
Hbo1fl/1 mice using CreER did not affect the main acetylation
target of HBO1, H3K14ac levels, and had no effect on the repo-
pulation activity in competitive bone marrow transplantation
assays (Figure 3B; supplemental Figure 4).

HBO1 is essential for the maintenance of the
HSC pool
CreER or Mx1Cre transgene activation in bone marrow donor
mice prior to transplantation causes Hbo1 deletion in stromal
cells, which might contribute to the hematopoietic defects. To
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exclude this possibility, we transplanted Hbo1fl/1;CreER or
Hbo1fl/fl;CreER donor cells and WT competitor cells into lethally
irradiated recipients (CD45.11; Figure 4A). Four months later,
recipient mice were treated with 3 doses of tamoxifen 48 hours
apart, and peripheral blood was examined at 4, 8, 12, and 16
weeks after tamoxifen treatment. Before tamoxifen-induced dele-
tion, both Hbo1fl/1;CreER and Hbo1fl/fl;CreER donor cells
(CD45.21) reconstituted successfully and contributed �35% of

peripheral blood cells (“Before,” Figure 4B). After tamoxifen
treatment, the contribution of Hbo1fl/1;CreER cells remained at
37% to 47% (indicating heterozygous loss of Hbo1 conferred no
disadvantage), whereas the contribution of Hbo1fl/fl;CreER cells
in peripheral blood gradually declined to only 2.3 6 0.3% at 16
weeks after tamoxifen treatment (Figure 4B-C). Hbo1fl/fl;CreER
cells displayed a significantly reduced contribution to the HSPC
compartments 16 weeks after tamoxifen treatment (HSCSLAM,

p = 0.001
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mals per genotype) were injected 33 with poly(I:C) (2.5 mg/kg BW per dose, doses 48 hours apart). Bone marrow was collected 7 days after the first poly(I:C) injection.
Representative FACS plots and percentages of HSCSLAM at different stages of the cell cycle. Note the more than twofold increase in cells in S phase. (C-D) Hbo1fl/1;CreER
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DAPI (blue; GFP green, not shown). (F) Enumeration of cells with division patterns of SS, AS, or SD division in LSKCD1501 cells. (G) Model proposing HSCs lacking
HBO1 exited the quiescent state through SD instead of SS division and consequently declined in numbers. Data are displayed as mean 6 SEM and were analyzed using
a 2-tailed Student t test.

HBO1 REGULATES HEMATOPOIETIC STEM CELL FUNCTIONS blood® 10 FEBRUARY 2022 | VOLUME 139, NUMBER 6 851

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/139/6/845/1869789/bloodbld2021013954.pdf by guest on 07 M

