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KEY PO INTS

� Loss of TP53 increases
PD-L1 expression and
EV formation from
B-cell lymphoma cells.

� Targeting PD-L1 and
suppressing EV release
overcomes TP53-
mediated resistance
to CIT.

Genetic alterations in the DNA damage response (DDR) pathway are a frequent
mechanism of resistance to chemoimmunotherapy (CIT) in B-cell malignancies. We have
previously shown that the synergy of CIT relies on secretory crosstalk elicited by
chemotherapy between the tumor cells and macrophages. Here, we show that loss of
multiple different members of the DDR pathway inhibits macrophage phagocytic capacity
in vitro and in vivo. Particularly, loss of TP53 led to decreased phagocytic capacity ex vivo
across multiple B-cell malignancies. We demonstrate via in vivo cyclophosphamide
treatment using the Em-TCL1 mouse model that loss of macrophage phagocytic capacity
in Tp53-deleted leukemia is driven by a significant downregulation of a phagocytic
transcriptomic signature using small conditional RNA sequencing. By analyzing the tumor
B-cell proteome, we identified a TP53-specific upregulation of proteins associated with

extracellular vesicles (EVs). We abrogated EV biogenesis in tumor B-cells via clustered regularly interspaced short
palindromic repeats (CRISPR)-knockout (KO) of RAB27A and confirmed that the EVs from TP53-deleted lymphoma
cells were responsible for the reduced phagocytic capacity and the in vivo CIT resistance. Furthermore, we observed
that TP53 loss led to an upregulation of both PD-L1 cell surface expression and secretion of EVs by lymphoma cells.
Disruption of EV bound PD-L1 by anti–PD-L1 antibodies or PD-L1 CRISPR-KO improved macrophage phagocytic
capacity and in vivo therapy response. Thus, we demonstrate enhanced EV release and increased PD-L1 expression in
TP53-deficient B-cell lymphomas as novel mechanisms of macrophage function alteration in CIT resistance. This study
indicates the use of checkpoint inhibition in the combination treatment of B-cell malignancies with TP53 loss.

Introduction
The tumor microenvironment (TME) is characterized by multi-
ple reciprocal interactions of malignant cells with nonmalig-
nant stroma or immune cells.1 Particularly, macrophages are
at center stage in this network, determining disease progres-
sion and therapeutic response, as well as refractory niches.2-5

In previous work, we and others could show that macro-
phages exert antibody-dependent cellular phagocytosis
(ADCP) and represent the essential mediator of synergy in
the administration of chemoimmunotherapy (CIT) of aggres-
sive B-cell lymphoma and multiple myeloma.2,6-9 This specific
combination treatment strongly increases tumor clearance by

repolarization of tumor-associated macrophages from a sup-
pressed state to an activated phenotype.2,10 CIT serves as a
standard therapy in numerous B-cell malignancies and is
mostly targeted at CD20, such as rituximab in combination
with either fludarabine/cyclophosphamide or cyclophospha-
mide, doxorubicin, vincristine, and prednisone (R-CHOP).11,12

Despite the success of CIT in the frontline setting, therapy of
relapsed or refractory disease, particularly in diffuse large
B-cell lymphoma (DLBCL), still imposes a major clinical chal-
lenge. Although distinction between germinal center
B-cell–like and activated B-cell subtypes and further molecu-
lar subclassification opened avenues for tailored treatment
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strategies, limited molecular markers are available to adapt
frontline therapy to overcome primary resistant lym-
phoma.13,14 Immune checkpoint inhibition has revealed
limited responses as monotherapy, although combination of
pembrolizumab with R-CHOP in DLBCL patients was
reported to show improved progression-free survival with lim-
ited toxicity.15,16

Mutations of TP53 are present in �20% of DLBCL and 10% of
CLL, thus representing a significant subgroup of patients.13,17-19

Loss or mutation of TP53 has been identified as an important
mediator of chemoresistance in a variety of malignant entities
due to its central coordinating function in multiple cellular stress
responses.20 Moreover, loss of TP53 mediates protumorigenic
alterations in the tumor microenvironment.21,22 It remains to be
clarified how alterations of the DNA damage pathway in malig-
nant cells functionally affect the complex interactions and out-
come of CIT.

Here, we primarily approached disruptions in the DNA dam-
age response (DDR) cascade affecting the synergistic effects
of CIT. Our data indicate that, particularly, TP53 functional
status determines cellular crosstalk in the TME, phagocytic
function, and macrophage-dependent therapeutic response
to monoclonal antibodies through release of extracellular
vesicles (EVs) and expression of the immune checkpoint
PD-L1.

Materials and methods
Lymphoma mouse models
The hMB humanized double-hit lymphoma (DHL) and the
chronic lymphocytic leukemia (CLL) Em-TCL1/Cd19 (Em-TCL1/
Cd19-Tp53 wild-type (WT) (Em-TCL1) and Em-TCL1/Cd19 Cre/wt-
Tp53 fl/fl (Em-TCL1/Tp53fl/fl) murine models were generated as
described elsewhere.2,8,23-26 Detailed explanations can be
found in the supplemental Material (available on the Blood
Web site). Em-TCL1 mice were treated in vivo with cyclophos-
phamide (10 mg/kg) or phosphate-buffered saline (PBS) when
reaching 8 to 12 weeks old and 30% of leukemic cells
(CD451CD191CD51 cells) in the peripheral blood.

