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The inherited thrombocytopenia syndromes are a group of
disorders characterized primarily by quantitative defects
in platelet number, though with a variety demonstrating
qualitative defects and/or extrahematopoietic findings.
Through collaborative international efforts applying next-
generation sequencing approaches, the list of genetic
syndromes that cause thrombocytopenia has expanded

significantly in recent years, now with over 40 genes impli-
cated. In this review, we focus on what is known about the
genetic etiology of inherited thrombocytopenia syndromes
and how the field has worked to validate new genetic dis-
coveries. We highlight the important role for the clinician in
identifying a germline genetic diagnosis and strategies for
identifying novel causes through research-based endeavors.

Introduction
Megakaryopoiesis and thrombopoiesis are tightly regulated
components of hematopoiesis that result in the production and
release of up to 1011 platelets daily to maintain a normal con-
centration of 150 to 400 3 109/L circulating platelets. These
cells are required for adequate hemostasis through the forma-
tion of a stable clot at sites of blood vessel injury. Thrombocyto-
penia, traditionally defined as a platelet count of ,150 3 109/L,
has many causes including immune destruction, medication-
induced aplastic anemia, or as a manifestation of an inherited
bone marrow failure syndrome. In this review, we focus on the
diagnosis and pathogenesis of inherited thrombocytopenias,
with a special emphasis on genetics. These diseases represent a
growing collection of germline variant–associated thrombocyto-
penias whose primary manifestation is inadequate circulating
platelet numbers. Many of these syndromes have extrahemato-
poietic manifestations, and even within the hematopoietic com-
partment, there is increasing evidence that genes previously
thought to be platelet-restricted in their effects may actually
have a broader impact on overall blood cell formation. Although
many of the inherited thrombocytopenia syndromes are rare,
dissecting their genetic underpinning has greatly contributed to
our understanding of basic megakaryocyte and platelet biology.

Megakaryopoiesis/thrombopoiesis and the
inherited thrombocytopenias
Bone marrow–resident hematopoietic stem cells (HSCs) are mul-
tipotent cells with self-renewal capacity able to generate all
mature blood lineage cells in a process termed hematopoiesis.
Traditional models portray a hierarchy of differentiation begin-
ning with a bifurcation between common lymphoid progenitors
and common myeloid progenitors, the latter which ultimately
give rise to megakaryocyte-erythroid progenitors and subse-
quently megakaryocytes (MKs).1-4 Over the last decade, this
binary model has been challenged by new findings that suggest
that there is a subset of HSCs that express von Willebrand factor
(VWF) and have a strong MK bias and limited lymphoid

potential. More importantly, the VWF1 HSCs can give rise to
VWF2 HSCs, whereas the opposite is not true, indicating that
these cells are high in the hematopoietic hierarchy.5 As MKs dif-
ferentiate and mature in the bone marrow, they develop poly-
ploidy, increase the numbers of specialized granules and their
cytoplasmic volume, extend cytoplasmic extensions, and
develop a complex demarcation membrane system.6 The steps
governing commitment of megakaryocyte-erythroid progenitors
and MK progenitors toward final stages of MK differentiation
are highly regulated. This process initially requires thrombopoie-
tin (TPO) engaging its receptor MPL, leading to downstream
JAK2-mediated signaling.7,8 Although most steps in MK matura-
tion involve TPO, it is not essential for final MK maturation and
subsequent thrombopoiesis, the process by which proplatelets
and ultimately platelets are formed.9 Several transcription fac-
tors have been identified as crucial in megakaryopoiesis/
thrombopoiesis. Additionally, the formation of proplatelets at
the demarcation membrane system occurs only after mature
megakaryocytes migrate to and extend protrusions through the
vascular sinusoidal space. Under sheer stress from vascular
blood flow, platelets are released.6,10 This migration and the
dynamic, reversible growth and extension of proplatelet pro-
cesses requires extensive cytoskeletal reorganization11 and
dynamic remodeling, which involves a variety of molecules
including CDC42, PAK2, ADF/COFILIN, b1-tubulin, WASP, and
many others.12 The average platelet lifespan is �7 to 10 days13

with peripheral clearance in part mediated by programmed
anuclear cell death and loss of sialic acid with subsequent clear-
ance by Kupffer cells in liver sinusoids.14-16 Therefore, variants in
genes involved in every step of these complex processes can
cause inherited thrombocytopenia (Figure 1).