ay 2024



p = 0.02

–3
–2.5

–2
–1.5

–1
–0.5

0
Mpl Tek

Lo
g2

-fo
ld

-ch
an

ge

FDR
< 10–6

FDR
1�10–5

0

–0.5

–1

–1.5

Pbx1

Lo
g2

-fo
ld

-ch
an

ge

FDR
< 10–6

0

–0.2

–0.4

–0.6

–0.8

Meis1

Lo
g2

-fo
ld

-ch
an

ge

FDR
1�10–6

0

–0.5

–1

–1.5

–2

Gfi1b Egr1
Lo

g2
-fo

ld
-ch

an
ge

FDR
2�10–2

FDR
0.01

0

–0.5

–1

–1.5

H
ox

a3

H
ox

a5

H
ox

a6

H
ox

a7

H
ox

a9

H
ox

a1
0

Lo
g2

-fo
ld

-ch
an

ge

FDR
5�10–4

FDR
< 10–6

FDR
2�10–3

FDR
< 10–6

FDR
< 10–6

FDR
7�10–6

0
–0.1
–0.2
–0.3
–0.4
–0.5
–0.6

Stat5a

Lo
g2

-fo
ld

-ch
an

ge

FDR
1�10–4

0

–0.5

–1

–1.5

Gata1 Gata2

Lo
g2

-fo
ld

-ch
an

ge

FDR
7�10–5

FDR
5�10–6

A

D

E

G

F

C

577
898

2229
1967

590
608

LSK Progenitor

0%0%
20%20%
40%40%
60%60%
80%80%
100%100%>512 RPKM

256–512 RPKM

128–256 RPKM

64–128 RPKM

32–64 RPKM

16–32 RPKM
8–16 RPKM 4–8 RPKM

2–4 RPKM

0.25–0.5 RPKM

0.125–0.25 RPKM

<0.125 RPKM

0.5–1 RPKM

1–2 RPKM

LSK

0%
20%
40%
60%
80%
100%

0%0%
20%20%
40%40%
60%60%
80%80%

100%100%

0%
20%
40%
60%
80%

100%>256 RPKM

128–256 RPKM

64–128 RPKM

32–64 RPKM

16–32 RPKM

8–16 RPKM
4–8 RPKM

2–4 RPKM

0.25–0.5 RPKM

0.125–0.25 RPKM

<0.125 RPKM

0.5–1 RPKM

1–2 RPKM

Progenitor

Down-regulated genes

Up-regulated genes

–2
4.

3

Hematopoietic cell lineage

–3
.9

2.8
(path:mmu 04640)

0

–2
.5

–1
.6

–0
.8

–0
.1 0.
6

1.
4

2.
5

3.
7

14
.2

T-statistic

En
ric

hm
en

t

D
o

w
n

U
p

p = 3�10–4

B

10

8

6

4

2

0
LSK cells Progenitors

M
ea

n 
FI

 (�
10

3 )

p = 0.009

Hbo1fl/+;CreER
Hbo1fl/fl;CreER

0

20

40

60

80

Co
un

ts

H3K14ac

103 104 1050
0

20

40

60

80

103 104 1050

LSK Progenitors

Hbo1fl/+;CreER
Hbo1fl/fl;CreER
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mice. Mice (n 5 3 per genotype) were treated 33 with tamoxifen (150 mg/kg BW per dose, doses 48 hours apart). Bone marrow was collected 7 days after the first
tamoxifen treatment. LSK and progenitor cells were sorted by FACS and then fixed and stained with anti-H3K14ac antibodies detected with fluorescently coupled secondary
antibodies. (A) Representative FACS plots of H3K14ac levels in LSKs and progenitor cells. Gray peak, control LSK and progenitor cells (Hbo1fl/1;CreER). Red peak, LSK and
progenitor cells lacking HBO1 (Hbo1fl/fl;CreER). (B) Mean fluorescence intensity of H3K14ac levels in control and Hbo1fl/fl;CreER LSK and progenitor cells. Data are displayed as
mean6 SEM and were analyzed using a Student t test. (C-G) RNA-seq results of LSK and progenitor cells. Hbo1fl/1;CreER and Hbo1fl/fl;CreERmice (n5 4 animals per genotype)
were treated 3x with tamoxifen (150 mg/kg BW per dose, doses 24 hours apart). Hbo1fl/1;Mx1Cre and Hbo1fl/fl;Mx1Cremice (n5 4 animals per genotype) were injected 3x with
poly(I:C) (2.5 mg/kg BW per dose, doses 48 hours apart). To achieve a similar stage of HSCDN and progenitor reduction after Mx1Cre- and CreER-mediated Hbo1 deletion
(compare Figure 2 and supplemental Figure 3), bonemarrowwas collected 3 days after the first tamoxifen treatment and 7 days after the first poly(I:C) injection. LSK and progenitor
cells were FACS sorted. Barcoded RNA sequencing libraries were generated from RNA (50 ng) of sorted LSK cells or progenitor cells and sequenced on the Illumina HiSeq 2000
platform. Between 19 million and 43 million 80 bp paired-end reads for each sample were obtained. After individual assessment, which revealed similar results (supplemental
Figure 12), sequencing data were pooled from Hbo1Mx1Cre and Hbo1CreERmice within cell type. (C) Venn diagram showing the numbers of up- (red) or downregulated genes
(blue) in LSK and progenitor cells with significance corrected for multiple testing (FDR , 0.05). (D) Radar charts showing differentially expressed genes (FDR , 0.05) binned by
expression levels as up- (red) or downregulated (blue) in LSK and progenitor cells. (E) Hematopoietic cell lineage signature genes (path:mmu 04640) were downregulated in
Hbo1-deleted LSKswhen comparedwith control cells (P5 .0003). The horizontal axis shows t statistics for all genes in LSK cells. Black barsmark positions of genes annotated in the
hematopoietic cell lineage signature. Worm shows relative enrichment of the hematopoietic cell lineage signature genes relative to uniform ordering of genes in LSK data set.
(F-G) Genes encoding transcription factors and receptors crucial for HSC functions significantly reduced in Hbo1-deleted LSK cells. Data are displayed as mean6 SEM and were
analyzed as stated under RNA-seq in the "Material andmethods" section. FDR, false discovery rate; RPKM, reads per kilobase of transcript permillionmapped reads.
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1.7 6 0.8%; progenitors, 0.3 6 0.2%, Figure 4D-E), showing that
the role of HBO1 in the maintenance of HSC function is stem
cell intrinsic, and the reduction in contribution by HBO1-deficient
cells after transplantation is not due to defects in homing.

