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KEY PO INT S

� Functional genomic
screens reveal SHMT2
as a drug target in BL,
and SHMT2 inhibitors
synergize with
methotrexate to induce
anti-BL effects.

� SHMT2 inhibition
disrupts the BL survival
program by triggering
autophagic degradation
of TCF3 and a
subsequent collapse of
BCR signaling.

Burkitt lymphoma (BL) is an aggressive lymphoma type that is currently treated by
intensive chemoimmunotherapy. Despite the favorable clinical outcome for most
patients with BL, chemotherapy-related toxicity and disease relapse remain major
clinical challenges, emphasizing the need for innovative therapies. Using genome-
scale CRISPR-Cas9 screens, we identified B-cell receptor (BCR) signaling, specific
transcriptional regulators, and one-carbon metabolism as vulnerabilities in BL. We
focused on serine hydroxymethyltransferase 2 (SHMT2), a key enzyme in one-
carbon metabolism. Inhibition of SHMT2 by either knockdown or pharmacological
compounds induced anti-BL effects in vitro and in vivo. Mechanistically, SHMT2
inhibition led to a significant reduction of intracellular glycine and formate levels,
which inhibited the mTOR pathway and thereby triggered autophagic degradation
of the oncogenic transcription factor TCF3. Consequently, this led to a collapse of
tonic BCR signaling, which is controlled by TCF3 and is essential for BL cell survival.
In terms of clinical translation, we also identified drugs such as methotrexate that
synergized with SHMT inhibitors. Overall, our study has uncovered the dependency

landscape in BL, identified and validated SHMT2 as a drug target, and revealed a mechanistic link between
SHMT2 and the transcriptional master regulator TCF3, opening up new perspectives for innovative
therapies.
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Introduction
Burkitt lymphoma (BL) is an aggressive disease1 that often
responds well to intensive immunochemotherapy.2-4 However,
relapsed or refractory BL and therapy-related toxicity are remain-
ing clinical challenges, emphasizing the need for innovative ther-
apies that would be expected to emerge on the basis of an
improved mechanistic understanding of this disease.3,5,6

MYC deregulation was identified as a key driver in BL, causing
high proliferation rates and leading to genomic instability.7-10 The
most frequently recurring somatic mutations cooperating with
MYC were more recently found in the transcription factor TCF3
(also known as E2A) and its negative regulator ID3. These muta-
tions induce a complex rewiring of the TCF3 transcriptional net-
work toward promotion of BL cell survival.10-12 Mechanistically, BL
cell dependence on aberrant TCF3 function has been attributed
to the molecular link between TCF3 and tonic B-cell receptor
(BCR) signaling,11 a key survival pathway in BL. Aberrant TCF3
function has been shown to promote pro-survival BCR signaling,
particularly by activating the PI3-kinase pathway.12 Despite these
recent advances in our understanding of BL pathophysiology,
treatment of BL has for decades relied on conventional cytostatic
drugs, among which methotrexate (MTX) has been found to be
particularly effective.3,13,14 MTX is a competitive inhibitor of the
dihydrofolate reductase; it acts as a functional folate antagonist,
thereby interfering with one-carbon metabolism. From this per-
spective, it seems warranted to study one-carbon metabolism fur-
ther with regard to its therapeutic implications.

In this study, we have systematically identified vulnerabilities in
BL that may be therapeutically exploitable. We found that serine
hydroxymethyltransferase 2 (SHMT2), a mitochondrial enzyme
involved in one-carbon metabolism,15-17 is a potential drug tar-
get in BL. SHMT2 inhibition caused apoptosis in BL cells, mainly
by autophagic degradation of TCF3, which in turn led to a col-
lapse of cell survival promoting BCR signaling. Hence, SHMT2
function is essential to maintain a TCF3-driven transcriptional sur-
vival program, making it an attractive therapeutic target in BL.

Methods
Cell culture
Origin of cell lines and cell culture conditions are described in
supplemental Methods, available on the Blood Web site.

Ethical approval
Ethical approval for using the human tissue and cryoconserved
patient samples was obtained from the Ethics Committee of the
University Medical Center G€ottingen (#19-2-16) and from the
Ethics Committee of the Goethe University of Frankfurt (SHN-9-
2017). Xenograft experiments using BL60 cells were approved
by the National Cancer Institute Animal Care and Use Commit-
tee (NCI-ACUC). Transplantation experiments using M2121 cells
were approved by the local animal care committee and the rele-
vant authorities (Landesamt f€ur Natur, Umwelt und Verbraucher-
schutz Nordrhein-Westfalen, 84-02.04.2017.A131).

Method description
For genome wide screening, we used the human Brunello
CRISPR knockout pooled library (gift from David Root and
John Doench [Addgene #73178]). CRISPR-Cas9 screens were

performed as previously described18 and detailed in the supple-
mental Methods. Mass spectrometry was performed as previ-
ously described.19 All experiments, statistics, and codes are
described in the supplemental Methods.

