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KEY PO INTS

� ETV6-NCOA2
expression in human
and mouse
hematopoietic
nonthymic progenitors
induces T/myeloid
leukemia.

� ETV6-NCOA2 induces a
lymphoid program in
hematopoietic
progenitors through
de-repression of ETV6
targets.

Mixed-phenotype acute leukemia is a rare subtype of leukemia in which both myeloid and
lymphoid markers are co-expressed on the same malignant cells. The pathogenesis is
largely unknown, and the treatment is challenging. We previously reported the specific
association of the recurrent t(8;12)(q13;p13) chromosomal translocation that creates the
ETV6-NCOA2 fusion with T/myeloid leukemias. Here we report that ETV6-NCOA2 initiates
T/myeloid leukemia in preclinical models; ectopic expression of ETV6-NCOA2 in mouse
bone marrow hematopoietic progenitors induced T/myeloid lymphoma accompanied by
spontaneous Notch1-activating mutations. Similarly, cotransduction of human cord blood
CD341 progenitors with ETV6-NCOA2 and a nontransforming NOTCH1 mutant induced T/
myeloid leukemia in immunodeficient mice; the immunophenotype and gene expression
pattern were similar to those of patient-derived ETV6-NCOA2 leukemias. Mechanistically,
we show that ETV6-NCOA2 forms a transcriptional complex with ETV6 and the histone
acetyltransferase p300, leading to derepression of ETV6 target genes. The expression of
ETV6-NCOA2 in human and mouse nonthymic hematopoietic progenitor cells induces tran-

scriptional dysregulation, which activates a lymphoid program while failing to repress the expression of myeloid genes
such as CSF1 and MEF2C. The ETV6-NCOA2 induced arrest at an early immature T-cell developmental stage. The addi-
tional acquisition of activating NOTCH1 mutations transforms the early immature ETV6-NCOA2 cells into T/myeloid
leukemias. Here, we describe the first preclinical model to depict the initiation of T/myeloid leukemia by a specific
somatic genetic aberration.

Introduction
T/myeloid mixed-phenotype acute leukemia (MPAL) is defined
by the expression of myeloid and T-lymphoid markers on the
same leukemic blast. MPAL is characterized by poor prognosis,1

and clinical management is challenging.2 Genomic studies
revealed mutually exclusive alterations in the transcriptional reg-
ulators WT1, ETV6, RUNX1, and CEBPA in 82% of patients with
T/myeloid MPAL2 in addition to alterations in transcriptional reg-
ulators.2-6 Despite the accumulating evidence from genomic
analysis, the pathogenesis of T/myeloid MPAL is largely
unknown because of the lack of preclinical models.

T-cell development is a continuous process in which hematopoi-
etic stem cells differentiate into mature T cells.7 Activation of
Notch1 in early prethymic progenitors (ETPs) ensures lymphoid
priming8 and represses B-cell and myeloid genes in the thymus
through sequential stages that are defined by the presence of
specific cell surface molecules (ETP/DN1-DN4).9 Consequently,
the cells lose their pluripotency and differentiate into mature T
cells.10,11 The mutational landscape of T/myeloid MPAL and its
genomic similarity to hematopoietic stem cells and early pro-
genitor cells suggest that the leukemic initiating event occurs in
early hematopoietic precursors rather than in T-cell precursors.2
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Yet, this has never been functionally demonstrated in preclinical
models.

ETV6-NCOA2 is a fusion gene created by the t(8;12)(q13;p13)
chromosomal translocation associated with T/myeloid leuke-
mia,12,13 which is often accompanied by somatic NOTCH1-
activating mutations. The ETV6-NCOA2 fusion protein consists
of the ETV6 N-terminal pointed (PNT) homo- and heterodimeri-
zation domain and the NCOA2 C-terminal activation domains
AD1 and AD2, which interact with acetyltransferases and argi-
nine methyltransferases, respectively (Figure 1A). Both ETV6 and
NCOA2 are involved in chromosomal translocations in