Progenitors of multiple lineages are affected by
Hbo1 deletion
Poly(I:C) treated Hbo1fl/fl;Mx1Cre bone marrow cells cultured with
SCF (IL-3 and erythropoietin) or with IL-3 alone formed fewer col-
onies than similarly treated Hbo11/1 control cells (supplemental
Figure 5).

FACS analysis of oligo-potent progenitors in bone marrow at 7
and 14 days after poly(I:C)/Mx1Cre-mediated Hbo1 deletion
showed substantial reduction in the number of myeloid, lym-
phoid, and erythroid progenitors (supplemental Figures 6
and 7). Similarly, erythroblasts were reduced in the liver of
Hbo1fl/fl;Tie2Cre embryos (supplemental Figure 8), as was thy-
mus cellularity and T-cell progenitors in Hbo1fl/fl;Mx1Cre mice
(supplemental Figure 9).

HBO 1 is required for HSC quiescence and self-
renewing cell divisions
A subset of long-term repopulating HSCs are quiescent in the
G0 stage of the cell cycle.2 Flow cytometric analysis revealed
that numbers of HSCSLAM or HSCDN, both with long-term repo-
pulating ability, were reduced by 49% to 82%, respectively, in
Hbo1-deleted bone marrow (Figure 2C). To determine whether
Hbo1 deletion affected cell cycle status of HSCs, we analyzed
LSK subsets and progenitors. A lower proportion of HSCs and
MPPs was found in G0 and higher proportions, approximately
twofold, in S and G2-M after Mx1Cre- and CreER-mediated
deletion of Hbo1 compared with control cells (Figure 5A-D; sup-
plemental Figures 10 and 11). No increase in cell death was
observed in Hbo1-deleted HSCs cells compared with control
cells (supplemental Figures 10 and 11).

HSCs can undergo 3 modes of cell divisions: symmetric self-
renewing yielding 2 HSC daughter cells, asymmetric yielding 1
HSC and 1 multipotent progenitor daughter cell, and symmetric
differentiating yielding 2 multipotent progenitor daughter cells.
The first 2 modes of cell division are crucial for the maintenance
of HSCs. The 3 modes can be distinguished by the distribution
and levels of the protein numb.36,47 We examined sorted
Hbo1fl/1;CreER and Hbo1fl/fl;CreER LSK2CD1501 cells synchro-
nized in mitosis using nocodazole for 24 hours and then stained