EV isolation
EVs were extracted from supernatant of cells cultured for 24
hours at a concentration of 16.6 3 106 cells per mL in serum-
free CD293 media supplemented with Glutamax 1% (85% to
100% cell viability). Supernatants were subjected to a series of
centrifugation steps (1200 rpm, 5 minutes; 2900 rpm, 10
minutes; and 3500 rpm, 20 minutes) and filtered with 0.22 mm
polyethersulfone (PES) membrane filters (VWR). EVs were con-
centrated with the Total Exosome Isolation kit (Thermo Fisher
Scientific) according to the manufacturer’s instructions and ultra-
centrifuged (Type 45 Ti rotor, k-Factor 133, Beckman Coulter) at
100000 g for 90 minutes at 4�C. Pellets were resuspended in
cold PBS (1 mL PBS for 1 mL supernatant), dissolved by pipetting
with a 1 mL syringe (Henke-Sass Wolf, Germany) with 26G 7/8-
inch needle (Terumo, Germany), and immediately used for
ADCPs assays or stored at 280�C. For western blot analysis, EV
pellet was directly lysed.

Results
Macrophage phagocytic capacity upon
chemotherapy is diminished with dependence
of DDR pathway mediators in the leukemic
compartment
To dissect the mechanism of the synergistic interaction between
alkylating chemotherapy and monoclonal antibodies,2,6,24 we
disrupted key components of the DDR pathway in 2 different
aggressive B-cell lymphoma models: the hMB humanized DHL
model24 and the Myd88 p.L252P-driven DLBCL model.27 In
both cases, we generated short hairpin RNA (shRNA)-mediated
knockdowns of genes that code for the key DDR mediators:
checkpoint kinase 1 (CHK1), CHK2, DNA-dependent protein
kinase (PRKDC), MAPK-activated protein kinase 2 (MAPKAPK2),
p38-a, ATM, and TP53 (supplemental Figure 1A-B). We exposed
shRNA-defined DDR component-deficient cells to mafosfamide,
an in vitro alkylating agent, as surrogate for the effect of cyclo-
phosphamide. We then determined the ADCP rate using alem-
tuzumab or 18B12 anti-CD20 antibody in coculture assays with
various sources of macrophages (Figure 1A). We could observe
that chemotherapy pretreatment of hMB lymphoma B-cells
significantly enhanced their susceptibility for phagocytic engulf-
ment as compared with untreated shRNA-CTRL (shCTRL)-
hMB cells (Figure 1B). However, disruption of the DDR led to
an abrogation of increased phagocytosis compared with
chemotherapy-treated shCTRL-hMB cells (Figure 1B). To employ
an independent model of aggressive lymphoma, we used the
Myd88 p.L252P-driven DLBCL model, where we confirmed that
combination treatment of mafosfamide with 18B12 improved
the phagocytosis of shCTRL Myd88 p.L252P cells by primary
peritoneal and bone marrow–derived macrophages, as well as
by the macrophage cell line J774A.1 (supplemental Figure 1C).
In addition, Chk1-, Prkdc-, and MAPKAPK2-deficient lymphoma
cells were sensitized to mafosfamide treatment (supplemental
Figure 1D). However, Tp53-deficient cells displayed the highest
resistance toward CIT (supplemental Figure 1D).

We speculated that the disruption of CIT synergy response
when altering DDR components could be a result of insufficient
p53 activation. Thus, we used nutlin-3A as an indirect activator
of p53 and observed that nutlin-3A similarly modified the ADCP
of control, CHK1-, CHK2-, p38a-, and MAPKAPK2-deficient hMB
cells but left TP53-deficient lymphoma cells unaffected, which
exhibited a significantly reduced phagocytosis level (Figure 1C).
Furthermore, nutlin-3A treatment of PRKDC- and ATM-deficient
cells did not alter macrophage phagocytic capacity, which
correlates with the absence of p53 induction by nutlin-3A (sup-
plemental Figure 1E-F). Altogether, these results indicate that
p53-axis functions as a key node in lymphoma cells to influence
the response of macrophages to CIT.

