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KEY PO INT S

� RNR hyperactivation
disrupts dNTP
homeostasis, promoting
myeloid differentiation
in AML.

� dNTP pool imbalance
induces excessive ERK
activation, contributing
to leukemia cell
differentiation/viability
inhibition outcome.

Differentiation blockade is a hallmark of acute myeloid leukemia (AML). A strategy to
overcome such a blockade is a promising approach against the disease. The lack of
understanding of the underlying mechanisms hampers development of such strategies.
Dysregulated ribonucleotide reductase (RNR) is considered a druggable target in
proliferative cancers susceptible to deoxynucleoside triphosphate (dNTP) depletion.
Herein, we report an unanticipated discovery that hyperactivating RNR enables
differentiation and decreases leukemia cell growth. We integrate pharmacogenomics and
metabolomics analyses to identify that pharmacologically (eg, nelarabine) or genetically
upregulating RNR subunit M2 (RRM2) creates a dNTP pool imbalance and overcomes
differentiation arrest. Moreover, R-loop–mediated DNA replication stress signaling is
responsible for RRM2 activation by nelarabine treatment. Further aggravating dNTP
imbalance by depleting the dNTP hydrolase SAM domain and HD domain-containing
protein 1 (SAMHD1) enhances ablation of leukemia stem cells by RRM2 hyperactivation.

Mechanistically, excessive activation of extracellular signal-regulated kinase (ERK) signaling downstream of the
imbalance contributes to cellular outcomes of RNR hyperactivation. A CRISPR screen identifies a synthetic lethal
interaction between loss of DUSP6, an ERK-negative regulator, and nelarabine treatment. These data demonstrate
that dNTP homeostasis governs leukemia maintenance, and a combination of DUSP inhibition and nelarabine
represents a therapeutic strategy.

Introduction
Acute myeloid leukemia (AML) is characterized by differentiation
arrest within bone marrow (BM).1,2 Successful use of all-trans reti-
noic acid (ATRA) or inhibitors of mutant isocitrate dehydrogenase
(IDH) highlights the achievement of differentiation therapy.3-5

Other differentiating compounds whose effects are not limited to
any specific leukemia subtype are those intervening nucleotide
metabolism, including nucleoside analogs (eg, Ara-C)6 or inhibitors

of dihydroorotate dehydrogenase.7 There is an unmet need to
understand mechanisms underlying activity of those agents.

Proliferative cancer cells hijack de novo deoxynucleoside triphos-
phate (dNTP) biosynthesis to meet DNA replication demands.8

A key player in dNTP biosynthesis is ribonucleotide reductase
(RNR).9 The functional RNR catalytic unit is a cytosolic heterote-
tramer consisting of 2 large subunits (RRM1) and 2 small
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subunits (RRM2 and RRM2B).9 RRM2 levels vary throughout the
cell cycle; its transcription is minimal in G0/G1 and maximal in S
phase, determining RNR activity.10-12 RRM2 levels are tightly reg-
ulated by the DNA damage-induced ataxia telangiectasia and
Rad3-related (ATR) pathway,13,14 which is downstream of aug-
mented R-loops, the triple-stranded DNA:RNA hybrids.15,16

Moreover, high dNTP levels are reportedly mutagenic via per-
turbing DNA replication and impairing mitochondrial function.17

The dNTP hydrolase SAM domain and HD domain-containing
protein 1 (SAMHD1), which degrades dNTP and functionally
antagonizes RNR,17-19 reportedly promotes resistance to
nucleoside-based chemotherapies by hydrolyzing active triphos-
phate metabolites like Ara-CTP.20,21 Last, RNR activation may
have opposing effects on tumorigenesis,22 prompting us to
explore the role of RNR hyperactivation in AML.

Herein, we identify nelarabine (NEL) from our differentiation
compound screen. Its effects stem from R-loop–mediated repli-
cation stress and RNR hyperactivation-induced dNTP imbalance.
We further characterize extracellular signal-regulated kinase
(ERK) hyperactivation as downstream of the imbalance.

Methods
Patient samples
Peripheral blood or BM specimens were obtained from patients
with AML at City of Hope (COH) Comprehensive Cancer Center.
Patient characteristics are summarized in supplemental Table 4
available at the Blood Web site. Risk groups are based on World
Health Organization classification. All subjects signed informed
consent forms. Sample acquisition was approved by COH Institu-
tional Review Board in accordance with the Declaration of Helsinki.

Mice
Immunodeficient NOD-scid IL2Rgnull-3/GM/SF (NSGS) mice
used for human-in-mouse xenograft models were obtained from
the Jackson Laboratory (stock no. 013062). Mll-AF9/Samhd12/2

mice were generated by crossing Samhd12/2 mouse23 with Mll-
AF9 (MA9) knock-in mouse (Jackson Laboratory, stock no.
009079). CD45.11 congenic mice were from the National Can-
cer Institute (strain no. 01B96). Mouse care and experimental
procedures complied with established institutional guidance and
approved protocols from the Institutional Animal Care and Use
Committee at COH.

Metabolomic analysis
Metabolites were extracted with methanol and subjected to tar-
geted metabolomic profiling on the UltiMate 3000 UPLC chro-
matography system coupled with Q-Exactive orbitrap mass
spectrometer. Targeted metabolites were quantified by area
under the curve (AUC). Other details are provided in supple-
mental Materials.

Mass cytometry
Primary cells were treated as indicated and processed according
to the Fluidigm protocol. Other analysis procedures are pro-
vided in supplemental Methods.

RNA-Seq analysis
Total RNA was isolated from cells treated as indicated. RNA
sequencing libraries preparation procedures are provided in

supplemental Methods. Sequencing run was performed in the
single read mode using Illumina HiSeq 2500.

Statistics
Data obtained from multiple experiments were reported as
mean 6 standard error of the mean (SEM). Unpaired, 2-sided
Student t test was used to compare means between 2 groups.
One-way analysis of variance with multiple comparisons was
used to compare means among 3 or more groups.

