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KEY PO INTS

� Patients with pES have
shared broad immune
anomalies irrespective
of the underlying
genetic etiology and
functional status of B
cells.

� Expanded cTfh, low
naïve CD4 and CSMB,
and increased T-cell
activation are unique
features of pES and dis-
tinguish pES from cITP.

Pediatric Evans syndrome (pES) is increasingly identified as the presenting manifestation
of several inborn errors of immunity. Despite an improved understanding of genetic
defects in pES, the underlying immunobiology of pES is poorly defined, and characteristic
diagnostic immune parameters are lacking. We describe the immune characteristics of 24
patients with pES and compared them with 22 patients with chronic immune thrombocyto-
penia (cITP) and 24 healthy controls (HCs). Compared with patients with cITP and HC,
patients with pES had increased circulating T-follicular helper cells (cTfh), increased T-cell
activation, and decreased naïve CD41 T cells for age. Despite normal or high immunoglob-
ulin G (IgG) in most pES at presentation, class-switched memory B cells were decreased.
Within the cTfh subset, we noted features of postactivation exhaustion with upregulation
of several canonical checkpoint inhibitors. T-cell receptor b chain (TCR-b) repertoire analy-
sis of cTfh cells revealed increased oligoclonality in patients with pES compared with HCs.
Among patients with pES, those without a known gene defect had a similar characteristic
immune abnormality as patients with defined genetic defects. Similarly, patients with pES

with normal IgG had similar T-cell abnormalities as patients with low IgG. Because genetic defects have been identi-
fied in less than half of patients with pES, our findings of similar immune abnormalities across all patients with pES
help establish a common characteristic immunopathology in pES, irrespective of the underlying genetic etiology.

Introduction
Evans syndrome (ES) is a rare hematologic disorder character-
ized by the co-occurrence of autoimmune hemolytic anemia
and immune thrombocytopenia (ITP) either sequentially or
simultaneously.1,2 Since its first description in 1951 by Evans et
al,1 the classical definition has evolved to include autoimmune
neutropenia.3 Currently, ES is broadly defined as evidence of
immune cytopenia affecting any 2 lineages.3,4 Additionally, for
making the diagnosis of ES, the evidence of positive Coombs
test without obvious hemolysis is accepted as evidence of red
cell lineage involvement.4,5

Increasingly, pediatric ES (pES) has been identified as the pre-
senting manifestation of underlying inborn errors of

immunity.6-8 The occurrence of significant immune deficiency,
lymphoproliferation, and other autoimmune manifestations
are reminiscent of ES as a broader immune disorder than an
isolated hematologic disorder.9,10 Advances in sequencing
technologies such as customized next-generation sequencing
panels and whole-exome sequencing have greatly helped
identify the underlying genetic defects associated with inborn
errors of immunity and pES.7,11-14 In a recent study of 80
patients with pES, 40% were found to have monogenic
defects in genes involved in the immune regulatory pathway,
such as TNFRSF6, CTLA4, STAT3, PIK3CD, CBL, ADAR1,
LRBA, RAG1, and KRAS genes.15 However, most patients with
pES had no known genetic defect. Despite the advances in
the genetic diagnosis of pES, it is unknown whether patients
with pES without an identified genetic defect are at the same
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risk of immunodeficiency and immune dysregulation as those
with known defects in the immune regulatory pathway. Addi-
tionally, the immune abnormalities that define pES, regardless
of genetic mutation status, are poorly understood. Whereas
other immune disorders are characterized by certain diagnos-
tic immunologic features such as double-negative T cells in
autoimmune lymphoproliferative syndrome, there are cur-
rently no defining immune markers for pES.16-18 Immunobio-
logical understanding of pES is critical to define the
underlying disease mechanism, predict the patient’s risk of
immune complications, and guide treatment strategies.

We, therefore, evaluated various immune markers in patients
with pES and compared them with patients with single-lineage
cytopenia (ie, chronic immune thrombocytopenia [cITP] and
healthy controls [HCs]). High-dimensional immunophenotyping,
gene expression analysis, cytokine profile, and TCR-b repertoire
studies were used to identify a unique immune signature in pES
that distinguishes it from cITP and HCs.