Results
The dependency landscape of BL cells
To identify vulnerabilities and tumor suppressors in BL, we per-
formed genome-wide CRISPR-Cas9 loss-of-function screens in 3
BL cell lines (BL60, Ramos, Raji) using the Brunello small guide
RNA (sgRNA) library (supplemental Table 1). The data were ana-
lyzed in a comparative manner together with CRISPR-Cas9
screening data previously published for activated B-cell–like dif-
fuse large B-cell lymphoma (ABC-DLBCL) cells (HBL1, TMD8,
HLY1, and U2932 cells),18 another aggressive lymphoma type
dependent on BCR signaling (Figure 1). To this end, we com-
puted for each gene a CRISPR screen score (CSS; supplemen-
tal Methods).18 We performed 2 replicates per screen, and these
measurements were highly reproducible (R2 5 0.73-0.88; supple-
mental Figure 1A). Similar to our previous screens in ABC-
DLBCL,18 nontargeting control sgRNAs were not toxic, whereas
sgRNAs targeting pan-essential genes were depleted in all BL
cell lines (supplemental Figure 1B). BL and ABC-DLBCL cells
exhibited lymphoma-type specific dependencies on a set of
B-cell transcription factors (Figure 1). Whereas BL cells were
dependent on TCF3, MEF2B, and SPI1 (Figure 1; supplemental
Figure 1C), a dependency pattern that has been previously
described for germinal-center–like (GCB) DLBCL,18 ABCs were
dependent on SPIB and BATF. This differential dependency pro-
file reflects the cell of origin of both lymphoma types, with BL
originating from GC centroblasts and ABC-DLBCL likely originat-
ing from more differentiated plasmablasts.1 Other B-cell transcrip-
tion factors such as IRF4 and PAX5 were shared dependencies
between BL and ABC-DLBCL cells. From a signaling perspective,
both lymphoma types relied on the expression of the BCR subu-
nits CD79A and CD79B; however, their dependencies on down-
stream BCR signaling pathways were only partly overlapping.
While both BL and ABC-DLBCL cells relied on the PI3K/mTOR
pathway, BL cells were particularly dependent on the PI3K activa-
tors LYN and CD19, in contrast to ABC-DLBCL cells, which
showed a strong dependency on SYK and PIK3AP1. In line with
previous findings,11,12 BL cells did not depend on NF-kB and
JAK1/STAT3 signaling (the main survival pathways in ABC-
DLBCL), highlighting the fact that BL cells mainly rely on tonic
BCR-driven PI3K survival signals. Our screens also revealed
dependencies beyond BCR signaling, especially on metabolic
pathways such as one-carbon metabolism. Several mitochondrial
(SHMT2, MTHFD2, and MTHFD1L) and cytoplasmic (MTHFD1)
effectors of this pathway were discovered as vulnerabilities in BL
cells, nominating them as potential drug targets (Figure 1; supple-
mental Figure 1D,F). Interestingly, some of these vulnerabilities
were also found in ABC-DLBCL but, according to public resource
data sets, not in most screened cancer cell lines (supplemental
Figure 1E,G). Given the known clinical efficacy of MTX, a folate
antagonist, in BL treatment, we further focused on this pathway
to investigate its therapeutic implications. Among the identified
essential effectors of one-carbon metabolism, the mitochondrial
enzyme SHMT2 qualified as a potential drug target because it
is not a pan-essential gene according to several genome-
scale CRISPR-Cas9 and RNAi-based loss-of-function screens
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(supplemental Figure 1G); moreover, compounds that inhibit its
enzymatic function have already been developed.15,20,21

Validation of SHMT2 as a drug target in BL
Next, we validated SHMT2 as a potential therapeutic target.
SHMT2 protein expression was found in 100% of the BL cases
analyzed, 84% of the DLBCL cases, and 100% of the gray zone
lymphoma cases (Figure 2A-B). We then validated our CRISPR-
Cas9 screen results by performing a constitutive shRNA-based
SHMT2 knockdown in BL cell lines. In competitive growth
assays, SHMT2 knockdown BL cells, similar to MTHFD1 knock-
down BL cells, were outcompeted by control cells, indicating a
toxic effect of SHMT2 downregulation in all tested BL cell lines
(Figure 2C; supplemental Figure 2A). These results were con-
firmed by a doxycycline-inducible SHMT2 (iSHMT2) knockdown
(supplemental Figure 2B),22 although it reduced SHMT2 expres-
sion less efficiently, as well as by a targeted CRISPR-Cas9-based
SHMT2 knockout in BL cell lines (supplemental Figure 2C-D).
BrdU cell cycle analyses 5 days after SHMT2 knockdown
revealed a significant G0/G1 arrest upon SHMT2 depletion in
BL cell lines (P , .001 in Student t test; Figure 2D; supplemental
Figure 2E). Moreover, a significant increase in poly (ADP-ribose)
polymerase (PARP) and caspase 3 cleavage was observed
(P , .05 in Student t test; Figure 2E, supplemental Figure 2F);
hence, impaired cell growth of SHMT2 knockdown cells was
causedby a combination of cell cycle arrest and increased apopto-
tic rate. To confirm the on-target activity of the shRNA used, we
transduced the BL60 iSHMT2 knockdown cells that expressed
green fluorescent protein (GFP) with a lentiviral vector encoding
the fluorescent reporter blue fluorescent protein (BFP) and
shRNA-resistant SHMT2 variants23 or BFP only as control (empty
vector). By confocal imaging, we ensured regular localization of
the overexpressed SHMT2 variants (supplemental Figure 2G). In
these experiments, the shRNA-resistant SHMT2 construct signifi-
cantly rescued the cell toxic effect of SHMT2 shRNAs, confirming
their on-target activity (P, .001 Student t test; Figure 2F). In con-
trast, a catalytically inactive SHMT2 mutant (SHMT2 K280A)24

