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KEY PO INT S

� Chr7q21.3 amplification
drives ectopic PEG10
expression and
potentiates large-cell
transformation in CTCL
via a PEG10/KLF2/
NF-kB axis.

� Pharmacological
targeting PEG10
reverses the
phenotypes of large-
cell transformation in
CTCL.

Mycosis fungoides (MF), the most common form of cutaneous T-cell lymphoma, undergo
large-cell transformation (LCT) in the late stage, manifesting aggressive behavior,
resistance to treatments, and poor prognosis, but the mechanisms involved
remain unclear. To identify the molecular driver of LCT, we collected tumor
samples from 133 MF patients and performed whole-transcriptome sequencing on
49 advanced-stage MF patients, followed by integrated copy number inference
and genomic hybridization. Tumors with LCT showed unique transcriptional programs
and enriched expressions of genes at chr7q. Paternally expressed gene 10 (PEG10),
an imprinted gene at 7q21.3, was ectopically expressed in malignant T cells from
LCT, driven by 7q21.3 amplification. Mechanistically, aberrant PEG10 expression
increased cell size, promoted cell proliferation, and conferred treatment resistance
by a PEG10/KLF2/NF-kB axis in in vitro and in vivo models. Pharmacologically
targeting PEG10 reversed the phenotypes of proliferation and treatment resistance
in LCT. Our findings reveal new molecular mechanisms underlying LCT and

suggest that PEG10 inhibition may serve as a promising therapeutic approach in late-stage aggressive T-cell
lymphoma.

Introduction
Cutaneous T-cell lymphoma (CTCL) is one of the most common
forms of T-cell lymphoma, characterized by skin infiltrations of
clonally expanded T lymphocytes.1 Mycosis fungoides (MF), con-
stituting the majority of CTCL, presented as scaly skin patches,
plaques, and tumors and has been studied as a model disease
for mature T-cell lymphoma with indolent clinical courses.2 How-
ever, 20% to 55%3,4 of MF patients develop large-cell transfor-
mation (LCT), featured by rapidly progressive skin tumors,
aggressive extracutaneous spreading, and resistance to conven-
tional treatments.5,6 Histologically, MF-LCT is classified if the
biopsy shows large cells (.4 times the size of small lympho-
cytes) in more than 25% of the skin infiltrate or if they form
microscopic nodules,3 which represent an evolution of the
malignant T cells.7 LCT has been shown as an independent
marker for poor prognosis with a 5-year survival of less than
20%.3 Currently, there is a lack of therapy for effectively tackling
LCT, and the management of patients with LCT is a huge clinical
obstacle, prompting an urgent need to identify therapeutic
options that will benefit this patient population and improve
patient outcomes.

The molecular pathogenesis of LCT remains largely unknown.
Previous array-based comparative genomic hybridization (aCGH)
studies reported recurrent cytogenetic abnormalities in trans-
formed CTCL, including gains of chromosome regions 1q21-
1q22, 1q31-1q32, 1p36, 7q, 8q24.3, 9q34, 17q, 19, and losses
of 9p21, 2q36, 13q14-13q31, and 17p.8-11 Integration of aCGH
results and gene-expression data revealed a series of candidate
oncogenes and tumor suppressors in MF, including AP1S1 at
7q21-7q22, RB1, KLF12 at 13q14-13q31, and CDKN2A-
CDKN2B at 9p21.8,12,13 However, previous studies focused
mainly on the cytogenetic signatures distinguishing MF from
other subtypes of CTCLs, including S�ezary syndrome and
CD301 lymphoproliferative diseases. Little is known about the
biological and functional relevance of these cytogenetic aberra-
tions. More importantly, the key mediators driving LCT phe-
notypes in MF and their potential molecular mechanisms
remain undetermined. In this study, with a large clinical cohort
and integrated transcriptomic and genomic studies, we unravel
a molecular mechanism driving LCT and delineate its func-
tional importance in transforming CTCL cells with in vitro and
in vivo models. Moreover, we highlight a molecule-based
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Figure 1. Characteristic transcriptional profiles and enriched gene expression at 7q in MF-LCT. (A) Flowchart depicting the overall clinical samples and
experimental design of this study. (B) Histopathological features of biopsied specimens from a tumor-stage MF-LCT and MF-NLCT patient. Hematoxylin and eosin
staining. Original magnification 3400. Scale bar 5 25 mm. (C) Kaplan-Meier survival analysis of OS and PFS from advanced-stage MF patients classified into MF-LCT
and MF-NLCT group. *P , .0001, n 5 85. (D) Heatmap of 26 MF-LCT and 23 MF-NLCT samples stratified by top 200 DEGs between MF-LCT and MF-NLCT group.
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therapeutic strategy for LCT in CTCL. The research flow of our
study is shown in Figure 1A.

Methods
Patient recruitment
In total, 133 MF patients were recruited from the Skin Lym-
phoma Clinic of Peking University First Hospital from March
2010 to December 2018, with approval from the clinical ethics
board, in accordance with the Declaration of Helsinki principles.
Written informed consents were obtained from all patients.
Patients were diagnosed and staged based on the integrated
clinical-pathological algorithm proposed by the International
Society of Cutaneous Lymphomas.14,15 Each patient was reas-
sessed every 1 to 6 months in the clinic, with an average
40-month follow-up period. Disease progression was defined as
progression to a more advanced tumor node metastasis blood
(TNMB) classification or death owing to disease.16 Time to next
treatment (TTNT) was calculated as the duration between the
date of treatment commencement and the date of commence-
ment of the subsequent next treatment.17 Detailed patient infor-
mation is provided in supplemental Table 1.