The inherited thrombocytopenias are an expanding group of
disorders17-20 characterized by familial thrombocytopenia and
bleeding tendency of various severity with either small, normal,
or large sized platelets (Table 1). In some disorders, the defect
may be quantitative only, whereas in others, there may be quali-
tative/functional defects as well. Patients may be identified in
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the newborn period with easy bruising, petechiae, mucosal
bleeding, and thrombocytopenia. However, this constellation of
symptoms can also be observed in the much more common
allo- and autoimmune thrombocytopenia disorders and in infec-
tion- or drug-induced thrombocytopenia. Some of the more
common inherited thrombocytopenias are associated with
enlarged platelet size (macrothrombocytopenia) or notably small
platelet size (microthrombocytopenia); however, as the list of
inherited thrombocytopenias expands, so too does the recogni-
tion of disorders with platelets that would appear normal in size
and morphology on routine peripheral blood smear. Obvious
family history of thrombocytopenia should prompt the clinician
to consider an underlying genetic etiology, though de novo var-
iants, especially in autosomal dominant syndromes, and the lack
of symptomatic relatives as often occurs in recessive disorders
means that an absence of family history should not exclude con-
sideration of these entities. Finally, persistent thrombocytopenia,
extrahematopoietic abnormalities, bleeding or bruising out of
proportion to the degree of thrombocytopenia, refractoriness to
medical treatments typically used in immune-mediated throm-
bocytopenia, and nonresponse to splenectomy should prompt
evaluation for an underlying genetic cause.

Diagnostic evaluations
The need to correctly identify patients with inherited thrombocy-
topenias is pressing. First, many of these patients have extrahe-
matopoietic phenotypes that themselves may require additional
medical treatment. Second, identification can help guide proper
management. In some individuals, their inherited thrombocyto-
penia may be mistaken for immune thrombocytopenia, prompt-
ing unnecessary splenectomy. Not only will the patient
experience persistent thrombocytopenia but would now be at
risk for postoperative complications including life-long increased
risk for infection. Additional clinical implications are the ability to
provide perioperative guidance for necessary surgeries, includ-
ing the use of antifibrinolytics, and understanding the role and
timing of HSC transplant or gene therapy. Although most of the
inherited thrombocytopenias do not have a specific treatment,
the importance of a precise diagnosis in some of them is critical.
For example, the diagnosis of congenital amegakaryocytic
thrombocytopenia due to deleterious variants in MPL or THPO
will prompt referral for a bone marrow transplant as the only
curative option for these patients. Finally, some inherited throm-
bocytopenia syndromes are associated with an increased risk of
hematopoietic malignancy. Although prospective data validating
the ability of screening to impact hematopoietic malignancy out-
comes in these populations are lacking, a germline diagnosis
can help clinicians provide genetic counseling regarding per-
sonal risk and family planning.

Diagnostic evaluation of the thrombocytopenic patient with sus-
pected inherited disorder should begin with a thorough history
and physical examination. Key history elements include duration
of thrombocytopenia, response to previous therapies, other
medical history (especially of hearing or vision abnormalities and
kidney, heart, or neurologic disease), review of growth curves,
and family history including of hematopoietic malignancy. Physi-
cal exam should include thorough review of systems involved in
specific syndromes including careful examination of the skin and
musculoskeletal, cardiac, and neurologic systems (Figure 2). Ini-
tial laboratory evaluation starts with a complete blood count

using an electronic counter to calculate platelet count and size
and to determine red cell indices. However, caution must be
used in patients with platelet macrocytosis as cell type can be
incorrectly assigned, leading to inaccurate estimate of both
platelet number and volume.21 The peripheral smear should be
reviewed under routine light microscopy by an experienced
hematologist. Special attention should be paid to size, shape,
number, and granule appearance. Review should not be limited
to the platelet compartment as several inherited thrombocyto-
penias may demonstrate abnormalities in other blood cell types.
For example, in X-linked thrombocytopenia with thalassemia
due to variants in GATA1, patients can have microcytosis and
reticulocytosis evidenced by polychromasia and anisocytosis.22