Methods
Human subjects
A total of 24 patients with pES (age, 1-19 years; median, 12
years), 22 patients with cITP (age, 2-20 years; median, 13.5
years), and 24 HCs (age, 1-30; median, 16 years) were evaluated
over a 3-year period from 2017 to 2020. Patients were enrolled
from Children’s Healthcare of Atlanta, Cincinnati Children’s Hos-
pital Medical Center, and Children's Hospitals and Clinics of Min-
nesota. The clinical and laboratory tests performed as part of the
standard of care for patients with pES and cITP are provided in
supplemental Tables 1 and 2, available on the Blood Web site.

Patients with pES and cITP were enrolled either at disease onset
or during follow-up with active disease. Patients were excluded
if they had previously received rituximab or on systemic immune
suppression (steroids, sirolimus, or mycophenolate) in the 3
months before enrollment. Patients with pES and ITP with clini-
cal diagnosis of systemic lupus erythematosus19 or underlying
malignancy were excluded. Among patients with pES enrolled
in the study, 14 of the 24 were enrolled at disease onset (1-6
weeks), and 10 were enrolled at follow-up with active disease/
flare of immune cytopenia (1-6 years from initial diagnosis). Lym-
phoproliferation (lymphadenopathy or splenomegaly) was noted
in 17 of the 24 patients with pES, and 3 patients with pES had
pulmonary and gastrointestinal manifestations.

Immunoglobulin profile (immunoglobulin A [IgA], IgG, and IgM)
and measurement of the percentage of CD42CD82 (double-
negative) T-cell receptor-ab1 (TCRab1) (DNTCs) cells,
T-regulatory (Treg) cells (CD41CD251 CD127lowFOXP3), and
class-switched memory B cells (CD191CD271IgM2IgD2) were
performed in Clinical Laboratory Improvement Amendments-
certified laboratories at Children’s Healthcare of Atlanta and
Diagnostic Immunology Laboratory at Cincinnati Children’s Hos-
pital Medical Center.

As per the Declaration of Helsinki, informed consent was
obtained from all subjects.

Genetic evaluation
Genetic testing was performed in all 24 patients with pES (sup-
plemental Table1). Targeted next-generation sequencing was
performed in most of the patients with pES (n 5 20). In a limited
number of patients, whole-exome sequencing (n 5 4) was
performed.

Flow cytometry
Peripheral blood mononuclear cells from patients were used for
immunophenotyping. Antibodies and reagents used are listed in
supplemental Table 3. Research flow cytometry data were
acquired on BD FACSymphony A5 and analyzed using FlowJo
software v10. Definitions of different cell populations used in
this study were summarized in supplemental Table 4. Total circu-
lating T-follicular helper cells (cTfh) cells were defined as
CD41CD45RA2CXCR51. PD-11 cTfh or cTfh cell populations
were used interchangeably and defined as CD41CD45RA
2CXCR51PD-11. Because of the broad age range of our patient
and control group, age-specific lower limit of the normal was
used to normalize CD41 naïve and class-switched memory B
(CSMB) populations in all samples. Absolute percentage of
CD41 naïve and CSMB and cutoffs are provided in supplemen-
tal Table 5. FItSNE plots were generated using FItSNE plugin in
FlowJo v10.20 Down-sampling was performed by the DownSam-
ple V3 plugin in FlowJo v10.

Cell sorting and NanoString assay
CD41CD1271CD25lowCXCR51 T cells were sorted using FAC-
SAria II. Total RNA was extracted using Quick-RNA Microprep
kit (Zymo Research) per the manufacturer’s protocol. The gene
expression profile was determined using the nCounter CAR-T
Characterization Panel (NanoString). NanoString assay was per-
formed using 10 ng RNA. Data analysis was performed using
NanoString nSolver software v4.0.

TCR-b repertoire and data analysis
RNA extracted from sorted CD41CD1271CD25lowCXCR51 T
cells was used as starting material for TCR-b sequencing with 20
ng RNA for library preparation. CDR3 regions of the TCR-b
chain were amplified using iRepertoire (Huntsville, AL) multiplex
polymerase chain reaction primer sets for library preparation.
Libraries were sequenced using the Illumina MiSeq reagent v2
(500-cycle) kit. Data were analyzed using iRweb software (iReper-
toire). TCR repertoire diversity of cTfh was examined by calculat-
ing Shannon's entropy, which accounts for sample richness and
degree of unevenness in the clonal frequency. Shannon’s
entropy and the diversity index were calculated using iRweb
software. Gini index was calculated using “Ineq” package in R.
Cytokine profiling and statistical analysis are listed in the supple-
mental Methods.