RNA sequencing (RNA-seq)
Freshly biopsied tumorous skin lesions with at least 70% of neo-
plastic T-cell infiltration were subjected to RNA-seq. For tissue
RNA, cDNA library construction and 150bp paired-end RNA-seq
was completed on Illumina HiSeqTM 4000 platform at Beijing
Genomics Institute. On average, 11.04 G raw data for each sam-
ple was obtained.

Fluorescence in situ hybridization (FISH)
Bacterial artificial chromosome (BAC) clones covering the PEG10
locus at 7q21.3 (hg19 chr7:94139,170-95727,736) and CDKN2A
locus at 9q21.3 were labeled with SpectrumOrange(O).

SpectrumGreen-labeled chr7 and chr9 centromeric probes(G)
were used as a reference.

Genotyping analysis of PEG10
Polymerase chain reaction (PCR) was performed on DNA
extracted from MF skin lesions by Tks GflexTM DNA Polymerase
(R060A, Takara) using the primers (supplemental Table 2)
to amplify 2 single nucleotide polymorphism (SNP) sites of
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Figure 1 (continued) enriched molecular pathways in MF-LCT group via GSEA of 49-patient transcriptional profiles (FDR q-value ,0.25, Norminal P , .05). (F) GSEA
enrichment plot for romidepsin-resistance gene signature, which consists of upregulated genes in romidepsin-resistant versus romidepsin-sensitive CTCL cases from
GSE132053. (G) Heatmap of CNV events identified from InferCNV analysis of 49-patient RNA-seq data and chr7 locus marked with red frame. (H) Enriched positional
gene sets in MF-LCT group ranked by normalized enrichment score (FDR q-value ,0.25, nominal P , .05). Gene sets at regions of chr7 marked with red color.
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PEG10 (rs13073, rs13226637),18 and genotypes were obtained
by Sanger sequencing.

Gene knockdown and overexpression
Lentivirus shRNA vectors against PEG10 and KLF2 were con-
structed with GL404 and GL405 vectors (Obio). GV409 and
GV643 vectors (GeneChem) were used to construct the PEG10

lentiviral overexpression vectors. GV655 vector (GeneChem) was
used to construct the KLF2 lentiviral overexpression vectors.

In vitro drug combination studies
CTCL cell lines and primary cells were treated with the single
and combined drugs with the corresponding dose for 48 hours.
Specific apoptosis was tested as the drug effect. Combination
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Figure 1. (continued)
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index (CI) values were calculated to assess drug interactions
using CompuSyn based on the quantitative analysis of dose-
effect relationships on combined drugs by Chou-Talalay
model.19 CI ,1 indicates synergistic effects, CI 5 1 indicates
the mean additive effects, and CI .1 represents antagonistic
effects of the drugs.

Xenograft model of CTCLs
All the experimental procedures were reviewed and approved
by the Institutional Animal Care and Use Committee at Peking
University First Hospital. In total, 30 6-week-old NOD/scid
interleukin-2 receptor g-chain–deficient (NSG) female mice were
purchased from Beijing Vital River Company and maintained in
specific pathogen-free conditions. 5 3 106 cells were subcutane-
ously injected on the right flanks of recipient mice. Treatment
was started when the mice had palpable tumors with an average
size of 100 mm.3 Indicated drugs were injected intraperitoneally
3 times per week. Tumor volume was measured and calculated
2 to 3 times a week, as previously reported.20

NF-kB luciferase reporter assay
NF-kB response elements and TA promoter (TATA box from
herpes simplex virus thymidine kinase promoter) (supplemental
Table 2) were cloned to MCS-firefly_Luciferase-PloyA-Tk-Renilla_
Luciferase-PolyA vector (GV354, GeneChem). 2 x 106 cells were
electroporated (Amaxa Nucleofector II, Lonza) with 4 mg vectors
using Nucleofector Kit (VPA-1002 and VCA-1001, Lonza). Lucif-
erase and renilla signals were measured via Dual Luciferase
Reporter Assay Kit (E1910, Promega) after 20 hours.

Additional methods are listed in the supplemental Methods.

Results
Large-cell transformation in mycosis fungoides
demonstrates gene signatures associated with
aggressive clinical behaviors and enriched
expressions of genes at chr7q
In total, 136 tumor samples from a cohort of 133 MF patients
with long-term follow-ups were obtained. This cohort covers all
stages of MF, and the majority are in advanced stages (stage IIB
and above, n 5 87).21 Forty-three out of 87 advanced-stage
patients showed LCT in histology. The representative pathologic
manifestations of advanced-stage MF with LCT (MF-LCT) and
without LCT (MF-NLCT) are shown (Figure 1B). We confirmed
that even in patients with advanced-stage MF (n 5 85), LCT was
associated with shorter overall survival (OS) and progression-free
survival (PFS) (Figure 1C). To unravel the candidate driver molec-
ular events in LCT, we compared the transcriptional atlas
between the tumorous skin lesions from MF-LCT (n 5 26) and
MF-NLCT (n 5 23) patients via bulk RNA-seq. Top 200 differen-
tially expressed genes (DEGs) robustly classified MF-LCT sam-
ples from MF-NLCT samples with unsupervised hierarchical
clustering (Figure 1D), demonstrating characteristic transcrip-
tional profiles in MF-LCT. Further gene set enrichment analysis
(GSEA) showed markedly enriched molecular pathways in
MF-LCT, including cell cycle regulation (CENPF, CDC25A,
KIF2C), DNA repair (EXO1, RAD51, FEN1), oncogenic process
(PLK1, STMN1, AURKB, NFATC1), cell metabolism (PGM2L1,
OGDHL, PCK2), ubiquitin-proteasome (UBE2C, UBE2S, UBE2H),
and histone deacetylase (HDAC) pathways (RAN, HDAC1,