Results
Functional screen reveals a
differentiation-induction activity of NEL
To define potential differentiation indicators for virtual screen,
analysis of GSE125112 revealed 35 genes commonly upregu-
lated by ATRA24 (fold-change $ 1.5; P , .01; Figure 1A; supple-
mental Table 1). In parallel, analysis of gene expression profiles
of differentiation-inducing agents from NCI-60,25 including
ATRA, zalcitabine,26 and sodium butyrate,27 revealed 55 com-
monly upregulated genes (r . 0.3, P , .01; Figure 1A; supple-
mental Table 2). There was an overlap of only 1 gene, CD38,
whose high expression is seen at later stages of hematopoietic
differentiation.28 Interestingly, transcriptome analysis of the
lineage2Sca1cKit1 (LSK) subset sorted from conditional
Idh2R140Q;Flt3ITD knock-in mice revealed that Cd38 was upregu-
lated by in vivo administration of AG-221, a potent IDH2 inhibi-
tor29 (supplemental Figure 1A). We confirmed CD38 induction
in U937, KG1A, and NB4 after ATRA, zalcitabine, or sodium
butyrate treatment (supplemental Figure 1B) and IDH2R140Q-
expressing TF-1 after AG-221 treatment as reported28 (supple-
mental Figure 1C).

We next queried the developmental therapeutics program data-
base (.20000 compounds) with CD38 as input (Figure 1B).
Among compounds retrieved from CellMiner,25 26 US Food and
Drug Administration (FDA)-approved compounds were positively
correlated with CD38 level (r . 0.3, P , .01), including ATRA
(NSC-122758; r 5 0.543, P , .01). We requested the top 79
compounds available from the National Cancer Institute (r . 0.6,
P 5 0) for phenotypic screen (Figure 1B; supplemental Table 3)
using ER-HoxA9 cells, a murine differentiation-arrest model.7 At a
fixed dose of 5 mg/mL, 3 compounds (NSC-641818, NSC-37641,
and NSC-755985 [NEL]) exhibited remarkable differentiation
(GFP1 percentage .25%; Figure 1C). NEL was the only FDA-
approved compound identified.30-34 Following NEL treatment,
ER-HoxA9 cells underwent neutrophil-like changes (Figure 1D).

We next determined whether NEL promoted differentiation in
human AML. NEL treatment upregulated myeloid marker
expression levels within a clinically achievable concentration35

(Figure 1E-F; supplemental Figure 1D-E; supplemental Table 4).
NEL-treated cells also showed cytochemical changes and cellu-
lar morphology suggestive of neutrophil or monocyte matura-
tion36 (Figure 1G; supplemental Figure 1F). NEL treatment
upregulated levels of transcription factors associated with mye-
loid differentiation37 (Figure 1H), eventually resulting in apo-
ptosis and growth inhibition (supplemental Figure 1G-H).
NEL’s differentiation induction effects were correlated with via-
bility inhibition in AML cells (supplemental Figure 1I-J); the
treatment had less effects on viability of normal CD341 cells
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Figure 1. Functional screen reveals a differentiation-induction activity of nelarabine. (A) Venn plots depicting the approach to identify a differentiation marker by
integrative analyses of GSE125112 dataset and CellMiner. Thirty-five genes were identified as overlapped upregulated genes after ATRA treatment in 4 AML lines (i);
55 genes were identified as overlapped upregulated genes among 3 differentiation-induction agents mediated gene expression profiles (ii). CD38 is the only over-
lapped gene from 2 lists. (B) Volcano plot showing Pearson correlations vs -Log10 P values for all compounds retrieved from CellMiner with CD38 as input. FDA-
approved compounds are highlighted in green. Isotretinoin (ATRA) and nelarabine (NEL) are highlighted in red. Among the top 193 compounds (r . 0.6, P 5 0,
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(supplemental Figure 1I). Moreover, colony-formation capacity
(CFC) of AML cells was suppressed (supplemental Figure 1K).

To evaluate in vivo effects of NEL treatment, we injected CD341

or T cell–depleted AML cells into NSGS mice38 (supplemental
Figure 1L). NEL treatment39 significantly decreased leukemic cell
engraftment (Figure 1I,K; supplemental Figure 1M). In vivo differ-
entiation effects were confirmed (Figure 1J). Specifically, loss of
the primitive subpopulation (CD1171 or CD341) and emergence
of monocyte or neutrophil subpopulation (CD14b1/CD641 or
CD151/CD49d2) were seen. We further extended our study to
NSGS mice xenografted with U937 cells. Importantly, NEL
administration significantly delayed leukemia onset and con-
ferred a survival advantage relative to controls (Figure 1L-N).

NEL’s differentiation-induction is caused by
dNTP imbalance
Ara-GTP is NEL’s active metabolite40,41 (supplemental Figure 2A).
Accordingly, U937 cells that are more sensitive to NEL relative
to THP1 accumulated higher levels of Ara-GTP after compara-
ble treatment (supplemental Figures 1I and 2B). We hypothe-
sized that NEL-induced differentiation was related to
nucleotide metabolism perturbation. Metabolomic analysis of
NEL-sensitive cells (U937 and KG1A) revealed that many deox-
ynucleotides increased to different extents after NEL treatment
(Figure 2A; supplemental Figure 2C; supplemental Table 5).
Moreover, the analyses were performed after treatment for 12
hours when the cell growth had not been altered yet
(supplemental Figure 1H), suggesting that these changes were
unlikely consequences of cell death. NEL treatment did not
increase fractions of newly generated deoxynucleotides synthe-
sized from glucose or glutamine (Figure 2B; supplemental

Figure 2D; supplemental Tables 6-7), excluding the
contribution of de novo synthesis.

Given that our initial metabolomics analysis cannot distinguish
isobaric nucleotides, we performed a targeted nucleotide quan-
tification assay to assess NEL treatment effects on a full panel of
dNTPs/NTPs (Figure 2C-D; supplemental Figure 2E) and found
that NEL treatment increased dNTP levels unequally. The resul-
tant imbalance was featured by a dramatic increase in dGTP lev-
els (Figure 2C-D; supplemental Figure 2F), in contrast to modest
and symmetric increases of dNTPs during G1/S transition when
RNR activity increases41-43 (supplemental Figure 2G-H).