hematopoietic malignancies. Dominant negative ETV6 mutations
were reported in immature adult T-cell acute lymphoblastic leu-
kemia (T-ALL),14 whereas the AD1 and AD2 domains of NCOA2
are retained in a chromosomal translocation with lysine acetyl-
transferase 6A (KAT6A-NCOA2, MOZ-TIF2) associated with
acute myeloid leukemia (AML).15-17 The recruitment of histone
acetyltransferases by the HAT domain of KAT6 and the AD1
domain of NCOA2 is essential for myeloid transformation by
KAT6-NCOA2.18 Because ETV6-NCOA2 and KAT6A-NCOA2
differ only in their N-terminal partner, it is reasonable to hypoth-
esize that these partners are responsible for the specific leuke-
mia immunophenotypes.
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Figure 1. ETV6-NCOA2 is a T-cell oncogene that induces immature T-cell arrest in murine BM progenitors. (A) Schematic representation of ETV6-NCOA2 (EN2)
fusion. bHLH-PAS, basic helix-loop-helix Per-ARNT-SIM domain; NID, nuclear receptor interaction domain. (B) Murine BM progenitors treated with fluorouracil were
transduced with MSCV-MIGR1-IRES-GFP retroviruses expressing ETV6-NCOA2, empty vector, or KAT6A-NCOA2 (KN2) and plated in methylcellulose (IL-3, IL-6, and
SCF). Colonies were counted and re-plated every 7 to 10 days. EN2 induces self-renewal of transduced cells on methylcellulose culture compared with the empty
vector–transduced cells in the second and third replate (Mann-Whitney U test P 5 .014) (n 5 3). (C) Lineage-negative cells (lin–) were enriched from wt-C57BL/6 mice;
the cells were transduced with EN2, KN2, or empty vector, incubated in liquid culture (IL-3, IL-6, and SCF) for 5 days, and sorted for GFP1. The RNA of the GFP1 sorted
cells was sent for bulk RNA-seq. Gene set enrichment analysis (GSEA) of the EN2 vs empty vector–transduced cells demonstrated enrichment of Notch1 signature
(NES, 1.67; FDR, 0.011), ETP (NES, 1.98; FDR, 0.006), and early thymic signature (NES, 2.65; FDR, 0.0). (D) Murine BM HSPCs treated with fluorouracil were transduced
with either EN2 or empty vector and plated on OP9-DL4 stroma (IL-7, Flt3L) for 3 weeks and then immunophenotyped by flow cytometry (n 5 4). Left panel: average
immunophenotype results (Mann-Whitney U test for EN2 vs empty vector P 5 .02 in DN1, DN2, and DN3). Right panel: representative example of CD44 and CD25 flow
cytometry results. AF700, Alexa Fluor 700; HSC, hematopoietic stem cell; SS, side scatter.
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The tight association between a somatic genetic aberration and
a T/myeloid leukemia phenotype provides an opportunity to
study the pathogenesis of this leukemia. Here we used ETV6-
NCOA2 to generate the first mouse and human T/myeloid leu-
kemia model. Our results indicate that ETV6-NCOA2 expression
induces de-repression of ETV6 target genes in nonthymic hema-
topoietic progenitors and drives the cells into the T-cell devel-
opmental trajectory, while withholding their full differentiation
through preservation of the myeloid program.

Materials and methods
Vectors
ETV6-NCOA2 expression vectors MigR1-IRES-GFP and MigR1-
IRES-NGFR contain a Flag tag. ETV6 expression vector
MigR1-IRES-GFP contains a hemagglutinin (HA) tag. NOTCH1-
L1601PdP-IRES-GFP expression vectors were kindly provided by
Warren S. Pear (University of Pennsylvania, Philadelphia, PA).
KAT6A-NCOA2-IRES-GFP was kindly provided by Brian Huntly
(University of Cambridge, Cambridge, United Kingdom).

Enrichment of mouse and human progenitor cells
Bone marrow (BM) was harvested from the femurs and tibias of
6- to 8-week-old C57BL/6 mice. Mouse BM progenitor cells
were enriched by treatment with fluorouracil 150 mg/g 48 hours
before harvesting or by selection using the magnetic Lineage
Cell Depletion Kit (Miltenyi Biotech). Enriched cells were cul-
tured in RPMI supplemented with mouse interleukin-3 (mIL-3)
10 ng/mL, mIL-6 10 ng/mL, mouse stem cell factor (mSCF)
50 ng/mL (PeproTech), and cortisol 0.1 mM (Sigma). For human
progenitor cells, anonymized cord blood units were obtained
from Sheba Medical Center Cord Blood Bank under protocols
approved by the Institutional Review Board. CD341 cells were
isolated using magnetic beads (Miltenyi Biotech) and cultured in
Iscove modified Dulbecco medium supplemented with human
stem cell factor, human thrombopoietin, and human FLT3L 100
ng/mL (PeproTech). For each biological replicate, at least 3 dif-
ferent cord blood units were mixed. Retroviral transduction
(infection) of primary hematopoietic progenitors was performed
using RetroNectin and double spinfection (centrifuged at 1800
rpm at 32�C for 60 minutes). To create patient-derived xeno-
grafts (PDXs), human BM samples were obtained according to
the Declaration of Helsinki. The cells were engrafted in NOD-
SCID IL2rgnull (NSG) mice.

Assays
For the methylcellulose re-plating assay, 3000 transduced cells
per construct were plated in duplicate in methylcellulose supple-
mented with mIL-3, hIL-6, and mSCF (STEMCELL Technologies)
in 24-well plates. Cells were incubated at 37�C in 5% CO2 for 7
to 10 days. Colonies with more than 50 cells were counted, and
3000 cells were replated into fresh methylcellulose cultures. For
the OP9-DL4 T-cell differentiation assay, OP9-DL4 stromal cells
(kindly provided by Ana Cumano, Pasteur Institute, Paris, France)
were maintained at 37�C in 5% CO2 in opti-MEM ([Minimal
Essential Medium]; Gibco), and 10000 cells per well were pre-
seeded in 12-well dishes. Then, 3000 transduced cells per well
were plated in 1 mL opti-MEM supplemented with 1 ng/mL mIL-
7 and 5 ng/mL mFlt3L (PeproTech). Every 3 days, each well was
filtered using a 0.45-mm strainer, and cells were re-plated on
fresh OP9-DL4 stroma. After 3 weeks, the cells were analyzed by

flow cytometry for green fluorescent protein (GFP), CD4, CD8,
CD25, CD44, Thy1.2, and cKit. For the transduction-
transplantation assays, human or mouse hematopoietic progeni-
tors were selected as described above. The transduction
efficiency of each construct was evaluated by flow cytometer.
For the luciferase reporter assay, 293T cells were retrovirally
infected with the MSCV-pGL2-T574-IRES-GFP plasmid,14 and
positive cells were selected using puromycin. Stably transduced
cells were seeded (104 cells per well) in 24-well plates and trans-
fected with 200 ng wild-type (wt) ETV6, ETV6-NCOA2 (200,
300, or 400 ng) (jetPEI; Polyplus) or their combination and were
treated with A485 1 mM, A485 5 mM, A486 1 mM or A486 5 mM
(kindly provided by Structural Genomics Consortium, Toronto,
ON, Canada). Luciferase activity was measured at 48 hours after
transfection using the Dual-Luciferase Reporter Assay System
(Promega).