HDAC7) (Figure 1E, supplemental Table 3). PLK1 upregulation,22

Aurora kinase activation,23 NF-kB, and nuclear factor of activated
T-cells (NFAT) activation24,25 have been reported to participate
in CTCL progression. The upregulation of glucose metabolism,
mechanistic target of rapamycin complex 1 (mTORC1), and MYC
proto-oncogene gene, BHLH transcription factor (MYC) signaling
suggested a metabolic reprogramming in MF-LCT, consistent
with previous reports demonstrating mTORC1 activation26 and
c-MYC overexpression27,28 in late-stage CTCL. Ubiquitin-
proteasome pathway participates in carcinogenesis via direct
roles in degrading cell cycle regulatory proteins and indirect
roles by regulating the availability of nuclear factors, such as
NF-kB.29 HDACs play crucial roles in various biological pro-
cesses, including cell cycle progression and proliferation, and
their dysregulation has been linked to multiple cancers.30

Moreover, a set of genes previously reported as romidepsin
(an HDAC inhibitor, HDACi)-resistance signatures in CTCL were
enriched in MF-LCT31 (Figure 1F, supplemental Table 4). HDACis
have been widely used in CTCLs, albeit the response rate is
relatively low and unpredictable.32 The enrichment of HDACi-
resistance gene signatures in LCT explained the intrinsic HDACi
resistance of MF-LCT patients5 and suggested that genes underly-
ing the LCT progression accounted for their HDACi resistance.
Consistently, MF-LCT patients showed a significantly shorter TTNT
for HDACis (suberoylanilide hydroxamic acid or chidamide)
compared with MF-NLCT patients in our cohort (supplemental
Figure 1A). These dysregulated pathways collectively illustrated the
molecular features responsible for the aggressive clinical process,
treatment resistance, and poor prognosis in MF-LCT patients.

Next, we sought to identify the driving molecular events in LCT.
Multiple lines of evidence have suggested that copy number
variations (CNVs), which may alter large-scale gene expressions,
are involved in the development of LCT in MF.8-11 Therefore,
we analyzed the RNA-seq data with bioinformatic tools to
uncover the transcriptional changes corresponding to chromo-
some CNVs. Comparing to MF-NLCT, frequent copy number
gains at 7q in MF-LCT were inferred via InferCNV analysis (Fig-
ure 1G). Next, positional gene enrichment analysis with MSigDB
positional gene sets identified overrepresented gene regions in
MF-LCT, including multiple locus at 7q (7q36, 7q32, 7q22,
7q11,7q21) (Figure 1H, supplemental Table 3). These results
indicated that copy number gains at 7q may occur in MF-LCT
and affect gene expressions. Collectively, we identified charac-
teristic molecular programs underlying the aggressive clinical
behaviors in MF-LCT and observed that enriched gene expres-
sion at 7q was closely associated with LCT in MF.

PEG10 is ectopically expressed in
large-transformed malignant T cells and predicts
poor patient prognosis
Of the DEGs with the positional enrichment data, paternally
expressed gene 10 (PEG10), located at 7q21.3, was among the
top upregulated genes in MF-LCT (Figure 2A, supplemental
Table 5). PEG10 is an imprinted gene and plays essential roles
in embryo and placenta development33 and has restricted
expression in adult tissues, including adrenal, ovary, testis,
and brain.34 PEG10 is not expressed in healthy CD41 cells
with or without activation,35 prompting us to explore the
expression pattern of PEG10 in CTCL. We evaluated the
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Figure 2. Expression and prognosis analysis of PEG10 in MF. (A) Volcano plot of upregulated (red) and downregulated (blue) DEGs (fold change $2 or #22 and
P ,.05) between MF-LCT and MF-NLCT group and PEG10 gene pointed out in green color. (B) PEG10 mRNA expression in lesion-biopsied samples with different
T stages of MF and MF-LCT. *P , .001, n 5 110. qRT-PCR, real-time quantitative reverse transcription PCR. (C) Representative immuno-histochemical evaluation of
PEG10 on lesion-biopsied samples from MF-LCT and MF-NLCT patients, IgG isotype controls serve as negative controls. Original magnification 3200, insets 3400, scale
bar 5 50 mm. (D) Immunofluorescence (IF) costaining of PEG10 (red) and CD3 (green) on a lesional biopsy specimen of tumor-stage MF-LCT. Pautrier’s microabscess
pointed out with a dashed line circle. (E,F) IF costaining of PEG10 (red) and TOX (green). (E) PEG10 (red) and Ki-67 (green). (F) On lesional biopsy specimens of tumor-
stage MF-LCT. DAPI (blue) used to visualize cell nuclei. Original magnification x400, scale bar 5 25 mm. (G) The structure of PEG10 coding sequence (CDS) and protein
isoforms. (H,I) PEG10 mRNA (H) and protein (I) expression levels among 7 CTCL lines and CD41 T cells from normal controls (NCD41). (J) OS and PFS of MF patients
stratified by PEG10 expression from a discovery cohort of 49 RNA-seq samples and validation cohort of extended 70 MF samples via Kaplan-Meier survival analysis.
(K) TTNT for HDACis in PEG10-low and PEG10-high patients via Kaplan–Meier analysis (n 5 21 treatment episodes). **P , .05; ***P , .01.
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mRNA expression levels of PEG10 in 110 MF lesional biopsies
via quantitative reverse transcription polymerase chain reac-
tion (qRT-PCR). While PEG10 showed upregulation in plaque
and tumor-stage lesions compared with patch-stage lesions,
MF-LCT showed significantly higher PEG10 levels (Figure 2B).
MF-LCT samples demonstrated cytoplasmic staining of
PEG10 on the large infiltrating T cells (Figure 2C). PEG10 pos-
itivity occurred in T cells in the Pautrier’s microabscesses36

(Figure 2D), in TOX1 cells37 (Figure 2E), as well as in large
Ki-671 cells (Figure 2F) in MF-LCT samples, suggesting
explicit PEG10 expression on the highly proliferating large-
transformed malignant T cells.