Results
cTfh are expanded and activated in pES
pES and cITP are both autoantibody-driven disorders.2 Tfh cells
play a critical role in helping B cells regulate the antibody
response.21 Dysregulation of cTfh is identified in several
autoantibody-driven disorders.22-24 Because of their critical role
in regulating B-cell responses, we evaluated cTfh in patients
with pES. We noted pES had more than a twofold increase in
the percentage of total cTfh (35.11 6 1.99) compared with
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Figure 1. Expansion and activation of cTfh in patients with pES. (A) Representative FItSNE plots showing frequency and activation status of cTfh cells in patient
with pES and HC where CD41 T cells were first manually gated for total memory cells (CD45RA2) and then down-sampled to equal number of cells. CXCR51 cells were
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patients with cITP (14.61 6 1.63, P , .0001) and HCs (16.47 6

0.60, P , .0001; Figure 1A-B). Similarly, a fourfold increase in
PD-11 cTfhs was seen in patients with pES (17.54 6 1.31) com-
pared with patients with cITP (3.64 6 0.49, P , .0001) and HCs
(3.79 6 0.43, P , .0001; Figure 1A-C). Analysis of PD-11 vs PD-
12 cTfhs showed a high ratio of PD-11/PD-12 cTfhs in patients
with pES compared with patients with cITP and HCs (Figure 1D).
Evaluation of total cTfh for markers of activation (HLA-DR),
exhaustion (Tim3), and senescence (CD57) showed increased
expression of HLA-DR1, Tim31, and CD571 in patients with
pES compared with patients with cITP and HCs (Figure 1E-G).

pES is characterized by decreased naïve CD41 T
cells, increased overall T-cell activation, and
decreased class-switched memory B cells
A decrease in CD41 naïve T cells is a marker of decreased thy-
mic output or perturbation in T-cell development and is noted
in immune dysregulation disorders with late-onset combined
immune defect or common variable immunodeficiency
phenotype.25-29 Similarly, T-cell activation from defective T
cell–intrinsic or –extrinsic regulation has been reported in some
of these disorders.25–29 Although significant immune deficiency
or dysregulation may not be apparent at the onset of pES, we
postulated that subclinical immune activation with decreased
naïve CD41 T cells might be present in patients with pES but
not in patients with cITP. As hypothesized, we found that CD41

naïve T cells were decreased in patients with pES compared
with HCs and patients with cITP (Figure 2A). A significant
increase in activation of effector memory CD4 and CD8 com-
partments was noted in pES but not in cITP (Figure 2B-C).
Despite this significant increase, the overall level of T-cell activa-
tion was moderate in pES. Modest elevation of soluble interleu-
kin-2 receptor levels was observed in 6 of 7 tested patients with
pES, which further validates T-cell activation state in pES (sup-
plemental Table 1).

Additionally, we found pES had significantly increased PD-
11Tim31 expression, suggesting CD41 and CD81 T cells dis-
play states of activation and exhaustion (supplemental Figure
1A-B). Although there was increased CD571 expression on
effector memory CD41 and CD81 T cells in patients with pES
compared with HCs, we did not find a significant difference
between cITP and pES (supplemental Figure 1C-D). Similarly, we
did not find a difference in CD571 expression on CD41 and
CD81 T cells (supplemental Figure 1E-F). CD41/CD81 ratio was
also not different between the groups (supplemental Figure 1G).
DNTCs and FOXP31 Tregs were assessed in some patients.
Most patients with pES showed normal frequencies of DNTCs
(n 5 12 of 15). Decreased absolute numbers of FOXP31 Tregs
(CD41CD25hiCD127lowFOXP31) were observed in 4 of 8 patients
with pES (supplemental Table 1).

At presentation, most patients with pES had normal or increased
IgG and IgA levels for age (63% and 54%, respectively; supple-
mental Table 1). However, the proportion of CSMB cells was sig-
nificantly decreased in most patients with pES compared with
HCs or patients with cITP (Figure 2D-E).

Longitudinal immune evaluation revealed
persistent cTfh expansion and T-cell activation
Six patients with pES who were not on systemic immune sup-
pression were followed longitudinally for 3 to 18 months
(median, 8 months) from time of diagnosis. cTfh expansion,
CD41 T-cell activation , and low CSMB proportions observed at
diagnosis were persistent at follow-up evaluation (Figure 2F-H).