failed to rescue iSHMT2 knockdown cells, indicating that the enzy-
matic function of SHMT2 is required to maintain the fitness of BL
cells (Figure 2F). To finally test whether SHMT2 also critically regu-
lates BL tumor growth in vivo, we subcutaneously transplanted
BL60 iSHMT2 knockdown cells into NSG (non-obese diabetic/
severe combined immunodeficient/Il2rg2/2) mice and induced
the knockdown of SHMT2 in established tumors with a tumor vol-
ume .140 mm3. In agreement with our in vitro experiments, the
inducible SHMT2 knockdown reduced tumor growth by 70.1%
compared with transplanted control cells (P 5 .0017 in two-way
analysis of variance [ANOVA] test; Figure 2G; supplemental
Figure 2H).

SHMT2 inhibition reduces glycine and formate
levels in BL cells
Having validated SHMT2 as a potential therapeutic target in BL
cells, we investigated howSHMT2 controls BL cell survival. SHMT2
has been described as a key effector in one-carbon metabolism
because it catalyzes the transfer of a carbon unit from tetrahydro-
folate to 5,10-methylenetetrahydrofolate and converts serine to
glycine.15-17 Hence, SHMT2 activity is central within one-carbon
metabolism and contributes to the generation of important prod-
ucts such as inosine monophosphate (IMP), glycine, glutathione
(GSH), NADPH, and methionine. To characterize the metabolic

changes induced by SHMT2 inhibition, we performed a mass
spectrometry–based metabolome profiling in iSHMT2 BL60 cells.
A total of 98 metabolites was reproducibly quantified upon
SHMT2 knockdown, of which 15 showed significantly altered
abundance (6 up and 9 downregulated; Figure 3A-B; supplemen-
tal Figure 3A-C). In linewith previous studies, SHMT2 downregula-
tion led to reduced levels of glycine (the direct product of the
reaction catalyzed by SHMT2 (Figure 1; supplemental Figure 1D),
IMP, as well as GSH (Figure 3A-B). Moreover, we found a signifi-
cant downregulation of formate in an enzyme-based colorimetric
assay uponpharmacological SHMT2 inhibition by the SHMT inhib-
itor SHIN1 (supplemental Figure 3D). To identify the metabolic
products that are critical for the fitness of BL cells, we next per-
formed supplementation analyses. The impairment in cellular
growth of BL cells that were treated with SHIN1 could be
reversed by supplementation with glycine and formate while
serine, nucleosides, or leucovorin had no effect (Figure 3C; sup-
plemental Figure 3E).