We further evaluated the relationship between PEG10 and
CD30 expression in MF samples since CD30 positivity occurs in
a portion of LCT.6,38 Neither the immunohistochemistry (IHC)
results (n 5 60) nor the RNA-seq (n 5 49) data showed corre-
lated expressions between PEG10 and CD30 (Figure S2A,B).

Double staining showed that PEG10 expression in LCT samples
was not restricted to CD301 cells (Figure S2C), confirming that
PEG10 expression was independent of CD30 positivity.

PEG10 is evolutionarily derived from the Ty3/Gypsy family of
retrotransposons and shares features with retrotransposons.39

It contains 2 overlapping open reading frames (ORF1 and
ORF2) and 2 translation initiation sites (“a” is from ATG while
“b” is from CTG). Thus, PEG10 is capable of encoding 4 pro-
tein isoforms: RF1(a/b) and RF1(a/b)/2 due to -1 ribosomal fra-
meshifting, and a self-cleavage N-terminal fragment (CNF) due
to an active aspartic protease motif40,41 (Figure 2G). To explore
the PEG10 isoforms in CTCL, we quantified mRNA and protein
expression levels of PEG10 on 7 well-established CTCL lines
and pooled peripheral blood CD41 T cells from normal con-
trols (NCD41). SZ4, a CTCL line established from a S�ezary syn-
drome patient (a leukemic form of CTCL closely related to
MF),42 showed the highest PEG10 expression levels, followed
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Figure 2. (continued)
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by HH, which was derived from a late-stage MF patient,43

whereas neither mRNA nor protein expression of PEG10 was
found in NCD41 (Figure 2H,I). Notably, the dominant isoforms
expressed by SZ4 and HH were RF1 (mainly RF1b), consistent
with previous reports of PEG10 with 22% frameshifting effi-
ciency to translate RF1/241.

Next, we examined the prognostic significance of PEG10 in the
discovery cohort for RNA-seq and validated the results in an
extended cohort of 70 MF patients. Kaplan-Meier survival analy-
sis showed that higher PEG10 expression was correlated with
shorter OS and PFS in both discovery and validation cohorts
(Figure 2J). In addition, when evaluating PEG10 expression in
patients receiving HDACi treatments, PEG10-high patients
showed shorter TTNT for HDACis (Figure 2K).

Together, these results indicate that PEG10 is ectopically
expressed in the large-transformed malignant T cells and serves
as an adverse prognostic factor for patient survival in MF.

Genetic amplification of 7q21.3, promoter
demethylation, and loss-of-imprinting of PEG10
account for the ectopic PEG10 expression in
mycosis fungoides with large-cell transformation
Other than PEG10, 7 genes contiguous to PEG10 locus on
chr7q21.3 showed positive correlations with PEG10 expression
based on our RNA-seq data (Figure S3A), prompting us to
explore if elevated PEG10 expression resulted from genetic
amplification of 7q21.3 in MF-LCT. We performed FISH on 21
MF-LCT and 19 MF-NLCT samples with a probe of SpectrumOr-
ange(O) for 7q21.3 covering PEG10 locus and a probe of Spec-
trumGreen(G) detecting the centromere of chr7(CEN7) (Figure
S3B). Cell nuclei with more than 2 O signals are termed as
7q21.3 gain. Representative FISH signals in MF-LCT included
3O2G, 3O3G, and 4O4G, while diploid cells without CNVs on
this region showed a 2O2G signal (Figure 3A). Cell nuclei with
3O3G and 4O4G showed gains of both CEN7 and 7q21.3, indi-
cating large-fragment copy number gains at 7q. MF-LCT
showed significantly higher percentages of 7q21.3 gain than
MF-NLCT (Figure 3B). As expected, PEG10 mRNA expression
levels were positively correlated with the percentages of 7q21.3
gain among these samples (Figure 3C). Moreover, patients with
2 skin biopsies before and after disease progression (Pt266 and
Pt520) showed upregulated PEG10 expression and increased
percentages of 7q21.3 gain along with LCT development (Fig-
ure 3D), supporting that PEG10 expression increased along with
7q21.3 amplification during MF progression. Notably, 7q21.3
amplification and its relationship with PEG10 expression was
strictly preserved in CTCL cell lines44 (Figure S3C). SZ4 and HH
cells with high PEG10 expression showed gains of extra copies
of PEG10, while the 2 PEG10-low cell lines, Hut78 and Myla,
showed no extra 7q21.3 gains.