T-cell abnormalities in pES are similar irrespective
of underlying genetics or humoral immune
functional status
Of the 24 patients with pES who underwent genetic testing, 12
were found to have pathogenic or likely pathogenic gene var-
iants and were categorized as pESgene1. The remainder were
categorized as pESgene2. cTfh expansion, naïve CD41, CD41 T-
cell activation, and CSMB proportions were comparable
between patients with pESgene1 and pESgene2 (Figure 3A-D).

Based on serum IgG levels, patients with pES were also catego-
rized as having normal/high IgG (pESn-IgG) or low IgG (pESl-IgG)
levels. The percentage of cTfh, naïve CD41, and CD41 T-cell
activation were also similar in both groups. Both groups showed
low proportions of CSMB cells compared with HCs. However,
the percentage of CSMB was lower for pESl-IgG compared with
pESn-IgG (Figure 3E-H). Similarly, patients were categorized
based on levels of serum IgA (pESn-IgA and pESl-IgA). The fre-
quency of cTfh, naïve CD41, and CD41 T-cell activation was
comparable between the 2 groups, but patients with pESl-IgA

showed a more pronounced decrease in CSMB than patients
with pESn-IgA (Figure 3I-L).

pES and cITP have a distinct immune profile, and
a scoring system could identify broad immune
abnormalities in pES
To further validate the overlap of immune profiles among
patient groups, we performed principal component analysis
(PCA) of immune phenotypic markers on different populations.
PCA revealed that patients with cITP overlap with HCs, but
patients with pES were clearly distinct from cITP and HCs, sug-
gesting that the immunophenotype of pES is different from cITP
(Figure 4A). Also, heatmap analysis of immune parameters dis-
cussed above further confirmed that pES is immunologically dis-
tinct from cITP (Figure 4B).

Receiver operating characteristic (ROC) statistics were used to
calculate the area under the ROC curve, sensitivity, specificity,

Figure 1 (continued) gated on CD45RA2CD41 T cells and subsequently gated for HLA-DR1 or PD-11 cells. Expression of cTfh and activation markers on cTfh (ie, PD-
11 and HLA-DR1) are shown in different colors. Overlaid expression of PD-11, HLA-DR1, and CXCR51 markers are shown at the extreme right for both HC and pES.
(B-C) Plots showing percentage of cTfh as CXCR51CD45RA2CD41 T and CXCR51PD-11CD45RA2CD41 T subsets in HCs (n 5 24), patients with pES (n 5 24), and
patients with cITP (n 5 22). (D) Plot showing ratio of PD-11 cTfh vs PD-12 cTfh in HCs, patients with pES, and patients with cITP. (E-G) Percentage of CXCR51HLA-
DR1, CXCR51Tim31, and CXCR51CD571 expression on total memory CD41 T cells in different patient groups. Data represent mean 6 standard error of the mean
(SEM) values for each group. Kruskal-Wallis 1-way analysis of variance (ANOVA) followed by Dunn’s multiple comparison test for nonnormally distributed samples and
ordinary 1-way ANOVA followed by Tukey’s multiple comparison test for normally distributed samples were used for statistical comparison. ***P , .001; ****P ,

.0001; ns, not significant.
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and optimum cutoff thresholds for 20 different immunopheno-
type parameters (supplemental Table 6). We selected 4 parame-
ters based on the area under the ROC curve, sensitivity, and
specificity, and representation of immunologically nonover-
lapping phenotypes that could potentially distinguish cITP
from pES. Based on these criteria, frequency of cTfh, acti-
vated CD41 T, naïve CD41 T, and CSMB were selected for
scoring. For the percentage of cTfh and activated CD41

effector memory, values greater than the thresholds were
assigned a score of 1, with lower values assigned a score of 0
(Figure 4C-D). Age-specific reference ranges were used for
scoring naïve CD41 T and CSMB populations, values below
the lower limit of different age-specific reference ranges were
given a score of 1, and otherwise they were assigned a score
of 0. Finally, a sum of all 4 parameters was calculated for
each subject. Using a scoring system based on these

parameters, patients with pES had a median score of 3
(range, 2-4), whereas patients with cITP and HCs had a
median score of 0 (range, 0-1 for patients with cITP and HCs;
Figure 4E-F).