Mouse strains
Six- to 8-week-old recipient C57BL/6 female mice (Envigo, Jeru-
salem, Israel) received lethal 6.5 Gy X-ray irradiation 24 hours
before transplantation. Then, 2 3 105 transduced cells and 2 3

105 whole BM supporting cells (freshly harvested from 6-week-
old C57BL/6 mice) were injected into the tail vein of irradiated
recipients. Six- to 8-week-old NSGS (NOD.Cg-Prkdcscid

Il2rgtm1WjlTg (CMV-IL3, CSF2, KITLG) female mice (The Jackson
Laboratories) received sublethal 0.5 to 1 Gy X-ray irradiation 24
hours before transplantation. A total of 1 3 105 transduced cells
or patient-derived cells were injected into the tail vein of irradi-
ated recipients.

Flow cytometry and detection of
Notch1 mutation
Cells were stained with fluorochrome-conjugated antibodies
using standard protocols and were analyzed by using a Gallios
flow cytometer (Beckman-Coulter). Data were analyzed using
Kaluza software (Beckman-Coulter) (supplemental Methods,
available on the Blood Web site). Genomic DNA was purified
from the BM or spleens of ETV6-NCOA2 mice using a DNeasy
Blood & Tissue Kit (QIAGEN). To amplify the HD and PEST
domains, polymerase chain reactions were performed as previ-
ously described.12

RNA purification, cDNA preparation,
and sequencing
Total RNA was extracted and purified using the TRIzol Plus RNA
Purification Kit (Invitrogen). Complementary DNA (cDNA) was
prepared by using the Verso cDNA Kit (Thermo Fisher Scien-
tific). Bulk RNA sequencing (RNA-seq) was performed by first
sorting the cells (5 3 105 cells per sample) using a BD FACSAria
flow sorter. Library preparation and sequencing were performed
by either the Nancy and Stephen Grand Israel National Center
for Personalized Medicine research center of the Weizmann
Institute of Science or the University of Cincinnati’s sequencing
core (supplemental Methods). H3K27Ac chromatin immunopre-
cipitation sequencing (ChIP-seq) was performed in: (1) human
CD451 cells from the BM of ETV6-NCOA2 PDX mice were
sorted or (2) CD341 cells that were enriched, transduced with
ETV6-NCOA2 or empty vector, and cultured in vitro for 5 days.
Sample preparation for ChIP-seq of H3K27Ac was performed as
described before19 (supplemental Methods).
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Figure 2. ETV6-NCOA2 induces a T/myeloid hematopoietic malignancy accompanied by spontaneous Notch1 mutations in C57BL/6 mice. C57BL/6 mice BM pro-
genitors treated with fluorouracil were transduced with MSCV-MIGR1-IRES-GFP retroviruses expressing EN2 (n 5 18), KN2 (n 5 3), or empty vector (EV) (n 5 16). (A)
Kaplan-Meier tumor-free survival analysis of EN2 primary, secondary (n 5 4), and tertiary (n 5 2) mice compared with KN2 and empty vector (log-rank test EN2 vs
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Co-IP
Coimmunopreipitation (Co-IP) was performed on a nuclear
extract of DND41 cells stably expressing ETV6-NCOA2-Flag or
ETV6-Flag (1 3 106 cells per sample) and on 293T cells

transfected with ETV6-NCOA2-Flag or ETV6-HA. The lysate was
added to 50 mL Dynabeads Protein-G (Thermo Fisher Scientific)
bound to an antibody. The samples were analyzed by western
blot (supplemental Methods).

Figure 2 (continued) empty vector P 5 .0016). (B) Examples of EN2 tumors. (C) Flow cytometry analysis of KN2- and EN2-transduced leukemic cells. Top: flow exam-
ples of CD45, GFP, CD11b/Thy1.2, CD4/CD8, and CD44/CD25. Bottom: summary of Thy1.2 and CD11b flow cytometry results (Mann-Whitney U test **P 5 .0095).
(D) Two examples of Notch1 mutations in the PEST domain detected in EN2 leukemia/lymphoma in C57BL/6 mice. APC, allophycocyanin; PE, phycoerythrin.
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Statistical analysis
Statistical analysis was performed using GraphPad Prism version
8.1.2. Comparisons between 2 groups were performed by using
an unpaired Student t test. The Mann-Whitney U test and the
one-way nonparametric analysis of variance (ANOVA) were used
when Gaussian distribution could not be assumed. The log-rank
(Mantel-Cox) test was used for survival curves. Values of P , .05
were considered statistically significant.

Results
ETV6-NCOA2 is a T-cell oncogene that induces
immature T-cell arrest in murine BM progenitors
The ETV6-NCOA2 fusion gene created by the t(8;12)(q13;p13)
chromosomal translocation was first identified in T/myeloid
MPAL in pediatric patients; the fusion was the sole karyotype
abnormality in several patients.12 Therefore, we hypothesized
that the ETV6-NCOA2 fusion protein is a transforming onco-
gene. To test this hypothesis, we first assessed the ability of
ETV6-NCOA2 to self-renew. Murine BM hematopoietic stem
and progenitor cells (HSPCs) were retrovirally infected with
ETV6-NCOA2 (EN2), empty vector, or KAT6A-NCOA2 (KN2,
MOZ-TIF2) as a positive control for NCOA2 fusion that induces
AML.16 Self-renewal was tested by using the serial re-plating
assay. Starting from the second replating, ETV6-
NCOA2–transduced cells demonstrated higher clonogenic
potential than did empty vector–transduced cells. After the third
replating, ETV6-NCOA2–transduced cells were exhausted,
whereas KAT6A-NCOA2–transduced cells continued to re-plate
(Figure 1B). This result indicates that ETV6-NCOA2–expressing
HSPCs have a mild self-renewal advantage.