Furthermore, to determine the influence of CNVs and promoter
demethylation on the allelic expression of PEG10, we performed
PEG10 genotyping and identified 18 samples with heterozygous
SNPs in the 49 RNA-seq cohort. Further read counts ana-
lysis over heterozygous SNPs from RNA-seq data classified the
16 MF samples (2 MF-NLCT samples with undetectable read
counts) into monoallelic, biased, and biallelic expression groups
based on previously reported criteria.45 As expected, monoal-
lelic expression patterns were seen in most MF samples (Figure
3E, supplemental Table 6), indicating that PEG10 maintained its
imprinted pattern in the context of carrying CNVs. Only sample
L520-2 showed biallelically expressed PEG10 with high PEG10
levels but relatively low percentage of 7q21.3 gains, supporting
the loss-of-imprinting (LOI) of PEG10 in this sample, which was
frequently seen in cancers and accounted for the upregulation
of imprinted genes.46

Of note, a few NLCT patients with low PEG10 levels also dem-
onstrated relatively high 7q21.3 gains (N407, N470, N292). To
explain this discrepancy, we evaluated the methylation levels at
the CpG islands of PEG10 promoter on 12 MF skin samples
(6 LCT vs 6 NLCT) (Figure 3F) via bisulfite sequencing and mass
spectrometry since promoter DNA methylation has been
reported as the most important epigenetic regulator for gene
dosage.47 Significant PEG10 promoter methylations were
observed in NLCT samples. In contrast, most MF-LCT cases
showed low methylation levels at PEG10 promoter (Figure 3G,
supplemental Table 7). These results indicated that promoter
DNA demethylation also accounted for PEG10 overexpression
in MF-LCT.

Loss of CDKN2A-CDKN2B at 9p21 is one of the most frequently
occurring chromosomal aberrations in MF-LCT, with high fre-
quencies of 71%12 and 56%,13 acting as an independent predic-
tor of reduced survival, prompting us to explore the relationship
between PEG10 amplification at 7q21.3 and CDKN2A loss in
MF. Consistent with previous reports, FISH analyses with probes
detecting CDKN2A and centromere of chr9 showed higher
CDKN2A loss in MF-LCT samples (Figure S3D,E).12,13 However,
we did not observe a significant correlation between 7q21.3
gains with CDKN2A losses (Figure S3F), suggesting they are
independent events in LCT. Interestingly, survival analyses on
patients with FISH results (n 5 36) demonstrated that those with
both 7q21.3 gain and CDKN2A loss had the most inferior prog-
nosis (Figure S3G), although the individual P values between the
7q21.3 gain group and 7q21.3 gain/CDKN2A loss group were
not significant, which may be due to the limited sample size.
Therefore, the prognostic values of the double-hit genomic
aberrations in MF-LCT warrant further study in larger cohorts.

Collectively, these results indicate that genomic gains of 7q21.3,
promoter demethylation, and LOI of PEG10 cooperatively result
in PEG10 upregulation in MF-LCT.

Figure 3 (continued) Ectopic PEG10 expression in MF-LCT is linked to genetic gains of 7q21.3, promoter demethylation, and loss-of-imprinting of PEG10.
(A) Representative tissue FISH images of 3 main amplification patterns of 7q21.3 in MF-LCT and a diploid case in MF-NLCT. O: 7q21.3; G: CEN7. (B) FISH enumeration
results of skin-biopsied samples from MF-LCT(n 5 21) and MF-NLCT(n 5 19) patients. Percentages (%) of nuclei with 7q21.3 gain (O .2) in these 2 groups are shown
on the right panel. *P , .0001. (C) Spearman correlation between PEG10 mRNA expression and percentages of nuclei with 7q21.3 gain in MF lesions. n 5 39,
r 5 0.667, **P , .0001. (D) PEG10 mRNA expression and percentages of nuclei with 7q21.3 gain before and after disease progression in 2 MF patients. Pt, patient.
(E) PEG10 allelic expression patterns in MF-LCT (n 5 8) and MF-NLCT (n 5 8) samples from RNA-seq data. (F) Schematic description of the detected CpG sites at PEG10
promoter region. (G) Quantitative methylation analysis on CpG sites at PEG10 promoter region among MF-LCT group (n 5 6) and MF-NLCT group (n 5 6). Average PEG10
promoter methylation levels of each sample are shown on the right panel. Methylation level 1 represents 100% methylated CpG dinucleotides on this site.
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Figure 4. PEG10 regulates cell size, facilitates tumor-forming ability and HDACi/Pi resistance in CTCL cells. (A) Suppression of PEG10 protein expression in HH
cells by lentiviral transduction with 2 independent shRNA sequences (shPEG10-1, shPEG10-2) and overexpression of different PEG10 isoforms in Hut78 and Myla cells
by lentiviral transduction with vectors expressing RF1b, RF1b/2, RF1b/21CNF isoforms, respectively. HH cells transduced with scrambled shRNA (Ctrl) as well as Hut78
and Myla cells transduced with empty vectors (vector) served as controls. (B) Representative flow cytometry profiles of cell size (forward scatter [FSC], height on a linear
scale) among control (Ctrl) and PEG10-suppressed (shPEG10) HH cells. Mean FSC signal intensity shown on the right panel. (C) Representative confocal images of
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PEG10 regulates cell size, confers growth
advantage, and induces drug resistance in
CTCL cells
To investigate the function of ectopic PEG10 expression in
large-transformed CTCL cells, we silenced PEG10 expression in
HH cells and overexpressed PEG10 isoforms (RF1b, RF1b/2,
RF1b/21CNF) in Hut78 and Myla cells via lentivirus-mediated
transduction (Figure 4A). We observed decreased cell size in HH
upon PEG10 silencing by both flow cytometry48 and average
cell area calculation49(Figure 4B,C). When examining the ability
to form tumors in vitro with colony-forming cell (CFC) assays in
semisolid cultures, PEG10 silencing showed significantly
reduced CFC output in terms of the number and size of the col-
onies (Figure 4D). Conversely, a significant increase of CFC

output was observed in PEG10-RF1b overexpressed cells (Fig-
ures 4E, S4A), whereas PEG10-RF1b/2 and RF1b/21CNF over-
expression showed only moderate effects. The growth
advantages conferred by PEG10 in both knockdown and overex-
pression systems were confirmed in mouse xenograft models
in vivo (Figure 4F,G).