SHMT2 inhibition disrupts a TCF3-controlled
survival program in BL
To resolve how SHMT2 regulates BL cell survival and what the
molecular consequences of the detected metabolic changes are,
we quantified the changes in protein expression that occur upon
inducible SHMT2 downregulation by SILAC (stable isotope label-
ing by amino acids in cell culture)-based mass spectrometry. To
identify SHMT2-dependent proteins that are essential in BL cells,
we compared the expression of each protein quantified by mass
spectrometry with its respective CSS score (Figure 4A). This
resulted in 42 essential genes whose protein expression was
downregulated upon SHMT2 knockdown. A pathway enrichment
analysis revealed that most of these proteins were involved in cell
cycle regulation; among them, we found proteins involved in
DNA replication (GINS1 complex members) and proteins regulat-
ing the mitotic checkpoint, such as SPC24 and SPC25, both
being members of the NDC80 complex (supplemental Figure
4A). Interestingly, we found that TCF3 was significantly downre-
gulated after SHMT2 knockdown (Figure 4A,F). TCF3 is a tran-
scription factor and is known to be a key regulator of BL cell
survival and proliferation because it induces cyclin D3-dependent
proliferation and promotes oncogenic BCR-driven PI3K survival
signals (Figure 4B).11 Mutations in TCF3 and/or its negative regu-
lator ID3 are among the most recurrent mutations in BL, reflecting
their functional relevance for BL pathophysiology (Figure 4B).11,25-
28 TCF3 essentiality in BL was also observed in our CRISPR-Cas9
screen (Figure 1) and was furthermore confirmed in competitive-
growth assays after inducible TCF3 knockdown in BL60 cells (Fig-
ure 4C-E). TCF3 knockdown led to a G0/G1 arrest (Figure 4E),
which possibly explains the proteomic changes that were
observed for the cell cycle–related effectors (Figure 4A; supple-
mental Figure 4A). TCF3 downregulation upon SHMT2 knock-
down was confirmed by western blot analysis showing a
reduction of TCF3 protein expression by 36.8% to 81.8% (mean,
BL60: P 5 .02; Ramos: P 5 .002; BL70: P , .001 in Student t
test; Figure 4F; supplemental Figure 4B). In addition, SHMT2
downregulation led to a strong increase in expression of the
phosphatase SHP-1 (Figure 4F), a known negative regulator of
BCR signaling that has been previously shown to be repressed by
TCF3.11 Also in line with previous literature,11 TCF3 knockdown
led to reduced phosphorylation of the activator phospho-sites
Tyr525/526 of SYK and Ser473 of AKT, indicating that TCF3
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controls BCR/PI3K signaling in BL cells (Figure 4G). To demon-
strate that TCF3 is a cell survival–regulating effector downstream
of SHMT2, we reinforced TCF3 expression in combination with
GFP in BL cells after having retrovirally transduced them with an

shRNA vector marked by red fluorescent protein (RFP) that tar-
geted SHMT2. Monitoring of RFP/GFP double-positive cells by
flow cytometry in a competitive coculture experiment with wild-
type cells revealed that 45.3% were double-positive cells (ie,
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constitutive shRNA vector targeting SHMT2 (shSHMT2#1) or a nontargeting control shRNA (shCtrl) together with RFP in coculture with wild-type cells. Percentages of
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the mean [SEM]; n 5 3; P , .001 compared with nontargeting control shRNA transduced cells [two-way ANOVA]). (D) Cell cycle analyses of the BL cell lines BL60 and
Ramos constitutively expressing an shRNA against SHMT2 (shSHMT2#1) or a nontargeting control shRNA (shCtrl) (mean 6 SEM is shown; n 5 4 to 5; ***P , .001 in
Student t test). (E) Western blot analyses of cleaved PARP (cPARP), total PARP, and cleaved and total Caspase-3 in BL60 and Ramos cells constitutively expressing an
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knockdown in BL60 cell line on day 5 after induction of shRNA expression. GAPDH served as loading control (n 5 3; Student t test, shCtrl vs shTCF3.1, P 5 .003; shCtrl
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(F) Representative western blots of lysates derived from BL60 and Ramos cells at day 8 upon SHMT2 knockdown (n 5 3-4; TCF3 [BL60] P 5 .02 [Ramos] P 5 .002, SHP-1
[BL60] P 5 .02 [Ramos] ns). GAPDH served as loading control. (G) Western blots show SYK Tyr525/526 and AKT Ser473 phosphorylation levels upon inducible
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TCF3 reconstituted cells) after 5 days, whereas only 19.1% were
double-positive cells when SHMT2 knockdown cells were trans-
duced with an empty vector control construct (P , .05 in Student
t test, Figure 4H; supplemental Figure 4C). Hence, downregula-
tion of SHMT2 induces apoptosis at least in part by reducing
TCF3 protein levels. Because TCF3 has been described as a key
promotor of oncogenic BCR survival signaling (Figure 4B),11 we
next performed a quantitative phosphoproteomic analysis to
investigate whether BCR signaling is affected by SHMT2 knock-
down and the observed subsequent downregulation of TCF3. To
this end, we used SILAC-based mass spectrometry to compare
tyrosine phosphorylation between control cells expressing an
unspecific shRNA and cells inducibly expressing either SHMT2 or
CD79A-specific shRNAs, the latter being used to read-out the
consequences of disrupted BCR signaling.29 In line with TCF3
function being compromised upon SHMT2 knockdown, the phos-
phoproteomic analysis showed correlated phosphorylation
changes upon interference with SHMT2 function and BCR
signaling (R 5 0.59; Figure 4I; supplemental Table 2). Several
BCR-related signaling effectors, including SYK, PLCg2,