We then asked whether the unequal increases in dNTPs and
differentiation outcome were mediated by RNR. To test the possi-
bility, we used an RNR inhibitor COH29, which targets the ligand-
binding pocket of RRM2.44 Supplementation with COH29 alleviated
dNTP imbalance (Figure 2C-D; supplemental Figure 2F) and
reversed differentiation after NEL exposure (Figure 2E-F). Similar
rescue was seen after treatment of hydroxyurea (HU), another
RNR inhibitor45 (data not shown). Unlike short-term exposure
(Figure 2C-D), long-term treatment of COH29 depleted dNTPs44

(supplemental Figure 2I). Although COH29 treatment alone did not
induce differentiation (supplemental Figure 2J), it did inhibit cell
growth in both normal and AML cells (supplemental Figure 2K-L).
To validate the viability rescue by diminishing dNTP imbalances, we
established an “RRM2-low” line by introducing a doxycycline
(DOX)-inducible RRM2-shRNA construct (ishRRM2) into U937 cells.
DOX treatment decreased RRM2 protein levels by approximately
50% (Figure 2G), with minimal effects on cell cycling (supplemental
Figure 2M). As anticipated, after NEL treatment, this line exhibited
less dNTP imbalance (supplemental Figure 2N), differentiation
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Figure 1 (continued) highlighted in purple), 79 available compounds were requested for further analysis. (C) Effects of 79 compounds on differentiation assessed by
green fluorescent protein percentage in ER-HoxA9 cells. The diameter indicates the relative cell viability. Nelarabine (NSC755985) is highlighted in red. (D) Representa-
tive morphologic changes in ER-HoxA9 cells that accompanied myeloid differentiation shown by Wright-Giemsa staining of cells in the presence and absence of nelara-
bine treatment (10 mM, 96 hours). Scale bar, 5 mm. (E) Expression levels of surface markers CD11b, CD14, and CD38 in indicated cell lines and primary AML CD341

cells (AML#1) after NEL treatment (U937, KG1A, 10 mM, 96 hours; AML#1, 20 mM, 96 hours). Mean fluorescence intensity is indicated in histograms. (F) Representative
t-distributed stochastic neighbor embedding (tSNE) display of mass cytometry analyses of primary AML cells treated with NEL (20 mM, 96 hours), colored by expression
of the indicated markers based on CD32CD192 subsets. (G) Representative cytochemical staining of U937 cells after NEL treatment (10 mM, 96 hours) assessed by
monocyte-specific a-naphthyl acetate esterase assay (i) and nitroblue tetrazolium reduction assay (ii). Scale bar, 15 mm. (H) Heatmap showing expressions of myeloid
transcription factors in indicated AML cells after NEL treatment (U937, KG1A, 10 mM, 48 hours; AML#1, AML#6, AML#7, AML#8, 20 mM, 48 hours). Gene expression lev-
els shown in duplicates were first normalized to GAPDH and then vehicle-treated cells. (I-K) Purified cells (1 3 106 cells per mouse) from primary specimens AML#1
(CD341 cells) and AML#8 (CD31 depleted cells) were injected into sublethally irradiated NSGS mice. Following confirmation of .1% engraftment in peripheral blood
(PB), mice were treated with NEL (217mg/kg, IV, daily) or vehicle (PBS) for 2 weeks (n 5 6 mice per group). Human cell engraftment was analyzed 12 weeks after bone
marrow transplantation (BMT). Representative CD45 and CD33 expression in BM of xenografts (I), immunophenotype of the primitive subpopulation (CD341 or
CD1171), monocyte subpopulation (CD141/CD641), and neutrophil subpopulation (CD151/CD49d2) (J), and percentage of human CD451 cells in total BM (K) are
shown. For panel K, results represent the mean 6 SEM. **P , .01. (L-N) U937-lucifase cells (0.5 3 106 cells per mouse) were injected into sublethally irradiated NSGS
mice. Following engraftment confirmation, mice were treated with NEL (217mg/kg, IV, daily) or vehicle (PBS) for 7 days (n 5 9 per group) and then assessed for
engraftment by in vivo bioluminescence imaging (L). Quantitative results from bioimaging (M) and mice survival after treatment discontinuation (N) are shown. For panel
M, results represent mean 6 SEM. ns, nonsignificant; **P , .01.
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(Figure 2H; supplemental Figure 2O), and viability inhibition (supple-
mental Figure 2P) than those seen in controls (ishCtrl).

We then tested whether supplementing cells with individual
deoxynucleosides (dNs)18 to experimentally create a dNTP

imbalance would phenocopy NEL treatment, given that exoge-
nous dNs can be salvaged to form dNTPs.46 Indeed, dG treat-
ment induced robust differentiation and cell death (Figure 2I;
supplemental Figure 2Q). dT or dA treatment induced differentia-
tion at relatively higher doses, whereas dC did not antagonize
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cated AML lines (E) or primary AML CD341 cells (F) treated with NEL (U937 and KG1A, 10 mM, 96 hours; primary AML cells, 20 mM, 96 hours) in the absence or presence
of COH29 (10 mM). Results represent mean 6 SEM. **P , .01. (G) Western blot of RRM2 proteins in U937 cells transduced with inducible shRRM2 (ishRRM2) or shCtrl
(ishCtrl) construct with or without doxycycline induction (2 mg/mL). (H) CD11b expression levels of ishCtrl- and ishRRM2-U937 cells with or without NEL treatment
(10 mM, 96 hours) after doxycycline induction. Results represent mean 6 SEM. **P , .01. (I) Relative cell viability and CD11b expression levels of U937 cells treated with
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stasis through promoting RNR activity. COH29 treatment reverses the differentiation phenotype by inhibiting RNR activity, whereas SAMHD1 antagonizes increases of
dNTP levels.
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Figure 3. Replication stress signaling mediated RRM2 upregulation is responsible for myeloid differentiation. (A) Gene expression levels of RRM1, RRM2, and
RRM2B were assessed by quantitative polymerase chain reaction analyses in indicated AML cells treated with vehicle or NEL for 12 hours (U937 and KG1A, 10 mM;
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hematopoietic cell lines. Data were sourced from Cancer Therapeutics Response Portal (CTRP). (G) Western blot of the indicated proteins in U937 and THP1 cells
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cell viability as reported18,47 (Figure 2I). dG treatment promoted a
significant increase in total dGTP levels to an extent greater than
that of any other dNTPs (Figure 2J; supplemental Figure 2R).
Notably, addition of dC or dA could diminish dG’s effects
(Figure 2K; supplemental Figure 2R-S). Furthermore, addition of
forodesine, an inhibitor of purine nucleoside phosphorylase,48

could exacerbate dG-triggered imbalance, whereas forodesine
alone was less effective than dG (supplemental Figure 2T). dG
treatment induced differentiation and inhibited viability of
AML cells within a clinically achievable dosage49 (Figure 2L;
supplemental Figure 2U-V). We further depleted SAMHD1 as a
safeguard of dNTP homeostasis19 in SAMHD1-proficient THP1
cells (supplemental Figure 2W-Y) and observed enhanced
dG-mediated differentiation and growth inhibition relative to
SAMHD1 wild-type (WT) controls (Figure 2M-N), confirming the
importance of dNTP imbalance.