Our RNA-seq findings showed HDACi-resistance gene signa-
tures and enriched ubiquitin-proteasome pathway in MF-LCT,
prompting us to investigate whether PEG10 impacts the
response to HDACis and proteasome inhibitors (Pis).50 PEG10
silencing sensitized HH cells to 2 HDACis widely used in CTCL,
romidepsin (Figures 4H, S4B), and suberoylanilide hydroxamic
acid (SAHA) (Figure S4C,D), as well as 2 Pis, bortezomib
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Figure 4 (continued) successfully transfected GFP1 (green) control (Ctrl) and PEG10-suppressed (shPEG10) HH cells. Average cell area (pixel2) was calculated by Image
J (right panel). (D) The number of colonies formed in the CFC assay among PEG10-suppressed (shPEG10-1, shPEG10-2) HH cells and control cells (Ctrl). (E) The number
of colonies formed in the CFC assay among Hut78 cells with overexpression of RF1b, RFb1/2, RF1b/21CNF, and control cells (vector). (F,G) Macroscopic pictures of
xenograft mice and tumors after subcutaneously injecting control (Ctrl) and PEG10-suppressed (shPEG10) HH cells (F), as well as control (vector) and RF1b-
overexpressed (RF1b) Hut78 cells (G) (n 5 3, each). Median tumor volume was measured over time (right panels). (H,I) MTS-based cell viability assay of PEG10-
suppressed (shPEG10) and control (Ctrl) HH cells under exposure to increasing dose of romidepsin (H), bortezomib (I) for 48 hours. (J,K) RF1b-overexpressed (RF1b)
Hut78 cells and control cells (vector) were exposed to an increasing dose of romidepsin (J), bortezomib (K). Cell viability was evaluated after 48 hours. (L,M) Cleavage
of caspase-3 was detected in HH cells with PEG10 silencing (shPEG10) and control cells (Ctrl) after treatment with different-dose SAHA (L), bortezomib (M) for 72 hours
via western blot analysis. Data are represented as the mean standard deviation. *P , .05; **P , .01.

564 blood® 27 JANUARY 2022 | VOLUME 139, NUMBER 4 LIU et al

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/139/4/554/1864308/bloodbld2021012091.pdf by guest on 18 M

ay 2024



(Figures 4I, S4E) and carfilzomib (Figure S4F,G). Conversely,
PEG10-RF1b overexpression conferred resistance to these
drugs in Hut78 (Figures 4J,K, S4H-M) and Myla cells (Figure
S4N). Consistently, HDACi and Pi-induced cleavage of caspase-
3 was enhanced by PEG10 silencing (Figure 4L,M) and inhibited
by PEG10-RF1b overexpression (Figure S4O,P), confirming the
roles of PEG10 in resisting HDACii-induced apoptosis. These
results show that PEG10 confers aggressive phenotypes in
CTCL cells, including enlarged cell size, increased tumor pro-
gression, and drug resistance.

PEG10 potentiates large-cell transformation via
the PEG10/KLF2/NF-kB axis
PEG10 protein has multiple functional domains,39,51 but its
downstream signaling remains largely unknown. Transcriptome
sequencing was performed in CTCL lines with PEG10 knock-
down/overexpression to define its downstream effectors. Spear-
man correlation coefficients were calculated between the cell
lines with PEG10 knockdown and clinical samples based on
DEGs identified by RNA-seq (fold change $2 or #22 and
P , .05). Compared to control cells, PEG10-silenced cells
showed a significantly lower degree of similarity with MF-LCT,
suggesting that PEG10 silencing reversed, at least partially, the
LCT gene signatures in MF (Figure 5A). Furthermore, several
pathways enriched in MF-LCT were affected by PEG10 knock-
down/overexpression in cell lines. The romidepsin-response
gene signature was enriched in PEG10-silenced cells, while the
romidepsin-resistance gene signature was enriched in PEG10-
overexpressed cells (Figure S5A,B, supplemental Table 4).31

These data revealed the roles of PEG10 in determining the
aberrant transcriptional profiles of MF-LCT.

NF-kB signaling, enriched in MF-LCT samples, is a critical antia-
poptosis and proproliferation pathway in CTCL.52 Inhibition of NF-
kB-dependent signaling has been reported to inhibit cell survival53

and overcome resistance to Pi and HDACi.54,55 Intriguingly, Krup-
pel Like Factor 2 (KLF2), a known NF-kB negative regulator, was
the top-ranked gene regulated by PEG10 (derepressed upon
PEG10 silencing and downregulated upon PEG10 overexpression)
(Figure 5B,C, supplemental Table 8). Previously annotated KLF2
target genes were upregulated upon PEG10 silencing in HH cells56

(Figure S5C), suggesting KLF2 may act as a key downstream effec-
tor of PEG10. KLF2 inhibits NF-kB activity by competitively com-
bining critical NF-kB transcriptional coactivators p300/PCAF and
disturbing the recruitment of this complex to the promoter of
downstream genes.57 Therefore, we assumed that PEG10 may
activate NF-kB signaling by reducing KLF2 levels and facilitating
the p300/PCAF/NF-kB interaction and their recruitment to NF-kB
target genes. Coimmunoprecipitation confirmed the physical inter-
action between KLF2 and PCAF in CTCL cells. KLF2 silencing
enhanced the interaction between PCAF and p65 in Hut78 cells
(Figure 5D, S5D). Further NF-kB luciferase reporter assay indicated
that either KLF2 silencing or PEG10-RF1b overexpression in Hut78
cells facilitated NF-kB transcriptional activity (Figure 5E,F). To vali-
date this PEG10/KLF2/NF-kB regulating axis in PEG10-silenced
CTCL cells, we overexpressed KLF2 in 2 CTCL cell lines with low
intrinsic KLF2 levels, Hut78 and Myla, and performed NF-kB lucifer-
ase reporter assays, since HH cells (the PEG10-silence cell model)
are resistant to electroporation.58,59 KLF2 overexpression inhibited
NF-kB transcriptional activity in both cell lines (Figure S5E,F), con-
firming the results in PEG10-overexpressed cells. Next, we silenced