To further confirm our observation, we used primary CLL patient
samples defined by their TP53 status (Figure 1D; supplemental
Figure 1E; supplemental Table 1.3). Notably, macrophages
cocultured in the presence of monoclonal antibodies alemtuzu-
mab or rituximab with TP53-mutant CLL cells showed signifi-
cantly lower ADCP than macrophages cocultured with TP53-WT
cells, irrespective of TP53 mutant clone size (Figure 1D; supple-
mental Figure 1H). Likewise, the effect of TP53 on tumor
cell–macrophage crosstalk was investigated using primary malig-
nant MM patient cells cocultured with autologous macrophages
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Figure 1. TP53 loss in lymphoma cells impairs macrophage ability to phagocytose tumor B cells. (A) Schematic representation of an ADCP assay. (B) Alemtuzumab
(anti-CD52)-mediated ADCP of empty vector (shCTRL) and the indicated DDR-knockdown hMB cells, pretreated or not with 3 mM mafosfamide (CTX) and cocultured
with peritoneal macrophages (3 independent experiments, 5 replicates per experiment). (C) ADCP percent of shCTRL hMB cells, pretreated or not with nutlin-3A (left
panel) (n 5 3). Right panel shows ADCP fold change (FC) induced upon nutlin-3A pretreatment on the indicated DDR-knockdown hMB cells (n 5 3). (D) ADCP assay of
CLL cells from patients with TP53 WT and mutant expression (TP53 mut) on the presence of peritoneal macrophages and alemtuzumab (left) or mCherry1 J77A4.1
macrophages and 10 mg rituximab and 3 mM mafosfamide (n 5 6) or J77A4.1 macrophages (n 5 15). (E) Daratumumab (anti-CD38 antibody)-mediated ADCP of
multiple myeloma (MM) tumor cells obtained from patients with normal TP53 expression (normal karyotype or 13q14 deletion) and from patients with TP53 deletion.
Tumor cells were cocultured with autologous macrophages in the indicated ratios (10:1 ratio, del13q14DEL vs TP53DEL P 5 .025; n 5 3). (F) Em-TCL1/wt and
Em-TCL1/Tp53fl/fl leukemic mice were treated or not with 10 mg/kg cyclophosphamide (CTX) for 24 hours. Then, the spleen leukemic cells were isolated and used to
perform an ADCP in the presence of peritoneal macrophages (n 5 5-7). (G) Kaplan-Meier analysis comparing the survival of shCTRL and shTP53 hMB–transplanted non-
obese diabetes scid gamma mice receiving cyclophosphamide and alemtuzumab (CA) as CIT combination. PBS was used as control. The treatment was given IP 10
days after IV hMB cell injection (n 5 5-6). (*P, .05, **P# .01). IP, intraperitoneal.
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Figure 2. Characterization of TME-macrophage functions upon chemotherapy on Em-TCL1 mice. Em-TCL1-Cd19Cre-TP53wt (Em-TCL1) and Em-TCL1-Cd19Cre-TP53fl/fl

(Em-TCL1) leukemic mice (Cd451Cd191Cd51 cells on blood .30%) were IP injected 10 mg/kg cyclophosphamide (CTX) or PBS for 24 hours. (A) Schematic representation
of the experimental design (upper panel). Splenocytes were isolated from the spleens of each treatment group, followed by MACS B-cell depletion (Cd192 cells) before
scRNA-seq. Integrated Uniform Manifold Approximation and Projection (UMAP) dimension reduction plot of all treatment groups (n 5 21782 cells) (center panel). Cells are
colored by the clusters determined by cell type. Percentage and total cell number of each treatment group contributing to the integrated UMAP (lower panel). (B) Pie chart
representing the proportion of each cluster across all genotypes and treatment groups (left panel). Heat map showing the cell marker gene expression profiles of all macro-
phage clusters (MF-1, MF-2, MF-3, and MF-4) across all genotypes and treatment groups (right panel). (C) Diagram representing the gene ontology (GO) term analysis
strategy across both genotype and treatment groups. (D) Pie chart showing the percentage of genotype and treatment group significantly regulated genes (left panel). GO
process/function/component table showing the number of significant GO terms per genotype and treatment group (right panel). (E) GGnet plot of chemotaxsis/myeloid/
phagocytosis GO process terms enriched in the macrophage clusters together with notation of the genotype and treatment group of significant genes of the GO terms
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in the presence of daratumumab (Figure 1E).28 Macrophages
were able to phagocytose �50% of MM cells from patients with
normal karyotype and del13q14-aberration but displayed a sig-
nificantly reduced phagocytosis of TP53-deficient MM cells
(Figure 1E) that was particularly lower in the higher ratios (10:1
ratio, del13q14DEL vs TP53DEL, P 5 .025).29 The relevance of
TP53 as a central regulator of microenvironment-dependent
treatment response in vivo was validated by utilizing the Em-
TCL1 mouse model of CLL. Here, leukemic Em-TCL1/Cd19-Tp53
WT (Em-TCL1) and Em-TCL1/Cd19Cre/wt-Tp53 fl/fl (Em-TCL1/
Tp53fl/fl) were treated with cyclophosphamide. After 24 hours,
leukemic cells were obtained for ex vivo ADCP assessment tar-
geted by the antimurine CD20 antibody. In line with our previ-
ous observations, in vivo chemotherapy treatment significantly
improved the ADCP of Em-TCL1–derived leukemia cells, whereas
no phagocytic improvement was found in Em-TCL1/Tp53fl/fl–de-
rived cells (Figure 1F). These results indicate that loss of TP53
switches malignant B-cells toward a refractory state against CIT.
To verify our hypothesis, we studied the in vivo response to CIT
with the humanized mouse model of DHL. Specifically, shTP53-
transduced hMB alongside shCTRL cells were transplanted into
immunodeficient NSG recipient mice and CIT treatment (CA)
was initiated upon disease onset (Figure 1G). CIT resulted in a
significantly increased survival of mice transplanted with shCTRL-
hMB cells (CA median, 41.5 days vs PBS median, 28 days;
P 5 .0075). However, the response of mice bearing the shTP53-
hMB cells to the combination therapy showed a significantly
shorter overall survival (CA median, 33.5 days; P 5 .044) com-
pared with shCTRL-hMB cells (Figure 1G). In summary, TP53
expression serves as a central regulatory node for interactions
with macrophages in the TME, particularly in determining
response to CIT in B-cell malignancies.