To evaluate the effects of dNTP pool imbalance on leukemia
stem cell (LSC) activity, we conducted in vitro limiting dilution

assay50-52 using BM cells from Mll-AF9 transgenic mice53 or pri-
mary AML cells. dG treatment resulted in a decrease in LSC fre-
quency and differentiation induction (Figure 2O; supplemental
Figure 2Z). Relative to vehicle controls, dG pretreatment mark-
edly decreased engraftment of leukemic cells in NSGS mice at
12 weeks after transplantation (Figure 2P-Q). Notably, secondary
transplantation of BM cells from mice receiving dG-pretreated
cells resulted in nearly complete elimination of leukemia engraft-
ment (Figure 2R) compared with those of control cells, highlight-
ing the impairment of LSC self-renewal (Figure 2S).

Replication stress-mediated RRM2 upregulation is
responsible for myeloid differentiation
We next asked whether treatment of NEL, a known genotoxin,
upregulated RNR subunits through DNA damage response
machinery.9,54 Among RNRs, RRM2 levels were significantly
upregulated by NEL treatment (Figure 3A-B). Immunofluores-
cence revealed enhanced cytoplasmic level and nuclear localiza-
tion of RRM2 (Figure 3C). Notably, NEL treatment for 12 hours
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Figure 3 (continued) treated with vehicle or Ara-C (0.5 mM) for 12 hours. (H) U937 cells were treated with vehicle, Ara-C (0.5 mM), COH29 (10 mM), or combination for
12 hours, and intracellular dNTP levels were quantified relative to their NTP counterparts by HPLC/MS. Numbers denote the fold changes of dNTP/NTP ratios relative
to vehicle-treated controls. Results represent mean 6 SEM. *P , .05; **P , .01. (I) CD11b expression levels in primary AML CD341 cells (n 5 5) treated with vehicle,
Ara-C (0.5 mM), COH29 (10 mM), or combination for 96 hours. (J) CD11b expression levels of ishCtrl- and ishRRM2-U937 cells with or without Ara-C treatment (0.5 mM,
96 hours) after doxycycline induction. (K) Pearson correlation of RRM2 mRNA expression levels with Ara-C sensitivity in a panel of 67 hematopoietic cell lines. Data were
sourced from CTRP portal. (L) Kaplan-Meier survival analysis of a cohort of patients with AML (GSE14468) after dichotomization for RRM2 mRNA levels below (blue,
n 5 70) and above (red, n 5 192) 7.69 log2 transformed intensity (P 5 .019). (M-N) Representative immunofluorescence images (M) and quantification of nuclear S9.6
intensity (N) in U937 cells transduced with empty vector (MOCK) or V5-tagged RNASEH1 construct after treatment with NEL (10 mM) or HU (20 mM) for 6 hours. Regions
of interest for specific quantification of nuclear S9.6 staining were highlighted by dotted white lines. Scale bar, 10 mm. Box-whisker plots indicate median, 25th to 75th
percentile, and maximum and minimum values by line, box, and whiskers, respectively. ns, nonsignificant; **P , .01. (O) Western blot of the indicated proteins in
MOCK- or RNASEH1-transduced U937 cells after treatment with vehicle, NEL (10 mM), CPT (20 nM), or HU (20 mM) for 12 hours. (P-Q) CD11b expression levels (P) and relative
cell viability (Q) of MOCK- or RNASEH1-transduced U937 cells after treatment with vehicle or NEL (10 mM) for 96 hours. Results represent mean 6 SEM. **P , .01.
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significantly altered levels of ATR signaling effectors, including
p-CHK1 and E2F1, whereas modest alterations were seen on
p-CHK2 (Figure 3B). Consistently, unlike ATM inhibition, ATR
inhibition or E2F1 knockdown reduced NEL-mediated upregula-
tion of RRM2 (Figure 3D-E; supplemental Figure 3A-C), confirm-
ing that NEL treatment upregulated RRM2 via the ATR/CHK1/
E2F1 axis.55 RRM2 levels correlate with NEL sensitivity in hema-
topoietic cancer cell lines in contrast to the role of SAMHD1 as
reported56 (Figure 3F; supplemental Figure 3D). Accordingly,
NEL treatment caused more robust increased levels of RRM2
and DNA damage effectors in SAMHD1 knockout (KO) THP1
cells compared with WT controls (supplemental Figure 3E), con-
sistent with SAMHD1’s function in preventing Ara-GTP accumu-
lation and decreasing replication stress.21

The mechanism of Ara-C action is similar to NEL41,57; thus, we
asked whether differentiation induction seen after Ara-C treat-
ment as reported previously6,58 involved RRM2 activation.
Indeed, Ara-C significantly increased RRM2, p-CHK1, E2F1,
and dNTP levels in U937 cells but only induced modest changes
in SAMHD1-proficient THP1 cells (Figure 3G; supplemental
Figure 3F). Next, we assessed the role of RNR in Ara-C treat-
ment effects by applying 2 strategies mentioned above. In 1,
COH29 treatment alleviated dNTP imbalance (Figure 3H;
supplemental Figure 3G) and weakened differentiation markers
upregulation after Ara-C treatment (Figure 3I; supplemental
Figure 3H-I). In another approach using ishRRM2-U937 as a
model, Ara-C treatment resulted in less differentiation induction
relative to that seen in ishCtrl-U937 cells (Figure 3J). Notably,
RRM2 levels are strongly and positively correlated with Ara-C
sensitivity (Figure 3K; supplemental Figure 3J), whereas
SAMHD1 is a resistant factor.20,21 Additionally, we asked
whether patients with AML exhibiting high RRM2 levels achieve
better outcomes after treatment with Ara-C–based standard
care. Indeed, we observed a positive correlation between higher
RRM2 levels and longer overall survival (Figure 3L; supplemental
Figure 3K-L; Table 1) through retrospectively analyzing both
TCGA59 and GSE1446860 cohorts.

To further define the differentiation-related DNA insult by NEL
treatment, we tested whether the insult associated with excessive
formation of R-loops that specifically activate ATR signaling.15,16,61

Interestingly, Ara-C is known to trigger R-loop formation,62 likely
because of transcription-replication conflicts. Similarly, NEL treat-
ment enhanced R-loops formation evidenced by increased
nuclear staining of the S9.6 antibody (Figure 3M-N). Overexpress-
ing RNASEH1 to resolve R-loops remarkably abrogated
ATR/CHK1 activation and RRM2 upregulation, thereby blocking
differentiation induction and partially rescuing viability inhibition
by NEL treatment (Figure 3M-Q). Moreover, HU did not induce

R-loop formation (Figure 3M-N) or differentiation (supplemental
Figure 3M), although it resulted in DNA damage as evidenced by
CHK1 phosphorylation (Figure 3O).