Early commitment for cTfh differentiation,
preferential expansion of cTfh, and nonlineage
restriction are characteristic of pES
Because cTfh was noted to be a distinguishing feature of pES,
further analysis of cTfh differentiation was done. To assess
whether increased cTfhs are because of early lineage commit-
ment and preferential expansion leading to accelerated senes-
cence, we evaluated cTfhs in CD41 naïve and T effector
memory re-expresses CD45RA (TEMRA) compartments . We
observed significant expansion of cTfh in both naïve and TEMRA
subsets in pES but not in cITP (Figure 5A-D). Comparing cTfh
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Figure 2. Patients with pES show alterations in different immune compartments of T and B cells. (A) Age-normalized percentage of CD41 naïve T-cell population
in different patient groups. (B-C) Percentage of HLA-DR1CD381 expression on effector memory compartment of CD41 and CD81 T cells in different patient groups.
(D) Flow cytometry plots showing expression of CSMB (CD191CD271IgM2IgD2) on CD191 B cells in HC and patient with pES. (E) Percentage of CSMB in HCs (n 5

24), patients with pES (n 5 24), and patients with cITP (n 5 22). (F-H) Plots showing frequency of cTfh, CD41 T-cell activation, and CSMB in the longitudinal follow-up
of patients with pES (n 5 6). Data represent mean 6 SEM values for each group. Kruskal-Wallis 1-way ANOVA followed by Dunn’s multiple comparison test for nonnor-
mally distributed samples and ordinary 1-way ANOVA followed by Tukey’s multiple comparison test for normally distributed samples were used for statistical compari-
son. *P , .05; **P , .01; ***P , .001; ****P , .0001; ns, not significant.
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frequencies in naïve, memory, and TEMRA compartments of
CD41 T cells showed a progressive increase in percentages of
cTfhs from naïve to memory and from memory to TEMRA in
patients with pES but not in patients with cITP or HCs (Figure
5E). We also observed cTfh-like cells in the CD81 T-cell com-
partment. The percentage of cTfh-like cells in different CD81

T-cell compartments was significantly higher in pES (Figure 5F).

Based on CXCR3 and CCR6 expression, cTfh was subdivided
into 4 groups: cTfh1 (CXCR31CCR62), cTfh2 (CXCR32CCR62),
cTfh1/17 (CXCR31CCR61), and cTfh17 (CXCR32CCR61). cTfh1

was significantly increased in patients with pES, whereas cTfh17
was significantly decreased in patients with pES compared with
patients with cITP and HCs. Conversely, the proportion of cTfh2
cells was similar among these groups (supplemental Figure 2).

Gene expression profiling of cTfh in pES shows
dysregulation characterized by upregulation of
activation, proliferation, and exhaustion
To gain further insights into the molecular mechanisms leading
to highly activated and exhausted states of cTfh in pES, we ana-
lyzed gene expression changes between 4 randomly selected
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patients with pES and HCs. Of 780 mRNA transcripts evaluated,
there were several differentially expressed genes (77 upregu-
lated and 32 downregulated; fold change . or ,1.2; P , .05)
between patients with pES and HCs (Figure 6A-C). Similar to
flow cytometry data, several activation marker transcripts such as
ICOS, HLA-DRA, HLA-DRB1, TNFRSF4, TNFRSF18, and NFKBIA
were upregulated. In addition to activation markers, upregula-
tion of proliferation marker MKI67 was also observed. Several
exhaustion markers, including LAG3, CTLA4, TOX, and
TNFRSF9, were also upregulated in pES. We observed that cTfh
in pES showed upregulation of important effector molecules
such as IFNG, GZMK, GZMA, interleukin 10 (IL-10 ), and IL-12A.
These data suggest that cTfh cells are not only activated in
these patients but also express markers of effector function.
However, despite several markers of activation, the expression
of CD40 and CD40LG was downregulated in pES. In addition,
chemokines CCL7 and CCL2 were increased, whereas chemo-
kine receptors CCR7 and CCR6 were decreased in pES.

Bcl6 is an important transcription factor that promotes the differ-
entiation of CD41 T into cTfh30,31 was upregulated in patients
with pES. Interestingly, several other transcription factors such as
Signal transducer and activator of transcription 4 (STAT4), Signal
transducer and activator of transcription 6 (STAT6), GATA bind-
ing protein 3 (GATA3), Neurogenic locus notch homolog protein
2 (NOTCH2), and Interferon regulatory factor 3 (IRF3) were
downregulated in pES. Differential transcripts were also noted in
MAPK and PI3K signaling and glycolysis (Figure 6C).