Tp53 dependent interactions within the
lymphoma TME and its effects on macrophage
phenotype and function
To identify potential p53-dependent pathway alterations
induced between malignant B-cells and the TME, we leveraged
CD191 cell–depleted TME cells from both Em-TCL1 and T Em-
TCL1/Tp53fl/fl models under in vivo chemotherapeutic treatment
and subjected them to single-cell RNA sequencing (scRNA-seq)
analysis. We obtained 21782 cells across conditions (Figure 2A;
supplemental Figure 2A), with 4 distinct macrophage clusters,
which were comprised of the largest TME compartment (Fig-
ure 2B, left; supplemental Figure 2B) and sharing a largely simi-
lar expression of macrophage marker genes across the 4
clusters (Figure 2B, right; supplemental Figure 2C). We therefore
decided to combine data from all macrophage clusters together
followed by GO enrichment analysis stratified by treatment and
genotype to identify the key pathways regulating macrophage
function. (Figure 2C). Here, we identified that of the 980 signifi-
cantly regulated genes in the dataset, 477 were Em-TCL1 PBS,
178 Em-TCL1 CTX, 165 Em-TCL1/Tp53fl/fl PBS, and 160 Em-
TCL1/Tp53fl/fl CTX (Figure 2D, left) and that the GO terms
across process/function/component were all largely dominated

by Em-TCL1 PBS (Figure 2D, right). However, we observed an
enrichment for chemotaxis/phagocytic/myeloid GO process
terms that were driven by overexpression under Em-TCL1 PBS
and Em-TCL1/Tp53fl/fl CTX treatment (Figure 2E). Under closer
inspection, we observed both reduced expression and percent-
age of positive cells in Em-TCL1 PBS and Em-TCL1CTX treatment
groups, whereas we observed the opposite under Em-TCL1/
Tp53fl/fl PBS and Em-TCL1/Tp53fl/fl CTX treatment (Figure 2F,
middle). Furthermore, after CTX/PBS gene expression calcula-
tion for the original 4 macrophage clusters in Em-TCL1 and Em-
TCL1/Tp53fl/fl, respectively, we further observed in the context
of Tp53 loss that these chemotaxis/phagocytic/myeloid genes
are significantly downregulated in relation to Em-TCL1 TME cells,
such as Ccr1/2 (Q, 0.001905; Q, 0.032622), Mif/Pycard (Q,
0.009330; Q, 0.004890), and Csfr1/Cd36 (Q, 0.009330; Q,
0.000632) (Figure 2F, right). In all, this scRNA-seq analysis sug-
gests that loss of Tp53 on malignant B-cells under in vivo che-
motherapy treatment drives fundamental changes to the
macrophage TME, namely loss of phagocytic function and
downregulation of chemotaxis.

Chemotherapy treatment modifies the proteomic
profile of lymphoma B-cells in a p53-dependent
manner and indicates altered EV formation
We identified TP53 not to specifically alter cytokine mediated
activations of macrophages (supplemental Figure 3A); however,
significant effects by conditioned media of TP53-deficient lym-
phomas indicated a functional role of soluble crosstalk (supple-
mental Figure 3B). To identify the mechanism of this specific
interaction, we assessed shCTRL and shTP53 tumor B-cells’ pro-
teomic landscape after mafosfamide treatment (1 mM, 6 hours)
by a mass spectrometry label-free protein quantification
approach (Figure 3A). In total, .4000 proteins were detected in
every condition (supplemental Table 3.1). Hierarchical agglomer-
ative clustering clearly differentiated the shCTRL from the
shTP53 proteome (supplemental Figure 3A). Our results showed
that TP53 depletion profoundly influenced the proteomic profile
of lymphoma B-cells, showing a downregulation of 36 proteins
and the upregulation of another 60, compared with the control
cells (Figure 3A). Interestingly, we observed that mafosfamide
treatment differently modified the proteomic profile of TP53-
deficient and control cells (supplemental Figure 3B) and pro-
duced a shift in the number of up- and downregulated proteins
controlled by TP53 (Figure 3A; supplemental Figure 3D-F). Ana-
lyzing GO terms of significantly (P-adjust #0.1) regulated pro-
teins (supplemental Table 3.2), we observed that loss of TP53
expression mainly correlated to changes on actin cytoskeleton,
extracellular plasma membrane, and vesicle-related terms, com-
posed of proteins such as CD9, vacuolar protein sorting 33A
(VPS33A), and sorting nexin 9 (SNX9) (Figure 3B-C). Similarly,
mafosfamide treatment of shTP53 cells differently regulated pro-
teins associated to actin cytoskeleton and cell adherens junction
processes, displaying altered expression levels of EV-associated
proteins, such as annexins 1 and 6 (ANXA1 and ANXA6) and
the tetraspanin CD81 (Figure 3B-D). Therefore, proteomic