INPP5D, and the PI3K activators CD19 and PIK3AP1, showed
concordantly reduced tyrosine phosphorylation under both
conditions. These changes were not caused by altered pro-
tein expression levels in SHMT2 knockdown cells (Figure 4J;
supplemental Figure 4D-E), thus confirming that BCR signal-
ing is disrupted upon SHMT2 knockdown. Next, we investigated
whether constitutively activated PI3K signaling can rescue the toxic
effect of the SHMT2 knockdown in BL cells. Therefore, we
expressed a constitutively active form of the catalytic PI3K subunit
P110a (called MP110*)10,30 in BL60 cells. Previous studies have vali-
dated this construct and showed that it cooperates with MYC to
induce BL in mice.10 In BL60 cells, constitutive PI3K signaling res-
cued the survival of SHMT2 knockdown cells, indicating that BCR-
driven PI3K signaling is a relevant survival pathway downstream of
the SHMT2-TCF3 axis (Figure 4K). In contrast to BL, SHMT2 inhibi-
tion neither affected TCF3 nor the phosphorylation of SYK in ABC-
DLBCL cells (supplemental Figure 4F), suggesting that the identi-
fied SHMT2-TCF3-BCR axis is BL specific. Together, these findings
indicate that in BL, TCF3 is a critical survival regulator downstream
of SHMT2.
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Figure 5. SHMT2 inhibition induces autophagic degradation of TCF3. (A) Representative western blot analysis showing LC3 levels in BL60 cells expressing either
SHMT2-specific shRNA or nonspecific control shRNA that were treated with chloroquine at a concentration of 100 mM for 4 hours as indicated. GAPDH served as load-
ing control. (n 5 4; P 5 .01 in Student t test). (B) GFP/RFP ratio of BL60 cells transduced with tfLC3 reporter upon treatment with SHIN1 at a concentration of 2.5 mM,
AZD2014 at a concentration of 200 nM, and Torin 1 (TOR1) at a concentration of 500 nM for indicated durations. A reduced ratio represents an increased level of
autophagy. Bafilomycin A1 (Baf) treatment at 50 nM was used to inhibit autophagy (n 5 3, mean 6 SEM; P , .0001 in Tukey’s multiple comparison test for TOR1,
AZD2014, and SHIN1 compared with DMSO after 6 hours and 24 hours; P 5 ns for rescue with Baf after 6 hours and 24 hours). (C) Representative confocal images of
LC3 immunofluorescence staining. BL60 cells were treated for 24 hours with 2.5 mM SHIN1 or DMSO as well as for the last 6 hours with 50 nM of Bafilomycin or DMSO
and stained for LC3 and DAPI. LC3 was stained with Alexa Fluor 647 (red) and nuclei were counterstained with DAPI (blue). Representative images display the overlay
max intensity of the 41 z-stacks of the 647 channel and the average intensity of the z-stacks of the DAPI signal. (D) Quantification of LC3 punctae from microscopic
images of BL60 cells treated as described in Figure 5C. Data were normalized to control and reported as percentage (n 5 2, with n $ 31 single cells per condition).
Box plots represent the median and 25th to 75th percentiles, whiskers display 10th to 90th percentiles, and outliers are displayed as dots. P , .0001 according to a
Kruskal-Wallis test. (E) Representative western blot analysis showing LC3 levels in BL60 cells upon SHIN1 treatment at 2.5 mM for 48 hours in regular medium and upon
supplementation with formate and glycine. Chloroquine treatment was applied at a concentration of 100 mM for 4 hours. GAPDH served as loading control (n 5 3; P 5