To validate some of these findings, we measured levels of criti-
cal soluble ligand, cytokines, and chemokines in plasma samples
(Figure 6D). Similar to CD40L gene expression in cTfh, we found
sCD40L in plasma was significantly low in pES. IL-21 is a known
regulator for Tfh differentiation and humoral responses.32 How-
ever, we did not find any difference in the levels of IL-21
between patients with pES and HCs. Although serum levels of
interferon g (IFN-g) were similar between the groups, chemo-
kines induced by IFN-g (ie, CXCL9 and CXCL10) were signifi-
cantly increased in patients with pES compared with HCs. In
concordance with the gene expression data, IL-12p40, a critical
inducer of Th1 differentiation of T cells, was significantly
increased. Similar concordance was noted with elevated IL-10
levels in pES. IL-18, a marker of inflammasome activation,33,34

was significantly elevated in pES. Conversely, critical cytokines
for Treg and naïve T-cell development, including IL-2 and IL-7,35

were significantly low in patients with pES compared with HCs.

Immune repertoire in pES shows oligoclonal
expansion of cTfh
To address whether the expansion of cTfh in pES also leads to
changes in the diversity of T-cell repertoire, we performed next-
generation sequencing of TCR-b genes of total cTfh cells in 4
randomly selected patients with pES and 4 HCs. Analysis of the
TCR-b repertoire showed a significantly higher proportion of the
top 50 clones in patients with pES compared with HCs (Figure
7A-B), where the top 50 clones contributed to 65% of the

repertoire in patients with pES vs only 38% in HCs. Shannon’s
entropy was significantly lower in pES, suggesting the cTfh rep-
ertoire is less diverse in pES (Figure 7C). TCR repertoire diversity
was further confirmed by the diversity index, which was signifi-
cantly higher in HCs compared with patients with pES (Figure
7D). Inequality in size of clonotypes across samples was
assessed by the Gini coefficient (Figure 7E). As expected, the
Gini coefficient was significantly higher in pES, again suggesting
that cTfh cells in pES are more oligoclonal. Among different
TRBV genes, use of TRBV29-1 was found significantly higher (P
, .01) in patients with pES than HCs (Figure 7F). TCR repertoire
overlap was analyzed between samples and between groups.
We found a greater overlap of CDR3 amino acid sequences
within pES samples compared with HCs. Overall, 29 clones were
shared in at least 2 of 4 pES samples, whereas only 3 clones
were shared in HCs (Figure 7G-H). One clone (SVDRGTGSPEAF)
was shared in 3 of 4 patients with pES.

Discussion
Advanced sequencing technologies and increased accessibility
to genetic testing have helped to identify the genetic defect in
up to 40% of patients with ES.15 Despite rapid strides in our
understanding of the genetic basis of pES, the current under-
standing of the immunobiology and broader immune abnormali-
ties of pES remains limited, and systematic immune studies
addressing these questions are lacking. In this study, we
describe characteristic immune abnormalities of cTfh expansion,
chronic T cell activation, and a decrease in naïve CD41 and
CSMB in patients with pES. Moreover, these characteristic
immune anomalies were noted irrespective of an identified
genetic etiology or hypogammaglobulinemia at presentation.
These findings offer critical insight into the T cell immune dysre-
gulation and B cell maturation defects common to all patients
with pES. While, at presentation, immune dysregulation and
deficiency may be clinically apparent in some patients with pES,
it may not be clinically evident in many others. Immune abnor-
malities identified in this study highlight the fact that broader
immune abnormalities are noted even in patients with gene-
negative pES and those presenting with normal or high immu-
noglobulin levels.