Figure 2 (continued) (black, Em-TCL1 PBS; gray, Em-TCL1 CTX; light red, Em-TCL1Tp53fl/fl; dark red, Em-TCL1Tp53fl/fl CTX; dark green, .1 significant group). (F) Ball plot show-
ing the percentage of positive cells and average expression across all macrophage cluster cells per genotype and treatment group for key GO process genes (left panel).
Bar graph showing the fold change treatment normalized (CTX/PBS) per genotype per macrophage cluster (MF-1, MF-2, MF-3, and MF-4) for the same genes as in the
left panel (right panel). Significant differences calculated either in Seurat (B/D), GO Gorilla (D/E), or GraphPad (F), respectively. In all instances, adjusted P values from the
respective methods were used (see “Materials and methods”). IP, intraperitoneal; MACS, magnetic-activated cell sorting.
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Figure 3. Chemotherapy-rewiring of control and TP53-deficient lymphoma B-cells’ proteome. (A-D) shCTRL and shTP53 hMB cells were treated with 3 mM mafosfa-
mide or vehicle (untreated) for 6 hours, and their proteomic profiles were analyzed by mass spectrometry label-free protein quantification (n 5 3). (A) Workflow of the
experiment (left panel). Bar plot of the number of up- and downregulated proteins that are differentially expressed in shTP53 hMB cells in comparison with shCTRL
hMB cells, either in untreated or mafosfamide-treated condition (central panel). Venn diagram illustrating the total number of significant proteins specifically or com-
monly regulated by TP53 in either untreated or mafosfamide-treated condition. (B-D) Enriched cellular component GO terms identified in the analysis of significantly
regulated proteins by TP53 expression in untreated (-) and mafosfamdie-treated (1) hMB cells. (B) Sphere sizes represent the number of proteins associated to every
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Figure 4. Features and functions of EVs derived from TP53-deficient and control lymphoma B cells. (A-G) EVs were isolated from TP53-deficient (shTP53-EVs) and
control (shCTRL-EVs) hMB lymphoma B-cells. (A) Representative TEM images. Thirty thousand and 100 000 magnifications are shown. (B) Nanoparticle tracking analysis
(NTA) of the EVs distribution of the particles according to their size and concentration (upper panel). Box plots showing size particle and particle concentration of the
isolated EVs (lower panel; n 5 6). (C) Immunoblot analysis of the isolated EVs and their corresponding cell lysates using the indicated antibodies. (D) Confocal image
showing DiD-labeled EV (red) uptake by GFP1J774A.1 macrophages (green) after 16 hours in culture. Orthogonal view of the same image confirms the intracellular
presence of the EVs (right panel). (E) Alemtuzumab-mediated ADCP of control hMB cells cocultured with J774A.1 macrophages and shCTRL-EVs, shTP53-EVs, or
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approached in shTP53 hMB cells. (F) Immunoblotting detection of Rab27a protein in shTP53/RAB27A-WT and -KO hMB cells. The corresponding total protein staining of
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from shTP53/RAB27A-WT and -KO EVs (n 5 3). (H) Alemtuzumab-mediated ADCP of different clones of both, shTP53/RAB27A-WT (n 5 4) and –KO (n 5 3) hMB cells
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analysis indicated that TP53 loss in lymphoma B-cells involves
actin cytoskeleton reorganization and alterations in the forma-
tion of EVs, which we hypothesize could be responsible for the
communication between the malignant B-cells and the TME
macrophages.

Secretion of EVs from TP53-deficient lymphoma
B-cells is increased and reduces the antitumor
effector function of macrophages
EVs have emerged as an important mechanism of cellular com-
munication between tumor and stroma cells.30-32 To assess the
relevance of the proteomic findings, we sought to characterize
EVs produced by control and TP53-deficient lymphoma B-cells.
EVs isolated from lymphoma B-cell supernatants showed typical
cup-shaped morphology with a size ranging from 50 to 200 nm
(Figure 4A). Loss of TP53 did not alter vesicle size (Figure 4B) or
induce significant changes in microRNA (miRNA) abundance
(supplemental Table 4.1). However, NTA showed that TP53-defi-
cient cells released significantly higher numbers of EVs than the
control cells (Figure 4B). We characterized EV-protein composi-
tion by immunoblot, detecting an enriched expression of the EV
markers CD81, CD9, CD63, and syntenin compared with the
respective cell source, whereas calnexin, a negative marker for
EVs, was only present on the cell lysate samples (Figure 4C).30