.03 in Student t test for DLC3-II in SHIN1 vs DMSO in regular medium). (F-G) Representative western blots in BL60 cells showing ULK1 Ser757 phosphorylation, ULK1,
TCF3, and SHP-1 after treatment of BL60 cells with 2.5 mM SHIN1 for 48 hours in regular medium and upon supplementation with glycine and formate (3.3 mM and
2 mM, respectively). pULK1 and ULK1 were probed on different membranes, but samples were derived from the same experiment and blots were processed in parallel.
GAPDH served as loading control (n 5 3; P 5 .02 in Student t test for pULK1 levels in SHIN1 vs DMSO in regular medium; P 5 .003 in Student t test for TCF3 levels in
regular medium vs glycine/formate supplementation; and P 5 .008 in Student t test for SHP-1 levels in regular medium vs glycine/formate supplementation). (H) Repre-
sentative western blots showing TCF3 levels in ATG5 KO compared with control-sgRNA in BL60 cell line upon induction of knockout with 250 ng/mL of doxycycline and
48 hours of SHIN1 treatment at a concentration of 2.5 mM vs DMSO control. GAPDH served as loading control (n 5 3; P 5 .037 in paired Student t test for TCF3 levels
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SHMT2 inhibition triggers an autophagic
degradation of TCF3 through activation of ULK1
Next, we investigated the molecular link between SHMT2 and
TCF3, addressingparticularly the question of howTCF3 is downre-
gulated upon SHMT2 knockdown. RNA-sequencing (RNA-seq)
revealed that TCF3 mRNA was not significantly downregulated
upon SHMT2 knockdown, implicating a posttranscriptional mech-
anism (supplemental Figure 5A). mRNA translation blockade by
cycloheximide treatment did not rescue TCF3 protein expression
in SHMT2 knockdown cells, ruling out that mRNA translation is
affected in these cells (supplemental Figure 5B). Also, proteasomal
degradation was ruled out as relevant for TCF3 downregulation
because the proteasome inhibitor MG132 did not rescue TCF3
protein expression in SHMT2 knockdown cells (supplemental Fig-
ure 5C-D). Finally, we investigated whether autophagy as an
alternative mechanism controlling protein expression in a post-
transcriptional manner could be involved in TCF3 regulation. To
this end, we found that SHMT2 knockdown led to an induction of
autophagy measured by a significant increase of LC3-II, the lipi-
dated form of LC3 that is used as a marker for autophagy (Figure
5A; supplemental Figure 5E).31,32 To confirm this finding, we
employed 2 additional widely used autophagy assays. First, we
used a tandem-fluorescent LC3 (tfLC3) autophagic flux reporter in
which the amino terminus of LC3 is fused to 2 fluorescent protein
tags: RFP and GFP (supplemental Figure 5F).33 Upon fusion of the
autophagosome with the lysosome, GFP fluorescence is selec-
tively quenched because of the decrease in pH. This leads to a
reduction in the GFP/RFP fluorescence ratio (supplemental Figure
5F), which is used to quantify autophagy. Treatment of BL60 tfLC3
reporter cells with the SHMT inhibitor SHIN1 leads to a reduction
in the GFP/RFP fluorescence ratio (ie, increased autophagic flux)
comparable to the reduction observed in cells treated with the
mTOR inhibitors Torin1 and AZD2014, which are known autoph-
agy activators.32,34 Importantly, this effect was reversed by block-
ing the autophagic flux with Bafilomycin A1 (Figure 5B), clearly
indicating that inhibition of SHMT2 induces autophagic flux in BL
cells. Similar results were obtained for Ramos tfLC3 reporter cells
(supplemental Figure 5G). In addition, we labeled the autophagy
marker LC3 with an immunofluorescent staining to quantify the
number of intracellular LC3 punctae as a read-out for autophagy.
In accordancewith the previous assays, it revealed that an increase
of the autophagic flux occurs upon SHMT inhibition (Figure 5C-D).
To follow up on this, we next investigated the mechanistic link
between SHMT2 and autophagy. Autophagy is known to be regu-
lated by the nutrient sensor mTOR, which under nutrient-rich con-
ditions inhibits ULK kinases through phosphorylation of inhibitory
serine residues. mTOR inhibition (eg, mediated by starvation)
induces autophagy through dephosphorylation of these inhibitory
residues within ULK, thereby inducing a complex cascade involv-
ing ULK activation and LC3 lipidation, finally leading to the forma-
tion of autophagosomes.35 In addition to nutrient depletion,
reactive oxygen species have been described as potent activators
of autophagy.36 However, we detected no ROS induction upon
SHMT2 inhibition in BL cells (supplemental Figure 5H-I). Because

we found that SHMT2 inhibition leads to reduced levels of intracel-
lular glycine and formate and because supplementation of both
rescued the toxic effect of the SHMT inhibitor, we tested whether
the supplementation of glycine and formate has an impact on
autophagy. Indeed, supplementation of glycine and formate abro-
gated LC3 lipidation (autophagy) upon SHMT inhibition (Figure
5E; supplemental Figure 5J). Similarly and in linewith these results,
ULK1 phosphorylation of the inhibitory serine at position 757 was
rescued by glycine/formate supplementation in BL cells treated
with an SHMT inhibitor, while we clearly observed reduced inhibi-
tory ULK1 phosphorylation upon SHMT inhibition in the absence
of glycine and formate supplementation (Figure 5F). These results
indicate that autophagywas triggeredby SHMT inhibition through
the mTOR-ULK axis. Moreover, and in line with our previous
results, glycine/formate supplementation also restored TCF3 lev-
els (and subsequently led to SHP-1 repression) in SHMT
inhibitor–treated BL cells (Figure 5G; supplemental Figure 5K). To
further confirm the involvement of autophagy in TCF3 degrada-
tion, we knocked out ATG5, a central effector protein for autopha-
gic vesicle formation, in BL60 cells and monitored TCF3 levels
after treatment of the cells with the SHMT inhibitor SHIN1. ATG5
is essential for autophagy induction because it facilitates the lipida-
tion of LC3, as we confirmed in BL60 cells (supplemental Figure
5L). TCF3 protein expression was largely restored in ATG5 knock-
out cells after SHIN1 treatment (Figure 5H), showing that TCF3
expression is controlled by autophagy. Finally, we employed a
proximity ligation assay (PLA)18,37 to visualize the intracellular LC3-
TCF3 interaction. Association of TCF3 and LC3 in cells treated
with SHIN1 in regular mediumwas increased, but it was blunted in
medium supplemented with glycine and formate, in which the
autophagic response is inhibited (Figure 5I-J; supplemental Figure
5M-P). In summary, we found that SHMT inhibition triggered
autophagy through reduction of glycine/formate and subsequent
ULK1 activation, finally leading to autophagic degradation of
TCF3.