for numb and scored the division patterns of cell doublets (107
control and 63 Hbo1 null, 3 mice per genotype) as symmetric
self-renewal, asymmetric, or symmetric differentiating divisions
(2 daughter cells; Figure 5E). We found that there was no differ-
ence in proportion of Hbo1fl/1;CreER and Hbo1fl/fl;CreER cells
that underwent asymmetric division (�12% in both groups). In
contrast, although 9.4 6 2.5% of Hbo1fl/1;CreER cells under-
went symmetric self-renewal, no Hbo1fl/fl;CreER cells undergo-
ing symmetric self-renewal were detected, suggesting that
Hbo1fl/fl;CreER LSKCD1501 cells had lost the ability to undergo
this mode of cell division and instead may have shifted toward
symmetric differentiation (Figure 5F).

Our cell cycle analysis suggests that HBO1 is required for HSC
quiescence and full self-renewal potential (Figure 5G).

HBO1 is required for the expression of HSC
quiescence and self-renewal genes
HBO1 has been reported to regulate H3K14ac.24,25,31 Consistent
with these previous findings, bonemarrow as well as LSK cells iso-
lated from tamoxifen-treated recipients of Hbo1fl/fl;CreER bone
marrow showed a reduction in H3K14ac levels compared with
control cells (Figure 6A-B; supplemental Figure 12).

Because loss of a chromatin-modifying enzyme is expected to
result in changes in gene expression, we performed an RNA-seq
analysis to identify genes regulated by HBO1 in LSK and pro-
genitor cells. LSK and progenitor cells were sorted by FACS
from Hbo1fl/1;Mx1Cre and Hbo1fl/fl;Mx1Cre mice 7 days after
poly(I:C) treatment or from Hbo1fl/1;CreER and Hbo1fl/fl;CreER 3
days after tamoxifen treatment of RNA isolation. Bar-coded
sequencing libraries were generated and sequenced. The time
points were chosen when animals first displayed complete or
near complete Hbo1 gene deletion. Although the overall num-
ber of LSK cells was reduced at this stage after Hbo1 deletion,
HSCSLAM as percentage of LSK cells had not declined (Figure 2).

Comparison of Hbo1 heterozygous controls and Hbo1 homozy-
gous-deleted LSK or progenitor cells identified 301 to 3471 dif-
ferentially expressed genes in the 4 individual data sets.
Because both poly(I:C) treatment and nuclear CreER have been
reported to influence gene profiles, possibly through inflamma-
tory or DNA damage responses, respectively,48-50 we first com-
pared the effects of HBO1 status on gene expression in LSK or
progenitor cells between cells deleted using the 2 cre-