To determine whether TP53-deficient cell-derived EVs could
affect macrophage properties, we exposed different types of
macrophages to EVs isolated from shCTRL (shCTRL-EVs) or
shTP53 lymphoma B-cells (shTP53-EVs). Our results showed that
shTP53-EVs were engulfed by macrophages in a similar way as
the shCTRL-EVs (Figure 4D; supplemental Figure 4A). However,
macrophages exposed to shTP53-EVs during the coculture
exhibited a significantly reduced phagocytic capacity of lym-
phoma B-cells, whereas they were not significantly affected by
shCTRL-EVs (Figure 4E). TP53-dependent inhibition on the
ADCP persisted even when the concentration of shTP53-EVs
added in the coculture was reduced by 90% (supplemental Fig-
ure 4B). In parallel, we excluded EV-mediated effects on lym-
phoma B-cell viability (supplemental Figure 4C). To clarify if
shTP53-EVs were affecting general macrophage phagocytic
capacity, we performed a bead-based phagocytosis assay,
where macrophages were exposed to shCTRL- or shTP53-EVs
16 hours prior to adding DyLight680-labeled latex beads (sup-
plemental Figure 4D). Bead phagocytosis was unaffected by the
presence of shTP53-EVs (supplemental Figure 4D). Thus,
shTP53-EVs specifically abrogated Fc receptor– dependent mac-
rophage antitumor effects, such as ADCP. Next, to address the
functional role of EVs on the lymphoma B-cell-macrophage
crosstalk, we generated lymphoma B-cells unable to release EVs
by depleting RAB27A expression via the CRISPR/Cas9 approach
(Figure 4F).33 We proved that RAB27A knockout cells (RAB27A-
KO) showed a significantly reduced ability to produce EVs
(Figure 4G).

Next, we proved that ADCP targeting shTP53/RAB27A-KO tumor
cells was significantly higher than targeting shTP53/WT controls
(Figure 4H). To validate our EV-related results in vivo, we used

the hMB humanized mouse model of DHL, transplanting mice
with shTP53/RAB27A-KO or shTP53/RAB27A-WT hMB cells and
using CIT or PBS (control) as treatment. We observed that mice
transplanted with lymphoma B-cells unable to release EVs dis-
played significantly longer overall survival after CIT (CA1 shTP53/
RAB27A-KO median equals 21 plus or minus 0.48 days vs
CA1 shTP53/RAB27A-WT median equals 17 plus or minus 0.47
days; P # .0001) (Figure 4I). To further support our hypothesis,
we also confirmed a significant increase in total number of EVs
produced by TP53-deficient primary murine CLL (Em-TCL1) cells
(Figure 4J) and an upward trend in TP53-mutant primary CLL cells
vs WT cells (Figure 4K). In conclusion, we show that EV formation
is enhanced by loss of TP53 and leads to suppression of macro-
phage effector function toward malignant cells.

Checkpoint pathway inhibition via the PD1/PD-L1
signaling axis restores the CIT-induced
macrophage phagocytosis of TP53-deficient
lymphoma B-cells
Given the diminished phagocytic capacity of macrophages in
the presence of EVs produced by TP53-deficient malignant
B-cells, we considered the possibility that the EVs secreted by
shCTRL and shTP53 cells displayed different expression levels of
“do�nt eat me” and related immune checkpoint molecules. Our
data confirmed the absence of CD47 and the low expression of
CD200, respectively, but the presence of PD-L1 on leukemic B
cells-EVs (Figure 5A). Next, by using the anti–PD-L1 antibody
atezolizumab, PD-L1 was blocked on the EVs before their addi-
tion to the coculture of macrophages and leukemic B-cells (Fig-
ure 5B). Remarkably, neutralizing PD-L1 on the shTP53-EVs, we
could restore macrophage antitumor capacity assessed by
ADCP. This observation was confirmed by using EVs obtained
from PD-L1–knockout (PD-L1–KO) hMB cells, which do not
impair macrophage antitumor function (Figure 5C-D). Thus,
PD-L1 expression on shTP53-EVs mediate suppression of macro-
phage phagocytic activity through PD1 expressed on macro-
phages (supplemental Figure 5A-B).

Likewise, shTP53-dependent PD-L1 cell surface expression was
addressed in the context of alkylating treatment in vitro
(Figure 5E). We observed significantly higher PD-L1 protein
expression in shTP53 cells than in control cells, with PD-L1 upre-
gulation even slightly increased after chemotherapy exposure
(Figure 5E). However, CD47 and CD200 expression showed
unaltered expression in all conditions (supplemental Figure 5A).
We could corroborate that primary TP53-deficient malignant
B-cells also expressed higher PD-L1 protein levels than the
respective controls, shown by analyzing samples from Em-TCL1
mice and from CLL patients (supplemental Figure 5D-E).

Cotargeting the PD1/PD-L1 axis in preclinical
B-cell lymphoma models
This observation prompted us to evaluate the relevance of the
PD1/PD-L1 axis in the resistance to CIT. We performed an
ADCP assay in the presence of anti-PD1 antibody in