Among the immune abnormalities noted, we identified cTfh
expansion as a characteristic immune abnormality present in
patients with pES. An increase in cTfh frequency in immune reg-
ulatory disorders has been previously attributed to quantitative
and qualitative defects in Tregs or T-follicular regulatory
cells.36–39 A similar mechanism might be at play in pES as a high
proportion of these patients had low Tregs. Recently, low IgA
levels in patients with common variable immunodeficiency lead-
ing to increased bacterial load in gut and ensuing endotoxemia
was proposed as the driver for cTfh expansion.36,40 However,
we found characteristic high cTfh in pES even in the presence of
normal IgA levels. This suggests that low IgA levels and endo-
toxemia may not be the critical driver of cTfh expansion in pES.
In addition, cTfhs in pES have a characteristic early lineage

Figure 6 (continued) with fold change either .2 or ,0.5 and P , .05 in patients with pES. (C) Heatmaps showing gene expression changes categorized based on
gene annotation categories of T cells in patients with pES compared with control samples. (D) Bar plots showing plasma concentration of sCD40L, IL-21, IFN-g, CXCL9,
CXCL10, IL-12p40, IL-10, IL-18, IL-2, and IL-7 in healthy (n 5 20) and pES (n 5 22) samples. Data represent mean 6 SEM values for each group. Mann-Whitney test for
nonparametric samples and Student t test for parametric samples were performed for significance. *P , .05; **P , .01; ns, not significant.
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commitment and preferential acquisition of the senescence phe-
notype. High Ki67 transcripts and increased cTfhs in the TEMRA
compartment suggest proliferative stress in cTfhs compared
with the rest of the memory CD4 compartment. Excess cTfh
cells is postulated to cause positive selection defect in the ger-
minal center resulting in autoantibodies generation.41,42

Increased CD8 Tfh-like cells have been shown to result in the
breakdown of B-cell tolerance and autoantibody production.43

Low Treg numbers and an increase in CD4 cTfh and CD8 cTfh-
like cells in pES could facilitate autoantibody generation in pES.
Additional mechanistic studies are needed to understand how,
despite apparent cTfh expansion, there is decreased B-cell
class-switching and risk of hypogammaglobulinemia. CD40L is
critical for cTfh and B-cell interaction and resulting class-switch
recombination and germinal center reaction.44 Decreased
CD40L expression despite increased overall activation could
suggest functional cTfh defect in patients with pES.

We show that cTfh in pES has an immunophenotype and tran-
scriptome signature of immune activation and exhaustion. We
also found upregulation of a canonical coinhibitory transcript,
TOX gene, a transcription factor with a role in T-cell exhaustion
in upregulated in pES.45-47 Interestingly, the mammalian target
of rapamycin (mTOR) transcript was downregulated in patients
with pES with upregulation of AKT, PRKCB, and other transcripts
involved in the MAP kinase pathway. Because the mTOR inhibi-
tor sirolimus is one of the first-line treatments of pES,48 the find-
ing of the decreased mTOR transcript is intriguing. It is possible
that an increase in pS6 and mTOR activity in cells may have
resulted in the downregulation of the mTOR transcript. Alterna-
tively, the beneficial effects of sirolimus in pES could also be
mediated through its known inhibitory activity of protein kinase
C,49,50 which was upregulated in pES.

Currently, semitargeted therapy with sirolimus in patients with
pES results in excellent response.48,51 However, there is still a
significant proportion of patients with pES who either do not tol-
erate sirolimus or do not respond to it. Therefore, there is a
need to identify additional targeted therapies like sirolimus that
have efficacy across different drivers of pES. Identification of
genetic defects in pES has helped develop targeted therapies
such as phosphatidylinositol 3-kinase d (PI3Kd) inhibitor for acti-
vated PI3Kd syndrome,52,53 abatacept for CTLA-4 haploinsuffi-
ciency,54,55 and Lipopolysaccharide-responsive beige-like anchor
protein (LRBA) defects,56 and the JAK-STAT pathway inhibitor
ruxolitinib for STAT1 and STAT3 gain of function defects.57–59

However, further functional studies of MAP kinase, protein
kinase C, JAK-STAT, AKT, and PI3K pathways are needed to
help in understanding if some the abovementioned therapies
and new therapies targeting these pathways can work across dif-
ferent genetic drivers and in pES without known genetic
defects.

Chronic persistent viral infection is reported to redirect CD41

T-cell differentiation toward Tfh.60 However, no obvious viral
infection was identified in our patients with pES. The findings of
increased oligoclonality, decreased diversity, and greater fre-
quency of shared clones in the cTfh compartment of patients
with pES than in HCs suggest there might be either an antigen-
driven expansion or an impairment in generation of broad cTfh
repertoire. Previous reports in mice and HLA disparate humans
suggest that shared and public TCR sequences are enriched in

autoimmune diseases irrespective of HLA haplotypes.61–63 Simi-
larly, a higher overlap of TCR-b repertoire sequences was noted
in our cohort of unrelated patients with pES.