To identify the primary changes in gene expression induced by
ETV6-NCOA2 or KAT6A-NCOA2 in murine BM HSPCs,20,21 we
performed bulk RNA-seq after 5 days of in vitro culture (IL-3,
IL-6, and SCF). We identified 238 genes with significant differen-
tial expression in ETV6-NCOA2–transduced HSPCs (56 upregu-
lated and 182 downregulated genes) and 798 genes with
differential expression in KAT6A-NCOA2–transduced HSPCs
(146 upregulated and 652 downregulated genes).
GSEA revealed enrichment of the Notch1 pathway, upregulation
of Hes1, and induction of a T-cell signature in ETV6-
NCOA2–transduced progenitors but not in KAT6A-NCOA2 (Fig-
ure 1C; supplemental Figures 1 and 2).

Because ETV6-NCOA2 expression in patients has been associ-
ated with the early T-cell phenotype,12 we hypothesized that
ETV6-NCOA2 expression disrupts T-cell differentiation. To
examine this, ETV6-NCOA2 or empty vector–transduced murine
BM HSPCs were plated on OP9-DL4 stroma and followed for
T-cell differentiation. ETV6-NCOA2–transduced cells were
arrested at the early stages of T-cell differentiation CD4–CD8–

DN1 (CD441CD25–) or DN2(CD441CD251), whereas the empty

vector–transduced cells differentiated to DN3(CD44–CD251)
(Figure 1D). ETV6-NCOA2 cells had a lower percentage of
Thy1.2 expression and a higher percentage of cKit expression
than the empty vector (supplemental Figure 3). Thus, ETV6-
NCOA2 expression in murine BM HSPCs induces a T-cell pro-
gram but arrests T-cell differentiation at an early stage; this is
consistent with the T/myeloid phenotype of ETV6-NCOA2
leukemias.

ETV6-NCOA2 induces a T/myeloid hematopoietic
malignancy accompanied by spontaneous Notch1
mutations in C57BL/6 mice
To assess the in vivo transforming properties of ETV6-NCOA2,
murine BM HSPCs transduced with ETV6-NCOA2 (n 5 18),
KAT6A-NCOA2 (n 5 3), or empty vector (n 5 16) were trans-
planted into C57BL/6 mice. As expected, mice transplanted
with KAT6A-NCOA2 developed AML after a median of 57
days,16,18 and the mice that were transplanted with empty
vector–transduced HSPCs did not develop disease. Half the
mice transplanted with ETV6-NCOA2 developed hematopoietic
malignancies; the median time to tumor development was 340
days (log-rank test ETV6-NCOA2 vs empty vector P 5 .0016)
(Figure 2A). The mice developed lymphomas with nodular infil-
tration of the liver, spleen, and lymph nodes. Hematoxylin and
eosin staining demonstrated extramedullary hematopoiesis,
atypical and abnormal lymphomatous infiltration of the hemato-
poietic organs, and destruction of their normal architecture (Fig-
ure 2B; supplemental Figure 4; supplemental Table 1). Even
though most patients with this translocation develop leukemia,
1 patient with ETV6-NCOA2 T-lymphoblastic lymphoma with
myeloid antigens was reported.22 Secondary ETV6-NCOA2
transplanted mice (n 5 4) developed hematopoietic malignan-
cies at a median of 317 days after transplantation. Tertiary trans-
planted mice (n 5 2) developed T or T/M leukemia with high
BM infiltration after 52 days (Figure 2A; supplemental Figure 5;
supplemental Table 2). Consistent with the T-cell gene induction
observed in the in vitro assays of ETV6-NCOA2–transduced
HSPCs, ETV6-NCOA2–driven tumors displayed an early T-cell
phenotype with myeloid markers. The ETV6-NCOA2 population
was enriched with DN1 to DN3 cells with CD11b expression
(Figure 2C). This immature immunophenotype is similar to the
phenotype of ETV6-NCOA2 human leukemia.12

The course of ETV6-NCOA2 disease in C57BL/6 mice was char-
acterized by partial penetrance and long latency, a trend that
meets the need for accumulation of additional somatic muta-
tions. Because mutations in NOTCH1 HD and PEST domains
are common in patients with ETV6-NCOA2,12,23 tumors from
mice transplanted with ETV6-NCOA2 were screened for similar
mutations. Indeed, spontaneous mutations in the PEST domain
were found in 40% of the mice that were transplanted with
ETV6-NCOA2–transduced HSPCs (Figure 2D; supplemental
Table 1); these mice presented with higher intracellular Notch1

Figure 4 (continued) were sorted for CD451GFP1NGFR1 (n 5 3), and EN2 PDX cells were sorted for CD451 (n 5 3) from BM of transplanted sick NSG mice. The
sorted cells were sent for bulk RNA-seq. (A) Unsupervised clustering of the samples based on the 500 top differentially expressed genes in the RNA-seq experiments.
(B) GSEA analysis of EN2 1 NOTCH1-L1601PdP (left) and EN2 (right) compared with the 250 top-ranked upregulated genes of human EN2 PDXs. The differentially
expressed genes of the EN2 and EN2 1 NOTCH1-L1601PdP samples were ranked according to their log10 (P value) and compared with the patient’s gene set. (C) Venn
diagram of significantly upregulated genes in the human in vivo EN2 engrafted cells, in vivo EN2 1 NOTCH1-L1601PdP leukemia, and EN2 PDX samples. (D) GSEA
pre-ranked analysis of in vivo EN2–engrafted cells, in vivo EN2 1 NOTCH1-L1601PdP leukemia, and EN2 PDX samples compared with the T-ALL gene set (top) or B-cell
gene set (bottom).
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compared with nonmutated mice (supplemental Figure 6).
These transplantation results demonstrate that ETV6-NCOA2 is
a driving event in the murine hematopoietic system, causing
T/myeloid hematopoietic malignancies.