We next asked whether non–DNA-incorporating compounds
could induce differentiation in an RNR-dependent manner.
Camptothecin (CPT), a topoisomerase I inhibitor, reportedly
induces leukemia cell differentiation.63 Similar to Ara-C, CPT
treatment increased RRM2, p-CHK1, and E2F1 levels in AML
cells (supplemental Figure 3N-O). Notably, the drug-induced
effects on dNTP imbalance and differentiation were significantly
rescued by RNR downregulation, whereas viability inhibition was
partially reversed (supplemental Figure 3P-T). Moreover, CPT is
also known to induce R-loop formation.55 Consistently, overex-
pressing RNASEH1 abrogated ATR/CHK1 activation and RRM2
upregulation by CPT treatment (Figure 3O).

Genetically elevating RRM2 levels impairs AML
maintenance
We asked whether direct upregulation of RRM2 would initiate
differentiation. We first used THP1 as a model. Following CDK2-
mediated phosphorylation of Thr33, WT RRM2 was recognized
by Cyclin-F (CCNF) via the RxI motif (aa49-aa51) for degradation
at G2/M phase.14 Although ectopic expression of WT FLAG-
RRM2 marginally affected RRM2 levels, expression of RRM2
mutants exhibiting less binding affinity to CCNF14 (RRM2-T33A
[T33A] and RRM2-RxI/AxA [Rxl/AxA]) promoted RRM2 accumula-
tion (supplemental Figure 4A), thereby decreasing cell viability
(supplemental Figure 4B). Given that RRM2 protein accumulated
mostly after Rxl/AxA overexpression (OE), we transduced an
inducible RRM2-RxI/AxA mutant (iRxI/AxA) into THP1 for further
analysis (Figure 4A; supplemental Figure 4C). After DOX induc-
tion, iRxI/AxA-transduced cells showed increased dNTPs, partic-
ularly a marked increase in dGTP, pronounced differentiation,
and decreased viability relative to MOCK cells (Figure 4B-C;
supplemental Figure 4D). To further enhance RRM2 activity, we
exposed this inducible line to the combination of DOX plus NEL
or DOX plus Ara-C. Relative to DOX alone, the combination fur-
ther increased RRM2 levels, aggravated dNTP imbalance,
enhanced CD11b induction, and inhibited viability (Figure 4A-C;
supplemental Figure 4D). To assess outcomes in vivo, we trans-
planted these engineered cells into NSGS mice and treated
mice with combination of DOX plus NEL or DOX plus
phosphate-buffered saline (PBS). Mice injected with MOCK cells
receiving combination of DOX plus PBS succumbed to systemic
disease shortly, whereas mice injected with iRxI/AxA cells receiv-
ing combination of DOX plus PBS survived significantly longer
and exhibited reduced leukemic burden (Figure 4D-E). Relative
to PBS controls, NEL treatment further decreased leukemic bur-
den and prolonged survival in mice engrafted with iRxI/AxA cells

Table 1. Hazard rates for mRNA levels of RRM2 in AML patients treated with Ara-C

mRNA

GSE14468 cohort TCGA cohort

Overall survival* Overall survival† Overall survival* Overall survival†

RRM2 0.68 (0.49-0.94; .02) 0.72 (0.51-1.01; .05) 0.70 (0.43-1.15; .16) 0.81 (0.49-1.33; .40)

Shown are hazard rates, 95% confidence intervals, and P values calculated with Wald test. Bold text indicates P , .05.

*Data from univariate analysis.

†Data adjusted for age and sex.
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Figure 4. Genetically elevating RRM2 levels impairs AML maintenance. (A-B) Western blot of RRM2 protein levels (A) and primer extension assay of intracellular
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mutated to AxA. Numbers denote the fold changes relative to vehicle-treated MOCK controls. For panel B, results represent mean 6 SEM. *P , .05; **P , .01. (C)
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(Figure 4D-E). Similar results were seen in leukemic mice treated
with Ara-C (supplemental Figure 4E-F).

To assess effects of stimulating RRM2 activity in primary AML
cells, we used a strategy of CCNF depletion.14 We noted CCNF
dependency score was negatively correlated with RRM2 basal
levels in 94 hematologic cancer cell lines (Figure 4F). Indeed,
CCNF knockdown (KD) in THP1 cells promoted RRM2 accumula-
tion, created dNTP imbalance, induced differentiation, and
decreased cell growth (Figure 4G-I; supplemental Figure 4G).
To determine whether RRM2 was required for CCNF KD effects,
we established an RRM2-low THP1 line as described above.
After DOX treatment, ishRRM2-THP1 cells exhibited decreased
RRM2 levels (supplemental Figure 4D). CCNF KD significantly
increased RRM2 and CD11b in ishCtrl-THP1 cells, whereas it
only marginally increased RRM2 in ishRRM2-THP1 cells, with no
change in CD11b levels (supplemental Figure 4H-I), suggesting
that CCNF KD effects were mainly dependent on RRM2. Next,
we depleted CCNF in primary AML cells and observed varying
increases in RRM2 levels among specimens (n 5 6; Figure 4J),
hinting additional RRM2 regulatory mechanisms other than
CCNF.64,65 We further assessed effects of combining CCNF KD
with Ara-C or NEL treatment. CCNF KD decreased the half-max-
imal inhibitory concentration (IC50) values of both drugs
(Figure 4K; supplemental Figure 4J) and enhanced NEL-induced
differentiation compared with NEL alone at a fixed dose (20 mM;
supplemental Figure 4K).