KLF2 in PEG10-silenced HH cells (Figure S5G) and confirmed that
KLF2 suppression could rescue the growth inhibition (Figure 5G)
and increased sensitivity to SAHA or bortezomib mediated by
PEG10 suppression (Figure 5H,I).

We next aimed to explore the mechanisms of how PEG10
regulates KLF2 expression in CTCL. As a cytoplasmic protein,
PEG10 has a conserved CCHC-type zinc finger motif,41 which
may bind to and affect the stabilization of cellular RNAs in the
cytoplasm.60 Therefore, we performed RNA immunoprecipita-
tion (RIP) assays and RNA stability assays in Hut78 cells with
PEG10-RF1b overexpression and showed that PEG10 binds to
KLF2 mRNA in the cytoplasm and promotes its degradation
(Figure 5J,K). Our findings suggested that the overexpressed
PEG10 in LCT samples may inhibit KLF2 expression by binding
to KLF2 mRNA and affecting its stabilization.

Collectively, these results indicate that PEG10 reprograms the
transcriptional profiles of MF and facilitates cell proliferation and
drug resistance via a PEG10/KLF2/NF-kB axis, thereby driving
the LCT in MF.

Transcriptionally repressing PEG10 with
HLM006474 decreases CTCL cell survival and
synergizes with HDAC and proteasome inhibitors
Considering that PEG10 was dysregulated in large-transformed
T cells by genetic amplification-induced transcriptional upregula-
tion, we aim to find ways to repress PEG10 expression for CTCL-
LCT treatment. Transcription factors E2F1 and E2F4 have been
demonstrated to bind directly to the promoter of PEG10,61 and
a small molecule, HLM006474, designed for melanoma treat-
ment, was shown to inhibit the DNA-binding activity of E2Fs.62

We observed that HLM006474 potently repressed PEG10
expression and increased KLF2 expression in a dose-dependent
manner in HH and SZ4 cells with 7q21.3 amplification and high
PEG10 expression (Figure 6A and S6A). HLM006474 induced
remarkable apoptosis and decreased viability in PEG10-high
CTCL lines (HH and SZ4), compared with PEG10-low lines (MJ
and Myla), while their E2F1 and E2F4 expression levels were
comparable (Figure S6B). Consistently, HH cells with PEG10
silencing showed less apoptosis upon HLM006474 treatment
(Figure 6B, S6C). This effect was validated in xenograft models
in vivo. Tumor growth was markedly reduced in the HLM006474
treatment group (Figure 6C,D), while the body weights of the
mice were not affected (Figure 6E).

Next, to interrogate the clinical application of HLM006474,
PBMCs from 4 leukemic CTCL patients and 4 healthy donors
were treated with HLM006474. All the CTCL samples showed
remarkable elevated PEG10 expression compared with control
cells, while their E2F1 and E2F4 expressions were comparable
with control cells (Figure 6F, S6D,E). HLM006474 induced
remarkable apoptosis in primary CTCL cells, while control cells
were well tolerated, indicating that HLM006474-induced apo-
ptosis was specific for PEG10-high malignant cells in primary
CTCL samples.

Moreover, HLM006474 sensitized CTCL cell lines to HDACis
(Figure 6G, S6F) and Pis (Figure 6H, S6G), respectively, and
achieved significant synergistic effects with these drugs, as eval-
uated by drug combination studies. The synergistic effects were
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Figure 5. PEG10 confers growth advantage and HDACi/Pi resistance via a KLF2/NF-kB axis in CTCL cells. (A) Spearman correlation analysis of gene expression
from control (Ctrl) as well as PEG10-silenced (shPEG10) HH cells with MF-LCT samples. The 2 dots on each line represent the correlation coefficients between each
MF-LCT sample with a Ctrl as well as a shPEG10 sample, respectively. Paired P 5 5 x 1028. (B) Volcano plot of upregulated (red) and downregulated (blue) DEGs (fold
change $2 or #22 and P , .05) between PEG10-suppressed (shPEG10) and control (Ctrl) HH cells and KLF2 gene pointed out in green color. (C) KLF2 mRNA
and protein levels of PEG10-suppressed (shPEG10-1, shPEG10-2) HH cells, RF1b-overexpressed (RF1b) Hut78 cells, and their control cells (Ctrl; vector).
(D) Coimmunoprecipitation of nuclear extracts from control (Ctrl) and KLF2-suppressed (shKLF2) Hut78 cells using a PACF antibody (lane 2 and 5) or normal rabbit IgG
(lane 3 and 6) with protein A/G agarose. PCAF, p65, and KLF2 were identified by western blot. Lanes 1 and 4 show input control, respectively. Schematic model of
KLF2-mediated NF-kB activity inhibition is shown on the right panel. (E,F) NF-kB luciferase activity of KLF2-silenced (shKLF2) Hut78 cells and control cells (Ctrl);
(E) RF1b-overexpressed (RF1b) Hut78 cells and control cells (vector); (F) via NF-kB luciferase reporter assay. (G) Median tumor volume of xenograft tumors (n 5 5, each)
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confirmed in primary CTCL cells (Figure 6I,J). Collectively, tar-
geting PEG10 transcription with HLM006474 inhibits CTCL cell
survival and synergizes with HDACis and Pis, serving as a prom-
ising treatment of late-stage CTCLs.