ETV6-NCOA2 collaborates with NOTCH1 to
induce T/myeloid leukemia in human HSPCs
To explore the effect of ETV6-NCOA2 expression on the initia-
tion of T/myeloid MPAL in human hematopoietic cells, CD341

cord blood cells were transduced with ETV6-NCOA2. Because
NOTCH1 was found to be a progression event in ETV6-
NCOA2–driven malignancies, as demonstrated in human
patients and in the C57BL/6 mouse model, CD341 cord blood
progenitor were co-transduced with an activating mutant
NOTCH1-L1601PdP and ETV6-NCOA2. NOTCH1-L1601PdP
has a mutation in the HD domain and deletion of the PEST
domain, similar to the NOTCH1 mutations identified in human
T-ALL.24 The cotransduced ETV6-NCOA2-NGFR and NOTCH1-
L1601PdP-GFP cells were transplanted into NSGS mice25

(n 5 15). This coinfection generated 4 distinct populations that
competed within the mice and constituted intrinsic controls
(Figure 3A): (1) ETV6-NCOA2 1 NOTCH1-L1601PdP, (2) ETV6-
NCOA2, (3) NOTCH1-L1601PdP, and (4) untransduced CD341

cells. Postmortem analysis of the BM cells revealed that 7 of
the 15 transplanted mice engrafted with the cotransduced
ETV6-NCOA2 1 NOTCH1-L1601PdP cells had a median survival
of 114 days. Six of the 15 mice engrafted with ETV6-
NCOA2–transduced cells had a median survival of 167 days (log-
rank ETV6-NCOA2 vs ETV6-NCOA2 1 NOTCH1-L1601PdP
P 5 .0004). Two healthy mice were engrafted with untransduced
human CD45 cells. NOTCH1-L1601PdP–transduced cells did not
engraft in the NSGS mice, further emphasizing the requirement
for cooperativity between the 2 oncoproteins (supplemental
Figure 7). BM cells from ETV6-NCOA2 1 NOTCH1-L1601PdP
engrafted mice (n 5 4) or ETV6-NCOA2 engrafted mice (n 5 4)
were transplanted into 3 to 4 NSGS recipients from each donor
mouse. The mice transplanted with ETV6-NCOA2 1 NOTCH1-
L1601PdP double-positive cells developed leukemia in
secondary engrafted mice at 50 to 90 days after transplantation
(Figure 3B).

All ETV6-NCOA2 1 NOTCH1-L1601PdP double-transduced
cells displayed a T/myeloid mixed immunophenotype with
either CD34–CD381CD71cytCD31CD33–/MPO1 (5 of 7 mice)
or CD341CD381CD71cytCD31CD331/MPO– (2 of 7 mice). This
variation in myeloperoxidase (MPO) expression resembles the
partial MPO expression in human patients with ETV6-NCOA2.12

F
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Bone
marrow

Bone
marrow

Repression
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T/Myeloid
leukemia

DN1
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Figure 5. ETV6-NCOA2 causes derepression of ETV6 targets. (A) Transcription factor binding site analysis (i-Cis target42). The analysis was performed separately for
the significantly up- or downregulated differentially expressed genes of the bulk RNA-seq of CD341 cells transduced with EN2 or empty vector, and for the in vivo EN2
engrafted cells, in vivo EN2 1 NOTCH1-L1601PdP leukemia, and EN2 PDX samples. (B) GSEA analysis of EN2 in vitro and EN2 PDX sample preranked RNA-seq results
compared with the 500 top upregulated genes in the LOUCY cell line treated with short interfering RNA (siRNA) against ETV6 (siETV6).14 (C) ChIP-seq for H3K27Ac was
performed on CD341 cells transduced with EN2 or empty vector in vitro, and EN2 PDX. H3K27 differential acetylation of HES1 and DLL4 was examined by integrated
genomics viewer68 analysis. (D) Left: co-IP EN2/ETV6: HEK-293T cells were transfected with empty vector, EN2-Flag, ETV6-HA, or a combination of both. The proteins
were immunoprecipitated with either Flag antibody (EN2) or HA antibody (ETV6). Right: co-IP EN2/p300: EN2-Flag or ETV6-Flag stable DND41 cells were immunopreci-
pitated with either Flag antibody (top) or endogenous p300 antibody (bottom). (E) Left: 293T cells stably expressing ETV6 luciferase reporter vector were transfected
with 200 ng ETV6 alone, increasing concentrations of EN2 (200, 300, 400 ng) or a combination of both (ANOVA test P , .0001) (n 5 6). Right: ETV6-luciferase reporter
stable transfected 293T cells were transfected with 200 ng ETV6 alone or with 200 ng ETV6 with 1 of the following: EN2 200 ng, EN2 1 1 200 ng, or 5 mM A485 (a p300
inhibitor)56 or EN2 200 ng in addition to 1 or 5 mM A485 or A486 (inactive A485 analog) (ANOVA test P , .0001). (F) A scheme for proposed EN2 mechanism of leuke-
mogenesis. Upper panel: ETV6-HDAC repression of genes in wt hematopoietic progenitors. Lower panel: EN2-ETV6-p300 complex in EN2 hematopoietic progenitors.
This figure was created with BioRender.com. Chr, chromosome; HDAC, histone deacetylase.
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Mice engrafted with single-positive ETV6-NCOA2–transduced
cells displayed B-cell and myeloid markers (Figure 3D; supple-
mental Table 3). Thus, ETV6-NCOA2 collaborates with activation
of NOTCH1 to transform human nonthymic CD341 progenitors
into early immature T/myeloid leukemia.