We asked whether aggravating dNTP imbalance by deleting
SAMHD1 could enhance RRM2 hyperactivation mediated inhibi-
tory effects. To do so, we used Mll-AF9/Samhd1 KO mice
(Samhd1-KO) generated through crossing Samhd1 KO mice23

to Mll-AF9 transgenic mice. We expressed iRxI/AxA construct or
MOCK control in Samhd1-KO or Samhd1-WT BM cells, respec-
tively, resulting in 4 groups: Samhd1-WT/MOCK, Samhd1-KO/
MOCK, Samhd1-WT/RRM2 OE, and Samhd1-KO/RRM2 OE. We
then used these engineered cells for CFC re-plating. Interest-
ingly, murine AML cells harboring iRxI/AxA showed significantly
decreased CFC compared with MOCK cells in primary and serial
re-platings; whereas Samhd1 KO alone barely affected CFC, it
further compromised CFC in AML cells harboring iRxI/AxA

(Figure 4L). To test the hypothesis in vivo, we transplanted engi-
neered cells into CD45.1-expressing congenic recipient mice for
leukemia assessment. iRxI/AxA-expressing MA9 leukemic mice
exhibited reduced leukemic chimerism in BM and improved sur-
vival relative to MOCK controls (Figure 4M-N). Notably, BM cells
from iRxI/AxA-expressing MA9 leukemic mice exhibited
RRM2 overexpression and dGTP overproduction (supplemental
Figure 4L-M). Moreover, Samhd1 KO combined with iRxI/AxA
expression further decreased engraftment and extended leuke-
mic mice survival compared with iRxI/AxA expression alone
(Figure 4M-N). To test whether genetically elevating RRM2 alone
or in combination with Samhd1 KO affected LSC activity, we
conducted in vivo limiting dilution assays by establishing murine
AML transplants using those engineered cells.52 Similarly, iRxI/
AxA expression alone resulted in a remarkable decrease in LSC
frequency, and the combination of Samhd1 KO and iRxI/AxA
expression effectively inhibited in vivo repopulating capacity of
AML cells (Figure 4O).

ERK activation contributes to myeloid
differentiation
To define downstream pathway that conferred outcomes of
dNTP imbalance, we assessed gene expression profiles in NEL
or dG-treated AML cell lines (U937 and KG1A) by RNA-seq anal-
yses (supplemental Tables 8-11). Ingenuity pathway analysis
revealed Rho family GTPase signaling and ERK/MAPK signaling
as top upregulated pathways in both treatments (Figure 5A-B).
To validate whether these 2 pathways were effectors of RRM2
hyperactivation, we performed RNA-seq analyses of iRxI/AxA-
and MOCK-THP1 cells after DOX treatment (supplemental
Table 12). Gene set enrichment analysis revealed significant
enrichment of RAS/ERK pathway signatures in iRxI/AxA-THP1
cells (Figure 5C), suggesting the role of ERK signaling as
downstream of RRM2 hyperactivation. We further confirmed
ERK activation after NEL, dG, or Ara-C treatment in AML cells
(Figure 5D,F; supplemental Figure 5A). Of note, either iRxI/AxA
OE or CCNF KD resulted in increased phospho-ERK in THP1 or
primary AML specimens, respectively (Figure 5E,G; supplemental
Figure 5B). To address the biological relevance of ERK activation,
we established a U937 line with low basal ERK signaling using
ERK2 shRNA. Although ERK2 knockdown slightly decreased cell

Figure 5. ERK activation contributes to myeloid differentiation. (A-B) U937 or KG1A cells treated with or without NEL (10 mM, 24 hours) (A), with or without dG
(10 mM, 24 hours) (B), were collected for RNA-seq analysis. Upregulated intracellular signaling pathways based on ingenuity pathway analysis (Z score . 0) were shown
in both cell lines. ERK/MAPK pathway is highlighted in red. (C) Scattergrams of RAS GTPase-related gene sets (red) and Rho GTPase-related gene sets (black) based
on enrichment analyses of differentially expressed genes in MOCK- and iRxl/AxA-THP1 cells after doxycycline induction. The color indicates the false discovery rate
q values. NES, normalized enrichment score. (D) Western blot of phospho-ERK and total ERK levels in U937 cells treated with vehicle, NEL (10 mM) or dG (10 mM) for
24 hours. (E) Western blot of phospho-ERK and total ERK levels in MOCK- and iRxl/AxA-THP1 cells after doxycycline induction (i) and THP1 cells transduced with shCtrl
or shCCNF lentivirus (ii). (F) Phospho-ERK levels in primary AML CD341 cells from specimen AML#4 treated with vehicle, NEL (20 mM), Ara-C (0.5 mM), or dG (15 mM) for
24 hours. (G) Phospho-ERK levels in primary AML CD341 cells from specimen AML#4 transduced with shCtrl or shCCNF lentivirus. (H) Western blot of the indicated
proteins in U937 cells transduced with lentiviral vectors expressing shRNA against ERK2 (shERK2#1, shERK2#2 [chosen to be used further, namely shERK2]) or scramble
control (shCtrl), followed by treatment with NEL (10 mM) for 24 hours. (I) Relative cell viability of U937 cells transduced with shCtrl, shERK2#1, or shERK2#2 lentivirus fol-
lowed by treatment with NEL (10 mM) for 96 hours. Results represent mean 6 SEM. **P , .01. (J-K) Representative CD11b expression (J) and percentages (K) of human
CD451 cells in BM of recipients (n 5 6 per group) transplanted with shCtrl- or shERK2-U937 cells, followed by in vivo administration with vehicle (PBS) or NEL
(217mg/kg, IV, daily) for 7 days. For panel J, data from 1 representative mouse in each group are shown. For panel K, results represent mean 6 SEM. *P , .05;
**P , .01. (L) Transmission electron microscopy images of mitochondrial cristae in U937 cells treated with vehicle or dG (10 mM) for 24 hours. Scale bar, 1 mm (i) or 0.5
mm (ii). (M) Mitochondrial superoxide levels, phospho-ERK levels, CD11b expression levels, and relative cell viability of primary AML CD341 cells from specimen AML#4
treated with vehicle, dG (15 mM), NAC (2 mM), or combination. Mitochondrial superoxide and phospho-ERK analyses were performed after treatment for 24 hours.
CD11b expression and cell viability analyses were performed after treatment for 96 hours. For cell viability, results represent mean 6 SEM. **P , .01. (N) A schematic
diagram demonstrating the casual relationships among dNTP imbalance, mitochondrial ROS release, RAS/ERK hyperactivation, and differentiation/LSC maintenance.
(O) Mac-1 expression levels in murine MA91 and MA9/KrasG12D cells treated with vehicle or NEL (20 mM) for 96 hours. Results represent mean 6 SEM. **P , .01.
(P) Mac-1 expression levels in murine MA9/KrasG12D cells pretreated with SCH772984 (2 mM) for 6 hours, followed by treatment with NEL (20 mM) for 96 hours. Results
represent mean 6 SEM. **P , .01. (Q) Kaplan-Meier survival analysis of a cohort of patients with AML (GSE14468) carrying RAS mutations after dichotomization for
RRM2 mRNA levels below (blue, n 5 7) and above (red, n 5 20) 7.69 log2-transformed intensity (P 5 .016). (R) Kaplan-Meier survival analysis of a cohort of patients with
AML (GSE14468) carrying WT-RAS after dichotomization for RRM2 mRNA levels below (blue, n 5 57) and above (red, n 5 162) 7.69 log2-transformed intensity (P 5 .19).
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growth relative to controls, it blocked NEL-induced growth inhi-
bition effects (Figure 5H-I). We further injected U937 cells
expressing either ERK2 shRNA or nontargeting control into
NSGS mice and treated both groups with NEL. Relative to mice
receiving ERK2-intact AML cells, mice receiving ERK2 KD cells
showed less therapeutic responses following NEL treatment (Fig-
ure 5J-K). Moreover, pretreatment with ERK inhibitors to downre-
gulate its basal signaling partially rescued the effects of NEL or
dG treatment (supplemental Figure 5C-F), whereas long-term
treatment of an ERK or MEK inhibitor alone eliminated AML
CFC (supplemental Figure 5G), likely because of complete abro-
gation of ERK signaling.66,67