Discussion
LCT represents the highly aggressive status of CTCL and the
most challenging clinical situation in the management of
CTCL.5,63 With a large cohort of MF patients and integrated tran-
scriptomic and genomic analyses, we identified genomic 7q21.3
gains and ectopic PEG10 expression in the large-transformed
MF cells. We demonstrated the critical roles of PEG10 in driving
LCT, discovered the downstream effectors of PEG10, and identi-
fied approaches to pharmacologically repress PEG10 and reverse
the aggressive phenotypes in CTCL (visual abstract).

Tumor development is a multistep process. Tumor cells ac-
quire accelerated evolution by accumulating genomic aber-
rations due to chromosomal instability.64 Our results shed
light on the molecular mechanisms of the LCT development
in CTCL. Our data, demonstrating enriched genes in multi-
ple regions of chr7q in LCT samples, was highly consistent
with the results from previous aCGH studies.8,9 With a cohort
of 22 tumor-stage MF patients, Van Doorn et al showed that
the most highly recurrent CNVs were gains of regions on
chr7, including 7q36, 7q21-7q22, 7q32-7q35, 7q11.2, and
7p14-7p13, observed in 59%, 55%, 55%, 50%, and 45% of
MF samples, respectively, while gains of 7q21-22 also
occurred in 20% of S�ezary syndromes.8 This consistency
revealed the high validity of our approach to infer CNVs
from RNA-seq data. Moreover, these data suggested that 7q
gain was a late-onset process during MF progression, and
7q21-22 appeared as a critical region common to MF and
S�ezary syndrome during this process. This hypothesis was
further supported by 7q21.3 gains after tumor progression in
patients with 2 biopsied samples. 7q21.3 is a well-known
imprinted cluster.65 LOI refers to loss of monoallelic gene
regulation, which is seen frequently and precociously in mul-
tiple human cancers and leads to tumorigenesis.46 Interest-
ingly, our data showed that LOI of PEG10 occurred in only a
minority of MF-LCT patients, while monoallelic expression of
PEG10 was observed in most of the MF-LCT patients with
7q21.3 gains, consistent with a recent report showing that
cancer cell tends to maintain the correct imprinting profiles if
it carries CNVs.66

Although the expressions of PEG10 mRNA or its long non-
coding RNA have been reported in lymphocyte-derived
tumors, such as B-cell chronic lymphocytic leukemia,67 dif-
fuse large B-cell lymphoma,68 T-cell lymphoblastic lym-
phoma,69 and S�ezary syndrome,70 little is known about the
biological roles of PEG10 in these malignancies. Here we
identified a PEG10/KLF2/NF-kB axis in driving LCT in CTCL.

Aberrant or constitutive NF-kB activation has been associ-
ated with many human malignancies, especially T-cell malig-
nancies.71 Moreover, HDACis and Pis exert their antitumor
roles by suppressing NF-kB activation.72-74 In CTCLs, NF-kB
plays vital roles in cell survival and apoptosis resistance.59,75

Our results unraveled a previously unreported mechanism of
aberrant NF-kB activation, driven by ectopic PEG10 expres-
sion and a PEG10/KLF2/NF-kB axis. Here we demonstrated
that PEG10-mediated NF-kB activation is a crucial me-
chanism mediating cell growth and HDACi/Pi resistance in
CTCL. Either overexpressing PEG10 or suppressing KLF2
could enhance this process, confirming that KLF2/NF-kB is a
major mediator for PEG10 functions in CTCL.

Clinical trials for advanced T-cell lymphoma have yielded pre-
dictably unsatisfactory results.76 Given the restricted expression
of PEG10 in transformed malignant T cells and limited adult
organs, PEG10 may serve as an ideal target for CTCL treatment.
However, there is no PEG10 inhibitor available. Alternatively, we
showed that E2F inhibitor, HLM006474, effectively blocked
PEG10 expression and derepressed KLF2 levels in CTCL cells
and showed minimal toxicity on normal cells. Although PEG10
was not the only gene regulated by E2Fs, our data showed
decreased sensitivity to HLM006474 in PEG10-silenced cells,
suggesting that suppressing PEG10 is one of the major effects
of this molecule in CTCL. More intriguingly, HLM006474
showed remarkable synergistic effects with HDACis and Pis in
primary CTCL cells and cell lines. The relatively low and unpre-
dictable treatment response of HDACis and Pis is a huge obsta-
cle in clinical settings. Romidepsin77 and SAHA78 are FDA-
approved HDACis for CTCL. However, the overall response rate
of advanced-stage CTCL patients was 38% for romidepsin and
less than 30% for SAHA.21 Bortezomib, a first-generation Pi,
showed a 67% overall response rate and 17% complete remis-
sion rate in CTCL patients in a phase 2 trial79 but lacked sus-
tainable efficacy. Our results set a stage for the combinative
application of PEG10 repression and HDACiPi in future CTCL
clinical trials, especially for patients with LCT.

In summary, our study provides novel insights into the molecular
pathogenesis of CTCL progression, revealing PEG10 as a potent
driver for LCT. These data links 7q21.3 amplification to ectopic
PEG10 expression and poor prognosis and provide evidence that
PEG10 regulates NF-kB activity in malignant T cells. Our findings
set the proof of principle for PEG10 inhibition in the treatment of
late-stage CTCLs, which currently lack effective therapies.
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