ETV6-NCOA2 induces a transcriptional program
in human cord blood hematopoietic progenitors,
which is similar to primary patient-derived
ETV6-NCOA2 leukemias
ETV6-NCOA2 protein is a fusion of 2 transcriptional regulators,
so we hypothesized that ETV6-NCOA2 transforms hematopoi-
etic progenitors by altering gene expression. We examined the
global transcriptomic profile of ETV6-NCOA2–induced cells at
different stages of disease development: human CD341 cells
transduced with ETV6-NCOA2 or empty vector in vitro, ETV6-
NCOA2 and ETV6-NCOA2 1 NOTCH1-L1601PdP–engrafted
cells in NSGS mice, and PDXs generated from ETV6-NCOA2
pediatric leukemias (supplemental Figure 8).

Analysis of ETV6-NCOA2 CD341 in vitro transduced cells dem-
onstrated enrichment with early lymphoid genes,26 early thymic
progenitors,27 and ETP signatures14 (supplemental Figure 9A-C),
similar to the gene signature induced by ETV6-NCOA2 trans-
duction in murine hematopoietic progenitors (Figure 1C).
NOTCH1 target HES1 was significantly upregulated, as was the
myeloid receptor CSF1R, which was found to have a role in
lymphoid-myeloid checkpoint.28 In addition, significant activa-
tion of KRAS signaling was detected at this early stage, as previ-
ously described for ETP-ALL2 (supplemental Figure 9D).

We have shown that co-expression of ETV6-NCOA2 1

NOTCH1-L1601PdP induces T/myeloid leukemia. To explore
the mechanism and the effect of NOTCH1-L1601PdP on ETV6-
NCOA2–induced gene expression, we compared the in vivo
ETV6-NCOA2–engrafted cells and ETV6-NCOA2 1 NOTCH1-
L1601PdP leukemia with ETV6-NCOA2 PDXs. Unsupervised
hierarchical clustering ordered the samples into 2 branches
according to the presence of NOTCH1 mutations. One branch
comprised expression of ETV6-NCOA2 in vitro and in vivo,
whereas the other comprised ETV6-NCOA2 1 NOTCH1-
L1601PdP in vivo samples and the ETV6-NCOA2 PDX samples,
which stresss the relevance of the model to human leukemia
(Figure 4A).

We generated an ETV6-NCOA2 upregulated gene signature list
by comparing ETV6-NCOA2 PDXs to CD341 cells transduced
with empty vector ranking in the 250 top significantly upregu-
lated genes. GSEA of both ETV6-NCOA2 1 NOTCH1-
L1601PdP leukemia (normalized enrichment score [NES], 3.14;
false discovery rate [FDR], 0) and ETV6-NCOA2–engrafted cells
(NES, 2.32; FDR, 0.0) showed significant positive enrichment of
the ETV6-NCOA2 PDX signature. The correlation score for the
ETV6-NCOA2 PDX gene set was higher for ETV6-NCOA2 1

NOTCH1-L1601PdP than for ETV6-NCOA2, which supports the
significance of NOTCH1 in ETV6-NCOA2 leukemogenesis (Fig-
ure 4B).

The common group of significantly upregulated genes in
the in vivo ETV6-NCOA2–engrafted cells, ETV6-NCOA2 1

NOTCH1-L1601PdP leukemia, and ETV6-NCOA2 PDXs includes

331 genes that are enriched with lymphoid genes (IL7RA,
GATA3, HES1, LCK, PAX5, CD79A, and BLK) (Figure 4C), which
define ETV6-NCOA2 as a lymphoid driver (Figure 4D). Consis-
tent with the immunophenotyping of the cells (Figure 3D),
ETV6-NCOA2–engrafted cells express B-cell genes (CD19 and
IGLV/C) and were negative for NOTCH1 mutations, where-
as ETV6-NCOA2 1 NOTCH1-L1601PdP leukemia and ETV6-
NCOA2 PDXs expressed T-cell genes (eg, CD7).

MEF2C is highly expressed in early immature T-ALL13,29,30 as
well as in normal human thymocyte subsets; however, in normal
thymocytes, its expression is significantly decreased beyond the
DN2 stage.13,27-31 MEF2C is expressed in ETV6-NCOA2 PDX
cells13 (supplemental Figure 9). The T-cell differentiation and the
T/myeloid checkpoint are dependent on accurate regulation of
NOTCH1 and PU.1/MEF2C pathways.32-35 For an early thymo-
cyte to differentiate into a mature T cell, the NOTCH1 pathway
should be activated whereas the PU.1/MEF2C pathway should
be completely shut down (PU.1, MEF2C, and CSF1R).32-36

Together these results indicate that ETV6-NCOA2 is a lymphoid
transcriptional activator that collaborates with NOTCH1 to drive
extrathymic hematopoietic progenitors into the T-cell trajectory.
This occurs while maintaining expression of myeloid genes, thus
arresting the cells at the early immature T-cell differentiation
stage.