In addition to cTfh changes, we found several other immuno-
pathologic findings in pES. Patients with pES had an overall
increase in activated T cells, leading to a chronic inflammatory
state. Elevated levels of plasma CXCL9 and CXCL10 supports
IFN-g–driven inflammation.64-66 Additionally, IL-18, a known
inducer of IFN-g, was also elevated, suggesting ongoing innate
inflammation.67 Persistently elevated IFN-g has been previously
shown in transgenic mice to result in a reduction of T and B
cells.68,69 Similarly, a decrease in naïve CD41 T cells was also
noticed in pES. Other cytokines abnormalities such as low IL-2
and IL-7, both critical cytokines for Treg development70 and thy-
mopoeisis,35,71 could also contribute to a decrease in Tregs and
naïve CD4 T cells in patients with pES. Progressive loss of naïve
CD41 T cells in pES could eventually lead to combined immu-
nodeficiency.72 Early attrition of CSMB cells could suggest an
evolving B-cell defect even in patients with pES with normal IgG
levels. It would of interest to evaluate whether the attenuation
of the chronic T-cells activation state through several targeted
early interventions48,52,73 could preserve immune function and
delay progression to clinical immune deficiency and broader
immune dysregulation states in pES.

Based on our findings, we propose a 4-point scoring system
based on cTfh frequency, CD4 effector memory T-cell activation,
frequency of naïve CD41 T cells, and CSMB cells. A simple
8-color flow cytometry–based immunophenotyping including
CD3, CD4, CCR7, CD45RA, CXCR5, PD-1, HLA-DR, and CD38
can identify the broad T-cell dysregulation and is feasible for
most clinical flow cytometry laboratories. Adding CD19, CD27,
and IgD to this panel may help identify problems in B-cell matu-
ration and class-switching. Because of increased access to
genetic testing and availability of targeted therapies for specific
genotypes, upfront genetic testing is performed and recom-
mended for all patients with pES.15,52,59,73 The role of this
immune profile-based scoring is not to replace genetic testing
but to help in the identification of broader immune abnormali-
ties in patients with pES without a known genetic etiology or
apparent immune deficiency. Another potential utility of immune
profiling is in disease monitoring. Currently, response to thera-
pies in pES is assessed by improvement in cytopenia. Improve-
ment in cytopenia may be a sign of overall improvement in
immune dysregulation. Apart from enumeration of total CD3,
CD4, and CD8, limited longitudinal studies have been done to
evaluate the changes in T-cell dysregulation and B-cell matura-
tion defects following different therapies in patients with
pES.48,52 Ideal therapies for pES are the ones that, in addition to
improving cytopenia, treat the underlying board immune dysre-
gulation and potentially decrease the risk of other autoimmune
and lymphoproliferation complications and the development of
humoral and/or combined immune deficiency. Appreciation and
identification of broad immune dysregulation could help in the
longitudinal assessment of these parameters in response to ther-
apy, enabling the development of holistic monitoring and
improved management approaches that could help both the
cytopenia and address underlying immune dysregulation.

ES is a clinical diagnosis, and the proposed scoring system is
not intended as a diagnostic tool. However, if validated, it could
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potentially help screen for broader immune dysregulation when
presenting with single lineage cytopenia such as autoimmune
hemolytic anemia. To support this argument, in our cohort of
pES, single-lineage cytopenia or lymphoproliferation was the
presenting manifestation in 4 patients before evolving to ES.
Thus, immune evaluation using the parameters from the pro-
posed scoring system could potentially identify patients like
these before evolution to more classical ES or immune defect.
However, we have not validated the utility of this scoring system
for this indication. Further prospective studies could help define
the role of this immune parameters-based scoring system in
patients presenting with single lineage cytopenia.

Conclusion
In our study, we characterize the broad immune abnormalities in
patients with pES. Expansion of cTfh, decrease in naïve CD41 T
cells, increase in T-cell activation, and decrease in class-switched
memory B cells are among the most characteristic immune
abnormalities in pES. These abnormalities are found in most
patients with pES, irrespective of underlying genetic etiology and
immunoglobulin levels. If validated, these findings could lead to
identification of patients with immune cytopenia with a risk of
developing broader immune complications. These immune
abnormalities in pES were clearly different from cITP, suggesting
distinct differences in immunopathology for these clinical entities.
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