Figure 4 (continued) cocultured with J774A.1 macrophages. All the graphics showed the mean plus or minus SD of at least 3 independent experiments. (I) Kaplan-
Meier analysis comparing the survival of shTP53/RAB27A-WT and -KO hMB transplanted NSG mice receiving cyclophosphamide and alemtuzumab (CA) as CIT combi-
nation. PBS was used as control. The treatment was given IP 10 days after IV hMB cell injection (n 5 7-10). (J) Protein determination of EVs derived from CD191cells
isolated from the spleen of sick Em-TCL1 WT and Em-TCL1/Tp53fl/fl mice (n 5 5-8). (K) Concentration of EVs isolated from primary CLL patient cells (n 5 2-3) (*P, .05,
**P# .01). IP, intraperitoneal; SD, standard deviation.
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Figure 5. Identification of EVs and PD-L1 expression roles on the resistance to chemotherapy in TP53-deficeint B-cell lymphomas. (A) Flow cytometer analysis of
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combination with chemotherapy (Figure 5F). The addition of
anti-PD1 antibody to the coculture significantly improved the
ADCP of both shCTRL and shTP53 hMB cells. This finding was
confirmed by using the Myd88 p.L252P-driven DLBCL model,
where PD1/PD-L1 inhibition restored the resistance to chemo-
therapy observed on the ADCP of TP53-deficient tumor cells
(supplemental Figure 5C). In addition, the use of the triple
therapy approach (anti-PD1 antibody, cyclophosphamide, and
alemtuzumab) in the humanized mouse model of DHL with
TP53-deficient lymphoma cells revealed a significantly increased
overall survival of the mice compared with cyclophosphamide/
alemtuzumab combination therapy (CA median equals 11 plus
or minus 0.54 days vs CA plus anti-PD1 median equals 13 plus
or minus 1.40 days; P 5 .023) (Figure 5G). To clarify the role of
PD1/PD-L1 axis in the abrogation of macrophage antitumor
functions on TP53-deficient lymphomas, we analyzed the ADCP
of shTP53/PD-L1–KO hMB cells (Figure 5H-I). We demonstrated
that PD-L1 deletion favored the ADCP of TP53-defcient cells
in vitro (Figure 5H), showing a higher phagocytic response of
macrophages upon CIT (Figure 5I). Finally, we evaluated the
role of PD-L1 in the resistance to chemotherapy in vivo by inject-
ing shTP53/PD-L1–KO hMB cells into NSG mice (Figure 5J). Our
results showed a significantly prolonged survival of shTP53/
PD-L1–KO vs shTP53/PD-L1–WT lymphoma-bearing mice
(PBS1PD-L1–KO median equals 10 plus or minus 0.55 days vs
PBS1PD-L1–WT median equals 8 plus or minus 0.61 days;
P 5 .007). Importantly, CIT response was highly effective in
mice injected with shTP53/PD-L1–KO tumor cells (Figure 5J)
(PBS1PD-L1–WT median equals 10 plus or minus 0.58 vs
CA1PD-L1–KO median equals 14 plus or minus 1.67 days;
P 5 .005). Thus, CIT treatment in combination with PD1/PD-L1
inhibition improved TP53-induced therapy resistance. In conclu-
sion, the upregulation of PD-L1 on TP53-deficient tumor cells
appears to be a resistance mechanism amenable for therapeutic
targeting in B-cell malignancies in addition to CIT.

Discussion
The concept of p53 as the central node in the DDR and
“guardian of the genome” was recently expanded toward cell-
nonautonomous effects by modulation of the TME by p53-
deficient cancer cells.34,35 The functional impact of p53 on the
TME has been shown in several tumor models, with the recovery
of its function leading to the restoration of immune surveillance
in liver cancer.36,37 Here, we show that in B-cell lymphoma cells,
TP53 serves as a regulatory switch of the function of macro-
phages in the lymphoma TME.

In previous work, we could determine the essential role of cyto-
kine release from lymphoma cells upon alkylating chemothe-
rapy for sensitization of macrophage effector functions as the

synergistic mechanism in CIT. 2,6 Now we show that an intact
DDR is required to activate this mechanism of synergy and that
p53 function serves as a central node of the DDR to control
resistance against CIT. Corresponding to this observation, loss
or mutation of TP53 is the most important resistance mechanism
to CIT in CLL.12,38,39

The regulatory effect of TP53-deficient lymphoma cells on mac-
rophage effector function was caused by a profoundly elevated
secretion of EVs and an increased PD-L1 expression. Interest-
ingly, we identified a central connection of a p53-dependent
release of EVs and the expression of PD-L1 on cells and func-
tional impact of PD-L1 carried by EVs

Multiple mechanisms of controlling PD-L1 expression have been
described in malignant cells. Likewise, TP53-dependent control
of PD-L1 expression has been described in small-cell lung can-
cer cells, involving miRNA-34a regulation of the PD-L1
39UTR.40,41 Furthermore, TP53 status has been hypothesized to
predict response to checkpoint inhibitor therapy in cancer.42,43

The functional relevance of immune oncology drugs targeting
the PD-1/PD-L1 axis have so far mainly been attributed to T-cell
activation and adaptive immunity.44,45 However, there is similar
evidence that the PD1/PD-L1 checkpoint regulates macro-
phages in the TME.46 We have now identified PD-L1 to inhibit
macrophages to effectively engulf lymphoma cells in the thera-
peutic setting, pointing to PD-L1 as a novel resistance mecha-
nism for CIT regimens.