ETV6-NCOA2 causes de-repression of
ETV6 targets
DNA-binding site analysis37 of the significant upregulated genes
in the RNA-seq demonstrated enrichment of the erythroblast
transformation–specific (ETS) 5GCGGAAGT3 binding motif in all
of the ETV6-NCOA2 samples: ETV6-NCOA2 CD341 in vitro
transduced cells (NES, 4.77), in vivo ETV6-NCOA2–engrafted
cells (NES, 3.56), ETV6-NCOA21NOTCH1-L1601PdP leukemia
(NES, 4.43), and ETV6-NCOA2 PDXs (NES, 3.46) (Figure 5A;
supplemental Table 5).37-39 However, this enrichment was not
observed in the downregulated genes.

Because ETV6 is a transcriptional repressor,40 the above obser-
vations could suggest that ETV6-NCOA2 causes de-repression
of ETV6 target genes. We confirmed this by comparing the
ETV6-NCOA2 expression profile to a published gene signature
of siETV6 in the early T-cell leukemia LOUCY cell line.14 These
comparisons demonstrated a significant positive correlation in
all of the following groups: ETV6-NCOA2 CD341 in vitro trans-
duced cells (NES, 1.29; FDR, 0), in vivo ETV6-NCOA2–engrafted
cells (NES, 1.65; FDR, 0.0), ETV6-NCOA21NOTCH1-L1601PdP
leukemia (NES, 1.58; FDR, 0), and ETV6-NCOA2 PDXs (NES,
1.35; FDR, 0.005)14 (Figure 5B; supplemental Figure 10A).

To validate that ETV6-NCOA2 reverses the repression of ETV6
target genes, we combined the gene expression of ETV6-
NCOA2 CD341 in vitro transduced cells with a published
ENCODE ChIP-seq of ETV6 in K562 cells,41 a hematopoietic
myelogenous leukemia cell line,42 by binding and expression
target analysis (BETA).43 Significant enrichment of the ETS family
of transcription factors was observed in the peaks of the
up-target (Student t test P 5 1.7e216; T score, 8.41) (supplemen-
tal Figure 10b). ETV6 de-repressed genes included HES1 and
DLL4, which are activators in the NOTCH1 pathway.44 Both
were significantly upregulated in RNA-seq and have H3K27
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acetylation peaks in ETV6-NCOA2 PDXs (Figure 5C). This sug-
gests that ETV6 de-repression is involved in early T-cell pro-
gramming initiated by ETV6-NCOA2 in nonthymic
hematopoietic progenitors.

Loss of the wt-ETV6 allele is a prevalent event in leukemias with
ETV6 translocation (eg, ETV6-RUNX1).45-48 However, ETV6-
NCOA2 cells preserve their wt-ETV6, as we previously demon-
strated.12 ETV6-NCOA2 lacks the DNA-binding domain of ETV6
but maintains the PNT homo- and heterodimerization domain.49

Dominant negative mutations in ETV6 with an intact PNT dimeriza-
tion domain were described in ETP-ALL.14 Hence, we hypothe-
sized that ETV6-NCOA2 interacts with wt-ETV6. To verify this
interaction, we performed co-IP experiments. ETV6-NCOA2-
Flag and ETV6-HA were pulled down with Flag or HA antibody,
respectively. We observed that ETV6-NCOA2 and ETV6 are pulled
down together, thus creating a protein complex (Figure 5D).

NCOA2 is a transcriptional coactivator that recruits p300 H3
acetyltransferase through its AD1 domain, which is retained in
the ETV6-NCOA2 and KAT6A-NCOA250 fusions. This interaction
was proposed to have an important role in KAT6A-
NCOA2–induced leukemogenesis.18,50 To explore the interac-
tion between ETV6-NCOA2 and p300, we expressed ETV6-
NCOA2-Flag or ETV6-Flag in DND41 cells and pulled down
either Flag-tagged protein or endogenous p300.18 Co-IP of
ETV6-NCOA2-Flag pulled down p300, whereas the immunopre-
cipitation of ETV6-Flag did not. Together, these experiments
suggest the formation of an ETV6-NCOA2–wt-ETV6-p300
complex (Figure 5D).

To validate ETV6 derepression by ETV6-NCOA2, we performed a
luciferase reporter assay. We generated a stably expressing
pGL2-T574 luciferase reporter 293T cell line with an ETV6 DNA
recognition site.13 wt-ETV6 repressed the basal transcription level
of this promoter. Expression of ETV6-NCOA2 in the cells together
with wt-ETV6 activated the promoter in a dose-dependent man-
ner (Figure 5E) (ANOVA P , .0001). A485, a p300 inhibitor,
reduced the H3K27Ac levels of both ETV6-NCOA2 and empty
vector cells (supplemental Figure 11). Treating the wt-ETV6 cells
with A485 derepressed the transcription from the promoter, but
its inactive analog A486 did not51 (ANOVA P , .0001) (Figure
5E). Interestingly, the expression of ETV6-NCOA2 alone caused
repression of the transcription from the reporter gene. Similar to
KAT6A-NCOA2, ETV6-NCOA2 (which lacks a DNA-binding
domain) binds p300 and CREB-binding protein, thus reducing its
accessibility in the cell. Additional evidence for that is the general
H3K27Ac reduction in ETV6-NCOA2 cells compared with that in
empty vector (supplemental Figure 12).