Figure 7. Loss of H3K14ac in the absence of HBO1 affects most genes, including important hematopoietic genes. (A-E) Levels of acetylated lysine 14 on histone
H3 (H3K14ac) in Hbo1fl/fl;Mx1-Cre vs Hbo1fl/1;Mx1-Cre control LSK cells was assessed by CUT&Tag sequencing. This experiment was repeated twice. (A) H3K14ac
sequencing read coverage plot of gene bodies plus or minus 5 kb in Hbo1fl/fl;Mx1-Cre vs Hbo1fl/1;Mx1-Cre control LSK cells. (B) Barcode plot depicting the correlation
between the H3K14ac levels changes in the gene bodies in Hbo1fl/fl;Mx1-Cre vs Hbo1fl/1;Mx1-Cre control LSK cells (depicted by the light blue/gray/pink box) and the
top 5% highest (red) and bottom 5% lowest (blue) expressed genes (depicted by the vertical lines). (C) H3K14ac levels in genes regulating hematopoietic stem cell func-
tion in Hbo1fl/fl;Mx1-Cre vs Hbo1fl/1;Mx1-Cre control LSK cells. A correlation between mRNA levels of genes depicted in panel F and the H3K14 acetylation changes at
these genes. The downregulated gene expression changes shown graphically have a proportional lack of H3K14 acetylation, whereas the 3 upregulated genes are com-
paratively less affected. (D) Sequencing read depth plots over the Mpl gene of Hbo1fl/fl;Mx1-Cre vs Hbo1fl/1;Mx1-Cre control LSK cells corrected for D. melanogaster
spike-in. One animal per genotype shown, illustrating the higher level of H3K14ac around the transcription start site and the coverage of the gene body in the control
samples and the near absence of reads in the Hbo1-deleted samples. Black tracts represent control samples and gray tracts represent Hbo1-deleted samples. Support-
ive data shown in supplemental Figures 13 and 14 including replicate tracts of the Mpl locus and tracts of the Tek locus. (E) Consequences of loss of HBO1 on hemato-
poiesis. Insufficient expansion and premature differentiation of HSCs results in insufficient numbers of mature cell types. (F) Working model of HBO1 function in adult
hematopoiesis. HBO1 is a major regulator for adult hematopoiesis through promoting the expression of multiple genes encoding transcription factors and receptors
crucial for HSC quiescence and self-renewal. Important transcriptional and signaling regulators that are required for HSC functions are listed in a simplified schematic of
adult hematopoiesis. Genes in blue are downregulated (fold-change in brackets) and genes in red are upregulated (fold-change in brackets) in Hbo1-deleted LSK cells
compared with control cells. The specific functions indicated are based on published reports for Gata2,63-66 Mpl,60,61 Mpl, Stat5, Tek,62 Hoxa9,68,69 Pbx1,70 Meis1,71-73

Gfi1b,75 Egr176 (see text for "Discussion"), as well as Tal1/Scl,77 Erg,78,79 Msi280; Runx1;81 Spi1,51,52 Gata1,82 Cebpa,53 and Cebpb.83
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recombinases (Mx1Cre and CreER) within cell types (LSK or pro-
genitor cells; supplemental Figure 12). The gene expression
changes after Mx1Cre- and CreER-mediated deletion were
highly correlated (LSK cells, P , .0001; progenitors, P , .0001).
Moreover, comparison of LSK profiles with previously published
Gene Expression Omnibus data sets showed that the gene
expression changes did not significantly correlate to an inter-
feron or DNA damage response (data sets described in supple-
mental Methods section). To identify gene expression changes
common to Hbo1 deletion using both cre-recombinases, we
pooled the data derived from the Hbo1Mx1Cre and the Hbo1C-
reER samples within Hbo1 status and cell type. There were 2865
downregulated genes and 2806 upregulated genes in the LSK
cell data set and 1506 downregulated genes and 1167 upregu-
lated genes in the progenitor cell data set with transcriptome-
wide significance (FDR ,0.05; supplemental Figure 12). These
genes included 898 downregulated genes and 577 upregulated
genes that LSK and progenitor cells had in common (Figure 6C).
Binning genes by absolute expression level revealed that the
downregulated genes had lower expression levels than the
upregulated genes in both LSK cells (down, 0.125-8 RPKM vs
up, 16-512 RPKM; Figure 6D) and progenitor cells (down,
�0.125-16 RPKM vs up, 8-256 RPKM, Figure 6D).

The top 100 genes differentially expressed in Hbo1 homozy-
gous-deleted LSK or progenitor cells compared with controls
included hematopoiesis genes such as Hoxa9, Pbx1, Mpl,
Itga2b, Il11ra1, and Irf8 (top 100 differentially expressed genes,
supplemental Tables 2 and 3). Analysis of the Kyoto Encyclope-
dia of Genes and Genomes pathways and the Molecular Signa-
tures Database further revealed that “hematopoietic cell
lineage” and “HSC signature” genes were significantly downre-
gulated in Hbo1 homozygous-deleted LSKs (Figure 6E; supple-
mental Table 4). Consistent with results from these analyses,
expression of the genes Gata2, Mpl, Pbx1, Meis1, and Hoxa9,
as well as other HoxA cluster genes, were significantly downre-
gulated in homozygous Hbo1-deleted LSKs when compared
with control cells (Figure 6F-G, supplemental Table 5). In some
cases, the effect size was substantial; for example, Tek/Tie-2
messenger RNA (mRNA) in Hbo1 homozygous-deleted LSK cells
was reduced to 15% controls.