Severe dNTP imbalance reportedly impairs mitochondrial DNA
replication,68,69 resulting in mitochondrial stress and release of
reactive oxygen species (ROS), which leads to ERK activation.70

Accordingly, dG or NEL treatment caused disruption of mito-
chondrial matrix morphology and loss of mitochondrial cristae
(Figure 5L; supplemental Figure 5H). Moreover, dG treatment
increased mitochondrial superoxide, decreased mitochondrial
membrane potential, and induced leakage of mitochondrial
DNA into cytoplasm (Figure 5M; supplemental Figure 5I-K).
Notably, addition of ROS scavenger N-acetyl cysteine (NAC)
reversed mitochondria superoxide increase, dampened ERK
activation, and partially rescued cellular outcome by dG treat-
ment in AML cells (Figure 5M; supplemental Figure 5K-L), indi-
cating that mitochondrial ROS release links dNTP imbalance to
ERK activation (Figure 5N). Moreover, CD341CD382 AML cells
showed increased differentiation and reduced CFC after dG
treatment, whereas these effects were partially rescued by NAC
treatment (supplemental Figure 5M-N), suggesting that both

differentiation and LSC impairment are downstream of mito-
chondrial dysfunction (Figure 5N).

Hyperactive RAS reportedly promotes commitment of differenti-
ation through ERK hyperactivation.71-74 To determine whether
oncogenic RAS cooperated with NEL-induced ERK activation
to induce differentiation and growth inhibition, we used
splenocytes from mice bearing conditional oncogenic Kras
(KrasLox-Stop-Lox (LSL) G12D/1/Vav-Cre1),75,76 followed by Mll-AF9
transduction. Relative to Vav-Cre1 splenocytes transformed by
MA9 alone, MA9/KrasG12D doubly transformed cells were more
vulnerable to NEL-induced inhibitory effects (Figure 5O; supple-
mental Figure 5O). Notably, ERK inhibition partially rescued
NEL’s effects on MA9/KrasG12D cells (Figure 5P; supplemental
Figure 5P). We next asked whether RRM2 level predicted prog-
nosis in patients carrying oncogenic RAS after Ara-C treatment,
which also primed ERK signaling (Figure 5F; supplemental
Figure 5A). To do so, we reanalyzed clinical outcomes of RAS
mutant or RAS WT cases from the GSE14468 cohort containing
sufficient RAS mutant cases.60 Indeed, high RRM2 level pre-
dicted longer survival for AML patients carrying RAS mutations,
whereas in patients with WT RAS, RRM2 level was less predictive
(Figure 5Q-R; supplemental Table 13).

Loss-of-function screen identified synthetic lethal
interaction between DUSP6-KO and
nelarabine treatment
Drug combination is desired to achieve maximal efficacy. To
identify NEL-based combination therapy, we performed a
genome-wide clustered regularly interspaced short palindromic
repeats (CRISPR) screen in a U937 subline resistant to NEL
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Figure 6 (continued) representation was assessed by sequencing. The gene negative scores (B) were calculated using MAGeCK-MLE module. Reported ERK negative
feedback regulators were labeled. The red dots represent preferential depletion of DUSP1 and DUSP6 sgRNAs following NEL treatment over vehicle control. (C)
Relative DUSP6 expression levels in indicated AML cells treated with vehicle, NEL (10 mM for U937 and KG1A, 20 mM for MOLM13 and AML#1), Ara-C (0.5 mM), or dG
(10 mM for U937 and KG1A, 15 mM for MOLM13 and AML#1) for 24 hours. Results represent mean 6 SEM. **P , .01. (D) Western blot of DUSP6 proteins in U937/R-
Cas9 cells transduced with lentiviral vectors expressing sgRNA against DUSP6 (sgDUSP6) or nontargeting control (sgCtrl). (E) Phospho-ERK levels in sgCtrl- or
sgDUSP6-U937/R cells treated with vehicle or NEL (20 mM) for 24 hours. (F-G) CD11b expression levels (F) and apoptosis (G) of sgCtrl- or sgDUSP6-U937/R cells treated
with vehicle or NEL (20 mM) for 96 hours. (H) Western blot of the indicated proteins in U937/R cells transduced with lentiviral vectors expressing shRNA against ERK2
(shERK2) or scramble control (shCtrl), followed by treatment with NEL (20 mM) alone or NEL (20 mM) plus BCI (1 mM) for 24 hours. (I) CD11b expression levels in shCtrl-
or shERK2-U937/R cells treated with NEL (20 mM) alone or NEL (20 mM) plus BCI (1 mM) for 96 hours. (J) Relative phospho-ERK levels in primary AML CD341 cells
(n 5 3) treated with vehicle, NEL (20 mM), BCI (1 mM), or combination for 24 hours. Data were normalized to vehicle-treated controls. Results represent mean 6 SEM.
**P , .01. (K) CD11b and CD15 expression levels in primary AML CD341 cells from specimen AML#4 treated with vehicle, NEL (20 mM), BCI (1 mM), or a combination
for 96 hours. (L-M) MOLM13-luciferase cells (1 3 106 cells per mouse) were injected into sublethally irradiated NSGS mice. Following engraftment, mice were treated
with vehicle (PBS), NEL (217 mg/kg, IV, daily), BCI (10 mg/kg, intraperitoneally, daily), or a combination for 2 weeks (n 5 7 per group), assessed for engraftment by
in vivo bioluminescence imaging (L) and monitored for survival (M). (N) A schematic model showing that the response to RRM2 hyperactivation-mediated dNTP imbal-
ance depends on reaching a lethal threshold of RAS/ERK activity, and DUSP6 activity may antagonize this lethal effect.
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(U937/R; Figure 6A). This subline (IC50 5 42.3 mM) was gener-
ated by gradual adaptation of parental cells (IC50 5 3.8 mM) to
50 mM NEL over months.77 After Cas91 clonal derivation (sup-
plemental Figure 6A), we transduced cells with GeCKO guide
RNA (gRNA) library78 and treated with 20 mM NEL for 7 days to
negatively enrich candidate gRNAs associated with drug
response.79 Among the top hits, we identified NT5C2 to be sig-
nificantly depleted in NEL-treated cells (supplemental Table 14),
which encodes a nucleotidase reportedly to inactivate the active
metabolites of purine analogs.80-83 Herein, given that NEL’s
effects associated with ERK activation, and hyperactivation of
ERK can be deleterious to cancer cells,84,85 we thus analyzed
gRNAs targeting genes encoding those negative feedback regu-
lators of ERK signaling84,85 (Figure 6B), including the dual-specif-
icity phosphatases (DUSPs), the sprouty proteins, and the
sprouty-related EVH1 domain-containing proteins.84,86 Among
those genes, DUSP1 and DUSP6 were markedly depleted in
NEL-treated vs vehicle-treated cells87 (Figure 6B; supplemental
Table 14). Four of 6 gRNAs targeting DUSP6 were depleted in
NEL-treated cells (supplemental Figure 6B). Given its higher
abundancy than DUSP1 (supplemental Figure 6C) and its
adaptive upregulation after short exposure to drug treatment
(Figure 6C), we prioritized DUSP6 for further investigation.