On the basis of these results, we propose that ETV6-NCOA2 is
recruited to ETV6 target genes by heterodimerization with
wt-ETV6. The recruitment of p300 histone acetyltransferase to
NCOA2 AD1 activates ETV6-repressed lymphoid genes in non-
thymic hematopoietic progenitors. The acquisition of activating
NOTCH1 mutations and preservation of the expression of mye-
loid genes results in T/myeloid leukemias (Figure 5F).

Discussion
T/myeloid leukemias, clinically classified as either MPAL or ETP,
are characterized by coexpression of T-cell and myeloid cell

markers and poor prognosis.2,52 Consistent with the T/myeloid
immunophenotype, genomic analysis revealed somatic muta-
tions typical to both T-ALL and AML.2 Yet the pathogenesis of
T/myeloid ALL is largely unknown, and preclinical models are
lacking. On the basis of the previous observations12,13 that
ETV6-NCOA2 is tightly associated with T/myeloid leukemias, we
hypothesized that the ETV6-NCOA2 fusion gene is an oncogene
that induces T/myeloid leukemia.

Two preclinical models confirmed this hypothesis; ectopic
expression of ETV6-NCOA2 in mouse HSPCs led to T/myeloid
lymphomas associated with acquisition of spontaneous
Notch1–activating mutations. Similarly, coexpression of ETV6-
NCOA2 and non-transforming activated NOTCH1 mutant
(NOTCH1-L1601PdP)24 in human cord blood CD341 cells
resulted in aggressive T/myeloid leukemia in immunodeficient
mice. Remarkably, we showed that the expression of ETV6-
NCOA2 in both mouse and human HSPCs, even though cultured
for a short time under myeloid conditions in vitro, induced gene
expression of a lymphoid program and the arrest of T-cell differ-
entiation in DN1 and DN2 on OP9-DL4 stroma. Our study sug-
gests that the initiation of the lymphoid program in extrathymic
HSPCs, coupled with preservation of myeloid gene expression
and acquisition of NOTCH1 mutations, leads to T/myeloid
leukemias.

NCOA2 is involved in additional recurrent translocation in leuke-
mias; KAT6-NCOA2 (MOZ-TIF2) causes aggressive AML.53

Mechanistic studies suggested a dual leukemogenic mechanism.
The first is depletion of the histone acetyltransferase p300 by its
binding to the NCOA2 AD1 domain.15,18,54 The second comple-
mentary mechanism is the specific recruitment of p300 to pro-
moters of myeloid genes such as CSF1 thereby increasing their
expression.55

We propose a similar mechanism for the initiation of T/myeloid
leukemia by ETV6-NCOA2 in extrathymic hematopoietic pro-
genitors. In ETV6-NCOA2, the same segment of NCOA2 is
fused to the PNT domain of ETV6. The known role of the ETV6
PNT domain is to mediate ETV6 homodimerization.49 Indeed,
we showed that ETV6-NCOA2 forms a complex with ETV6,
thereby recruiting p300 to ETV6 targets and reversing their
repression, inducing a mostly lymphoid program, as we have
observed in the reporter (Figure 5E) and gene expression
experiments (Figure 4C-D). Furthermore, a general reduction in
H3K27Ac levels was detected in ETV6-NCOA2–expressing cells,
suggesting a depletion of p300 by ETV6-NCOA2. Interestingly,
p300 is often inactivated in ETP and T/myeloid leukemias2,56

The T-cell differentiation checkpoint depends on the downregu-
lation of myeloid genes, specifically MEF2C and PU.1. NCOA2
is a known regulator of MEF2C.57 Indeed, we observed expres-
sion of MEF2C upon expression of ETV6-NCOA2. Homminga
et al13 demonstrated that MEF2C is a key transcription factor in
the lymphoid-myeloid lineage decision; its expression is high in
B cells and T-lymphoid progenitors; however, it dramatically
decreased beyond the DN2 stage16,25-27 during T-cell develop-
ment. Consistent with our findings, MEF2C was upregulated in
an immature T-ALL cohort that included 3 patients with ETV6-
NCOA2.29,30
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We found that ETV6-NCOA2 induces B and T genes in extrathy-
mic hematopoietic progenitors, yet it leads to T/myeloid leuke-
mia. It is possible that the lack of RAG1/2 expression in these
progenitors prevented the deletions of B-cell differentiation
genes that are almost universally observed in B-cell precursor
ALL.58 Interestingly, expression of B-cell antigens has been
described in T-ALL,59 ETV6-NCOA2 leukemias13,30 (Jules P. P.
Meijerink, Prinses M�axima Center for Pediatric Oncology,
Utrecht, The Netherlands. The communication was via email, 6
May 2021), and MEF2C-expressing ETPs.29,60 Expression of a
competing lineage gene is common in B-cell and T-cell leuke-
mias, possible affecting their differentiation arrest (eg, the T-cell
gene GATA3 in B-cell precursor ALL61,62).

Although ETV6-NCOA2 is a rare somatic event in leukemia, the
genetic mechanism described here is of general significance for
the pathogenesis of T/myeloid MPAL. Our novel preclinical
models suggest that T/myeloid leukemias are initiated in early
hematopoietic progenitors. This is consistent with the recent
genomic analysis of T/myeloid MPAL2 that reported a high fre-
quency of somatic ETV6 mutations. Moreover, Van-Vlierberghe
et al14 reported frequent dominant negative ETV6 mutations in
T-ALL. Together, these publications support our observations
that de-repression of ETV6 target genes in HSPCs is a general
key initiating event of T/myeloid MPAL.
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