Genes moderately upregulated in homozygous Hbo1-deleted
LSK included Spi1 (Pu.1), Cebpa, Gfi1, and Lyl1 (supplemental
Table 5). These genes encode transcription factors that are crucial
for lineage decisions and maturation.51-59 Therefore, these results
reflect the tendency for more differentiating divisions in HSPCs
that had lost HBO1. Consistent with this notion, pathways involved
in erythroid, myeloid, and granulocyte differentiation were upre-
gulated in Hbo12/2 progenitor cells when compared with control
cells (supplemental Table 6).

To detect H3K14ac distribution, CUT&Tag was performed on
Hbo1fl/fl;Mx1-Cre vs Hbo1fl/1;Mx1-Cre control LSK cells, as
described,39 withD.melanogaster Schneider cell spike-in to enable
detection of uniform, genome-wide changes in H3K14ac. Recovery
of D. melanogaster spike-in H3K14ac CUT&Tag sequencing reads
was 11-fold higher in Hbo1fl/fl;Mx1-Cre LSK cell samples than in
Hbo1fl/1;Mx1-Cre control LSK cell samples, indicating a pro-
nounced reduction inM.musculusH3K14ac CUT&Tag sequencing
reads. H3K14ac read counts were moderately higher in gene bod-
ies when compared with regions upstream of the transcription start

site or downstream of the transcription end site (Figure 7A; supple-
mental Figure 13). Similarly, HBO1 occupancy was moderately ele-
vated over gene bodies (supplemental Figure 13). H3K14ac level
changes inHbo1fl/fl;Mx1-Cre vsHbo1fl/1;Mx1-Cre control LSK cells
correlated positively with mRNA levels when the top 5% most
strongly expressed genes and the bottom 5% lowest expressed
genes are considered (Figure 7B). H3K14ac levels were reduced in
Hbo1fl/fl;Mx1-Cre vs Hbo1fl/1;Mx1-Cre control LSK at almost all
genes in the gene body, the promoter and post–transcription end
site region (supplemental Figure 13; supplemental Table 7). Genes
important for hematopoietic stem cell function that were downre-
gulated in the absence of HBO1 (Figure 6F-G; supplemental Table
5) also showed a pronounced reduction in H3K14ac, includingMpl,
Tek, Stat5, Gata1, andGata2, Hox genes, Pbx1, Meis1, Gfb1b, and
Egr1 (Figure 7C-D; supplemental Figure 14; supplemental Table 7).
Conversely, house-keeping genes were relatively unaffected; inter-
estingly, these genes had lower levels of H3K14ac initially (supple-
mental Figure 14). These data show that the near complete
genome-wide loss of H3K14ac observed by western blot (supple-
mental Figure 12) reflects a loss of H3K14ac at most genes, includ-
ing important hematopoietic stem cell genes.

Discussion
In this study, we observed that the loss of HBO1 in adult mice
results in hematopoietic failure due to HSC exhaustion and loss
of progenitor cells. HSC loss was a result of increased recruit-
ment into proliferation and differentiation at the expense of qui-
escence and self-renewal rather than cell death. The increase in
HSC cycling and differentiation is possibly a response to the
depletion of progenitor cells and an attempt to replenish them.
Alternatively, or in addition, HBO1 may be essential for the
maintenance of stem cell quiescence and self-renewal. This pos-
sibility is supported by the finding that HBO1 appears to be
essential for normal levels of H3K14ac and mRNA expression of
key regulatory genes that control HSC quiescence and self-
renewal, including Gata2, Tal1 (Scl), Mpl, Stat5, Tek (Tie-2), and
Hoxa9, Meis1, Erg, Gf1b, Msi1, respectively (Figure 7E). At the
time when we recovered LSK cells after Hbo1 deletion, HSCs as
percentage of LSK cells had not declined; the reduction in gene
expression could not due to changes in cell composition. Our
study establishes a novel and essential role for HBO1 in adult
hematopoiesis, specifically in the maintenance of the stem cell
state.