High-throughput screens identify drugs
synergizing with SHMT2 inhibitors in BL
With this insight into the mechanisms by which SHMT2 controls
BL cell survival, we next wished to investigate the translational
potential of our findings. To this end, we first tested the efficacy
of the small molecule inhibitor SHIN1 in 8 BL cell lines.15

Response to SHMT inhibition tracked with the TCF3/ID3 muta-
tion status. Cell lines with validated oncogenic mutations in
these genes showed higher sensitivity, which fits well with our
mechanistic results (Figure 6A; supplemental Table 3).

Next, we investigated the in vivo efficacy of SHMT inhibition.
Because SHIN1 was shown to lack bioavailability,15 we used the
recently developed bioavailable SHMT inhibitor SHIN2.20 To
assess the in vivo activity of SHIN2 in a strictly Myc-driven
neoplasm, we investigated the therapeutic efficacy of SHIN2 in
the well-established Em:Myc model.38-40 For the purpose of our
experiments, we initially isolated 2 distinct lymphoma cell lines

Figure 5 (continued) in SHIN1 vs DMSO in samples with sgCtrl; P 5 ns in paired Student t test for TCF3 levels in SHIN1 vs DMSO in samples with sgATG5). (I) PLA
score is shown for PLA of TCF3 and LC3 in SHIN1-treated BL60 cells at a concentration of 2.5 mM for 18 hours compared with DMSO control, in regular medium as
well as upon supplementation of glycine/formate at a concentration of 3.3 mM and 2 mM, respectively (n 5 4; n $ 105 single cells per condition). Box plots represent
the median and 25th to 75th percentiles, whiskers display 10th to 90th percentiles, and outliers are displayed as dots (P , .001 in Kruskal-Wallis test). (J) Representative
confocal images from PLA for TCF3 and LC3 in BL60 cell line, as described in Figure 5I. Merged images represent the composite images of the PLA of TCF3 and LC3
(red) and the DAPI signal (blue).
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altered TCF3 levels in 2.5 mM concentration and P 5 .003 for SHP-1 levels, respectively). (G) Annexin V staining in CD191 cells derived from bone marrow of a 27-year-
old patient with BL after in vitro treatment with SHIN1 (5 mM) and MTX (20 nM) for 96 hours. Cells were normalized to DMSO control. ID3 mutations (L64F, V55fs) were
detected by exome sequencing (supplemental Figure 7A; supplemental Table 4). F, phenylalanine; fs, frame shift; L, leucin; V, valine.
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from the Em:Myc model (M2121, M452) which both expressed
BCR at their cell surface (supplemental Figure 6A). In a first
approach, we compared the in vitro sensitivity of these cell lines to
SHIN2 with the response of 2 distinct murine diffuse large B-cell
lymphoma cell lines (BSQ12, BSQ27) that were isolated from
Cd79bcond.p.Y195H/wt, Myd88cond.p.L252P/wt, Rosa26LSL.BCL2.IRES.GFP/wt,
and Cd19Cre/wt (DMBC) mice, which are known to develop a
DLBCL-like disease (Figure 6B; supplemental Figure 6A-B).41 The
Em:Myc-derived lymphoma cells (M2121, M452) displayed a sig-
nificantly lower GI50 than the DMBC-derived cells (BSQ12,
BSQ27) when treated with SHIN2 (Figure 6B). We next injected
107 M2121 cells intraperitoneally into Rag12/2 recipients, allowed
lymphomas to develop for 7 days, and then initiated treatment
with SHIN2 (200 mg/kg administered via intraperitoneal injection
(IP, twice daily) or vehicle control. While vehicle-treated animals
succumbed to lymphoma within 10 days after transplantation
(median overall survival 8.5 6 0.8 days), SHIN2-treated mice
derived a significant (P , .0001) survival benefit (median overall
survival 11.06 0.8 days) in this highly aggressive MYC-driven lym-
phoma model (supplemental Figure 6C). Although we found only
a moderate survival benefit, we believe this to be relevant in the
context of our highly aggressive BL transplant model. Also, the
lack of ID3/TFC3 mutations in this model may have contributed to
this aspect.