In this line, expression of PD-L1 was described as an integral
component in a biomarker score indicating poor response to
CIT of lymphoma.47 In DLBCL, patients with high expression of
PD-1/PD-L1 on T cells and macrophages had significantly poorer
survival after R-CHOP.48 In line with our data, it has been
recently shown that loss of TP53 increases PD-L1 in a murine
lymphoma model of DLBCL, inducing immune evasion, which
could be overcome with PD1-blockade.49

Importantly, our data indicates that PD-L1 dependent im-
mune suppression may occur independently of direct cell-
cell interactions. We observe the increase of released EVs
exposing PD-L1 to mediate the suppression of phagocytic
function of effector macrophages. Notably, we see this novel
phenomenon both in DLBCL and CLL murine models with
genetic dysfunction of TP53, as well as in CLL patient sam-
ples. Using genetic targeting of PD-L1 on EVs, applying
EV-deficient cells and immune checkpoint inhibitor blockade
of EVs, we provide direct evidence of the decisive functional
role of PD-L11 EVs in regulating macrophage effector func-
tion and treatment response to CIT.

Figure 5 (continued) replicates. (E) Flow cell cytometer detection of PD-L1 in shCTRL and shTP53 hMB cells, treated with mafosfamide (CTX) or vehicle for 24 hours.
Left panel shows half offset histogram representation of 1 representative experiment. Right panel displays PD-L1 protein expression percentage from 6 independent
experiments. (F) Anti-CD20 (18B12)-mediated ADCP of shCTRL and shTP53 hMB cells pretreated or not with mafosfamide and cocultured with peritoneal macrophages
exposed to anti-PD1 antibody (GS-696882) from 4 hours prior to the assay. Data shows 1 representative experiment of 3, with 5 replicates. (G) Survival curve of NSG
mice IV injected with shTP53 hMB tumor cells treated IP with cyclophosphamide and alemtuzumab (CA) or CA and anti-PD1 antibody (GS-696882). PBS was used as
control treatment (n 5 12-18). (H) Alemtuzumab-mediated ADCP of different shTP53/PD-L1–WT and -KO clones coculture with J774A.1 macrophages (n 5 3). (I) Num-
ber of mafosfamide (CTX) pretreated GFP1 hMB cells (shTP53/PD-L1–KO, shTP53/RAB27A-KO, and the corresponding shTP53 empty vector) remaining in the cocul-
ture with J774A.1 macrophages after ADCP assay performed in combination or not with alemtuzumab and normalized to the amount of hMB cells in a hMB single
culture. Data shows 1 representative experiment, with 5 replicates. (J) Survival curve of NSG mice IV injected with shTP53/PD-L1-WT or shTP53/PD-L1-KO hMB tumor
cells and IP treated after 10 days with cyclophosphamide and alemtuzumab (CA) or PBS as control treatment (n 5 3-6). *P, .05, **P# .01, ***P# .001, ****P# .0001.
IP, intraperitoneal.
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TP53 has been described to regulate EV secretion.50 More spe-
cifically, it has been proposed that mutant TP53 colon cancer
cells reprogram macrophages toward tumor-supporting mac-
rophages via miRNA (miR)-1246 delivered by EVs.22 Colorectal
cancer2derived EVs were described to regulate polarization of
tumor-associated macrophages by the miR-145, which is tran-
scriptionally induced by p53.51,52 However, we do not see signif-
icant alterations in the miRNA profiles due to TP53 loss.

As for the context of chemotherapy and DNA damage,
EV-based metabolic reprogramming by tissue-infiltrating macro-
phages underlines the role of EVs in cellular crosstalk.53 Also, an
increase of EV-shedding was demonstrated to promote mela-
noma growth after chemotherapy.54 Melanoma-derived exo-
somes were identified to carry the immune checkpoint ligand
PD-L1 and thereby contribute to immunosuppression.55

Recently, follicular lymphoma–derived EVs have been identified
to promote polarization of the bone marrow stromal cell niche
and modulate the TME toward tumor supportive function.56 So
far, no specific therapeutic concept has been identified that
counteracts EV-mediated effects. However, immune checkpoint
inhibitors may offer an opportunity to target EV-mediated check-
point control. In line with our hypothesis, we could effectively
improve CIT by using an anti–PD-L1 antibody, atezolizumab,
thereby significantly enhancing macrophage-mediated phagocy-
tosis of lymphoma cells.

The conclusions from our findings are manifold. First, the results
support the clinical evaluation of CIT with checkpoint inhibitors
in order to overcome PD-L1–associated resistance. This strategy
seems promising, as a combination of chemotherapy with
immune checkpoint inhibitors was recently reported to be safe
and to yield complete response rates of 77% in a phase 2 trial
combining pembrolizumab with R-CHOP.16 Moreover, the loss
of p53 function should call for innovative, intensified therapeutic
strategies in lymphoma, including immunotherapies and
immune checkpoint inhibitors. Particularly, combinations of tar-
geted therapies such as immune modulators or BTK- or BCL2
inhibitors should be examined with regard to EV and
PD-L1–mediated therapeutic responses.8,29,57 Finally, the release
of immunosuppressive EVs can be recognized as a novel resis-
tance mechanism in TP53-mutated lymphoma that may need to
be monitored in future clinical studies.
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