In U937/R cells, DUSP6 depletion potentiated NEL-induced ERK
activation, differentiation, and apoptosis than did comparably
treated DUSP6 WT cells (Figure 6D-G). To determine whether
targeting DUSP6 would enhance NEL’s effects, we tested a
small molecule inhibitor of DUSP6, 2-benzylidene-3-(cyclohexy-
lamino)-1-Indanone hydrochloride (BCI).88 Analogously, the
addition of BCI re-sensitized U937/R cells to NEL-induced
ERK activation, differentiation, and apoptosis (supplemental
Figure 6D-F), whereas those effects were partially blocked by
ERK2 knockdown (Figure 6H-I; supplemental Figure 6G).
Enhanced leukemia targeting effects by combination were also
seen in primary AML cells (Figure 6J-K; supplemental Figure 6H).
To assess outcomes in vivo, we used NSGS models xenografted
with MOLM13 cells, because its sensitivity to NEL was compara-
ble to those of most primary AML specimens (supplemental
Figure 6I). Although NEL treatment alone had modest effects,
the combination significantly alleviated leukemia burden
(Figure 6L-M; supplemental Figure 6I), with a comparable sur-
vival benefit to that of standard chemotherapy (supplemental
Figure 6K), suggesting the response to NEL depends on reach-
ing a lethal threshold of ERK activity, and DUSP6 may antago-
nize that effect (Figure 6N).

Discussion
Our results highlight the importance of dNTP homeostasis in
myeloid differentiation. We show that dNTP imbalance caused
by RRM2 hyperactivation through either drug treatment or
genetic manipulation overcomes the differentiation blockade.
Specifically, dGTP level is most vulnerable to be perturbated.
Accordingly, dG is most potent in inducing differentiation and
LSC ablation among all dNs. We also note that SAMHD1 may
underlie varying responses to dG treatment in AML cells;
SAMHD1 KO in AML cells remarkably enhances dG or RRM2
OE-induced differentiation and self-renewal ablation (Figures
2M-N and 4L-O). Therefore, SAMHD1 may counteract dNTP
pool changes initiated by drug treatment or RRM2 upregulation,
lessening the cellular outcome.

Our study reveals a novel role of RRM2 in promoting AML differ-
entiation. Specifically, treatment of NEL, Ara-C, or CPT induces
RRM2 hyperactivation, in agreement with previous reports of
increases in RNR subunit levels after replication stress.55 In par-
ticular, this drug-induced RNR activation leads to imbalanced
dNTPs, in contrast with dNTP changes after allosteric RNR acti-
vation during cell cycling.42 One explanation for this discrepancy
in dNTP outcomes could be the duration of RRM2 upregula-
tion, which may determine the extent of RNR activation. More-
over, SAMHD1 determines the extent to which RNR is activated,
given its restriction on Ara-CTP or Ara-GTP accumulation.89 Nev-
ertheless, in SAMHD1-proficient AML cells, overexpression of a
stable RRM2 mutant promotes tumor regression and impairs
LSC self-renewal (Figure 4).

We identify augmented R-loop formation underlies differentia-
tion induction by NEL treatment. R-loops specifically activate
ATR signaling as previously reported.15,16 Consistently, both
Ara-C62 and CPT90 reportedly trigger R-loop formation,91

whereas HU does not.16 These results highlight the role of
R-loop–initiated DNA damage in promoting differentiation,
whereas we do not exclude the possibility that other actions of
these genotoxins (NEL, Ara-C) also serve as mechanisms of
lethality (eg, incorporation into nascent DNA).

ERK is an important player in controlling hematopoietic cell
activity.92 Complete repression of ERK signaling by MEK or ERK
inhibitors causes lethality,66,67 whereas excessive ERK activation
also compromises viability of cancer cells.84,85,93 Accordingly,
our data extend the emerging concept that hyperactivation of
ERK can be deleterious in the context of AML. Notably, RAS
mutations predict a better therapeutic response in patients with
AML treated with high-dose cytarabine74,94 but show resistance
to a venetoclax-based regimen.72 Moreover, we provide a thera-
peutic strategy to further enhance ERK signaling in AML cells
primed by NEL treatment through cotargeting DUSP6, thereby
surpassing an ERK hyperactivation-related lethal threshold
(Figure 6). The combination of BCI and NEL not only suppresses
leukemogenesis in an AML xenograft model but exhibits bet-
ter tolerability than standard chemotherapy (supplemental
Figure 6J-L).

In conclusion, we show that disrupting dNTP pool homeostasis
overcomes differentiation blockade of AML cells and impairs
LSC self-renewal. Our study prompts a reappraisal of therapeutic
response in patients with RAS-mutated AML with considerations
of factors controlling dNTP homeostasis, such as RRM2 and
SAMHD1. Finally, we provide a rationale for further evaluation
of the combination of nelarabine with a DUSP6 inhibitor
against AML.
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