Thereafter, we identified drugs that synergize with SHIN1 because
treatment with single drugs usually leads to rapidly evolving resis-
tance to therapy in patients. To this end, we performed a “spiked-
in,” quantitative, high-throughput drug screening using a mecha-
nistically annotated library (MIPE 5.0) of 2480 approved and inves-
tigational drugs, targeting .860 distinct mechanisms-of-action
and strongly focusing on oncogenic targets. Briefly, each drugwas
tested at 11 different concentrations (spanning a dose range from
45 mM to 0.7 nM) either alone or in the presence of sublethal
amount of the SHMT inhibitor SHIN1 (100 and 250 nM) in BL
cells.15 Interestingly, drugs that became more potent in the pres-
ence of SHIN1 included agents known to be efficacious in BL and
thus relevant in the context of BL treatment, such as the DHFR
inhibitorsMTX and pyrimethamine, whichwere found to synergize
with SHIN1 at nanomolar concentrations (Figure 6C-D; supple-
mental Figure 6D-F). Moreover, other drugs with clinical potential
showed increasedpotencywhen combinedwith SHIN1; including,
for example, inhibitors of CHEK1. The synergistic effect of com-
bined MTX/SHIN1 was confirmed in MTT assays (Figure 6E; for
MTX efficacy, compare supplemental Figure 6D,F). In line with our
results from SHMT2 knockdown models, TCF3 levels were found
to be depleted in a dose-dependent manner after SHIN1 treat-
ment. Also, SHP-1 levels were increased after SHIN1 treatment as
a downstream effect of reduced TCF3 activity (P, .01 in Student t
test). Interestingly, however, we did not observe these effects after
treatment with MTX, possibly providing a molecular rationale to
explain their synergistic activity (Figure 6F). Finally, we were able
to obtain primary BL cells from bone marrow of a 27-year-old
patient with BL and cocultured these cells using irradiated YK6-
CD40Lg-IL21 feeder cells.42 Importantly, in addition to genomic
alterations in MYC, CCND3 and ARID1A, these BL cells harbored
pathogenic ID3 mutations (p.55fs and p.L64F) that are known to
enhance the oncogenic TCF3 pathway (supplemental Figure 7A;
supplemental Table 4; compare Schmitz et al 2012).11 Upon treat-
ment with SHIN1 alone and in combination with MTX, we
detected an increased apoptotic rate in CD19-positive BL cells

using Annexin-V staining (Figure 6G; supplemental Figure 7B),
providing a future perspective for targeting the SHMT2 axis in BL.

Discussion
In this study, we elucidated the dependency landscape of BL by
genome-scale CRISPR screens and identified SHMT2 as a thera-
peutic target.

Mechanistically, we found a molecular link between SHMT2 and
TCF3 as the main reason for hypersensitivity of BL cells to
SHMT2 inhibition (see also visual abstract). SHMT2 depletion or
its pharmacological inhibition resulted in reduced intracellular
glycine and formate levels leading to autophagosomal degrada-
tion of TCF3 protein. Hence, SHMT2 inhibition interfered with
the oncogenic TCF3 transcriptional program, which is essential
for BL cell survival because it critically controls important survival
pathways, including BCR signaling.11,12,25-28 Our study provides
an example of how metabolic pathways are functionally con-
nected with oncogenic transcriptional programs that are cur-
rently considered untargetable. Hence, therapeutic exploitation
of such an unexpected molecular link seems warranted, making
SHMT2 a particularly interesting drug target in BL. Because of
the aggressive nature of BL, however, SHMT2 inhibitors should
be combined with other potent drugs to exert synergistic antitu-
moral activity. We found that SHMT inhibitors synergize with
MTX, a dihydrofolate reductase inhibitor that also targets one-
carbon metabolism. Interestingly, MTX, in contrast to SHMT
inhibitors, did not affect TCF3 expression, pointing toward a
more complex wiring of one-carbon metabolism and providing
a molecular explanation for their synergistic activity. The newly
identified SHMT2-autophagy-TCF3 axis seems to be highly spe-
cific for BL cells. In contrast to BL cells, SHMT2 inhibition in
ABC-DLBCL cells had no effect on TCF3 expression. Also, the
majority of ABC-DLBCL are not TCF3 dependent, and TCF3
mutations occur only in �1% of ABCs (in contrast to up to 30%
of BL cells). Probably because of their similar cell of origin, the
dependency profiles between GCB-DLBCL and BL are more
similar to each other.18 Both BL and GCB-DLBCL depend on
BCR expression, PI3K and mTOR signaling, and SHMT2 and
TCF3. However, there are also specific differences. For example,
BL cells depend on IRF4 whereas GCB-DLBCL cells depend
more on the apoptosis regulator BCL2 (supplemental Figure 8).
These findings clearly highlight the lymphoma-type specific wir-
ing of oncogenic processes, including the interplay of metabolic
and transcriptional programs. Taken together, we have identi-
fied SHMT2 as a target in BL and discovered a functional link
between SHMT2 and TCF3 that may be amenable to therapeu-
tic exploitation as SHMT2 inhibitors critically interfere with the
oncogenic TCF3 transcription program.
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