We found the expression of multiple genes regulating HSC
function reduced after loss of HBO1. Of particular interest
was the reduction in Mpl, Tek, Gata, Hox, and Hox cofactor
genes. Mpl is expressed in HSCs, and MPL antibody deple-
tion and treatment with exogenous thrombopoietin (TPO)
have demonstrated their crucial role in HSC quiescence and
proliferation.60,61 MPL/JAK2/STAT5/TEK signaling has been
proposed to be important for maintaining HSC quiescence.62

We found mRNA levels of Mpl, Stat5, and Tek reduced in LSK
cells lacking HBO1; in particular, Tek mRNA was reduced to
only 15% of control levels. The transcription factor GATA2 is
expressed mainly in HSPCs, and deletion of the Gata2 gene
causes defects in HSPCs during development.63 Haploinsuffi-
ciency of Gata2 reduced number of LSKCD342 cells in the
adult, and GATA2 is required for HSC survival,64,65 whereas
overexpression of Gata2 increases HSC quiescence.66 Expres-
sion of Gata2 gene (and Gata1) was reduced 2.5-fold in LSK
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cells lacking HBO1, and LSKCD1501cells lacking HBO1 lost
self-renewal potential. Hox genes were the only gene family
that was markedly affected by loss of HBO1. We observed
reduced expression of HoxA cluster genes, notably Hoxa9, but
also Hoxa3, Hoxa5, Hoxa7, Hoxa10, and genes encoding the
HOX co-factors, Pbx1 and Meis1. HOX proteins and their
cofactors, PBX1 and MEIS1, are crucial for cell identity in
embryogenesis and hematopoiesis in adult stage.67 Hoxa9
deletion leads to decreased long-term repopulating ability of
HSCs,68 and overexpression of Hoxa9 causes HSC expansion.69

Pbx1 deletion results in progressive loss of LT-HSCs due to
reduced HSC quiescence.70 Meis1 deletion was reported to
result in loss of HSC quiescence and repopulating ability71,72 or
in a self-renewal defect.73 We speculate that the loss of expres-
sion of these key genes regulating HSC quiescence and self-
renewal contributes to the stem cell failure we observe after
loss of HBO1.

Our genomic analysis demonstrated that the loss of HBO1
results in loss of H3K14ac, particularly at genes required for
stem cell function. Direct binding of HBO1 to Gata1, Tal1,
Stat5a, and Stat5b genes has been reported in K562 human leu-
kemia cells31 and are downregulated in our dataset. Our analysis
suggests that the expression of genes required for stem cell
function is dependent on raised levels of H3K14Ac at their
respective loci. Relatively high levels of H3K14Ac were found at
the transcription start sites of these genes, consistent with a role
in promotor activity.74 Conversely, highly expressed genes (in
particular, “house-keeping” genes) have lower levels of
H3K14ac, possibly because the passage of RNA PolII maintains
the locus in an open conformation through eviction of
nucleosomes.

In conclusion, we hypothesize that HBO1, through H3K14
acetylation, functions as an activator of the network of genes
that promotes HSC quiescence and self-renewal and limits
differentiation. Although it is possible that the attrition of
HSCs observed in the absence of HBO1 is solely due to
downstream demands (progenitor depletion), the effects on
the HSC transcription factor network indicate a more direct
role in regulating HSC function. Our findings establish that
HBO1 is essential for HSC quiescence and self-renewal dur-
ing adult hematopoiesis.
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