Giant platelets, those larger than the size of a normocytic red
blood cell, can be observed in Bernard-Soulier syndrome23 and
MYH9-related disease, the latter of which can also display leuko-
cyte cytoplasmic inclusions termed D€ohle-like body inclusions.24

A paucity of a granules, as can be observed in gray platelet syn-
drome,25-27 GFI1b-related thrombocytopenia,28,29 or SRC-
related thrombocytopenia,30,31 can give platelets a “pale”
appearance in addition to platelet macrocytosis. In FLI1-associ-
ated thrombocytopenia32-34 or thrombocytopenia caused by
deletions in 11q23,35,36 some patients’ platelets demonstrate a
single, condensed-appearing granule. Small platelets may be
observed in Wiskott-Aldrich syndrome, X-linked thrombocytope-
nia, ARPC1B-related thrombocytopenia, or FYB-related throm-
bocytopenia. Platelet aggregation can further suggest specific
etiologies, for example demonstrating an increased response to
ristocetin in platelet-type von Willebrand disease; however,
there can be heterogeneity in platelet aggregation findings, and
these studies may be most useful to support the suspicion of an
inherited thrombocytopenia over a diagnosis of ITP.37 Additional
functional assays may have more limited availability given
requirements for specialized laboratory testing. This includes
platelet glycoprotein expression by flow cytometry, which is
mostly used to confirm the diagnosis of Bernard-Soulier syn-
drome in patients with macrothrombocytopenia and Glanzmann
thrombasthenia in patients with absent aggregation and normal
platelet count, and whole-mount transmission electron micros-
copy (TEM) to evaluate dense granule deficiency, as well as thin
section TEM for a granule evaluation and other platelet struc-
tural abnormalities. Although whole-mount TEM usually confirms
the diagnosis of Hermansky-Pudlak syndrome and other dense
granule deficiencies,38 thin section TEM provides useful informa-
tion for the diagnosis of NBEAL2-, GFI1B-, FLI1-, and STIM1-
related thrombocytopenias.

Some specific extrahematopoietic findings may also allow the
clinician to further narrow the diagnostic possibilities. For exam-
ple, several inherited thrombocytopenia–associated genes com-
prise a syndrome that includes radioulnar dysostosis (Table 1).
Interestingly, this includes many transcription factors important
for megakaryopoiesis including FLI1, HOXA11, MECOM, and
RBM8A. A family history of hematopoietic malignancy should
prompt consideration of thrombocytopenia related to variants in
RUNX1, ETV6, or ANKRD26. Sensorineural hearing loss is a fea-
ture of MYH9-, DIAPH1-, and CDC42-associated thrombocyto-
penia, all of which are implicated in cytoskeletal function.
Interestingly, germline variants in several genes have been impli-
cated in promoting increased platelet clearance including FYB,
GP1BA-gain-of-function, STIM1, GNE, and WAS. Indeed, sple-
nectomy has been shown to improve platelet counts in patients

GENETICS AND GENOMICS THROMBOCYTOPENIA blood® 2 JUNE 2022 | VOLUME 139, NUMBER 22 3265

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/139/22/3264/1900262/bloodbld2020009300c.pdf by guest on 01 June 2024



with Wiskott-Aldrich syndrome presumably by eliminating the
main site for platelet clearance.39 Lastly, patients with 22q11
deletion syndrome may experience thrombocytopenia of varying
severity together with other canonical features such as facial dys-
morphism, hypocalcemia, athymia, congenital heart disease,
and recurrent infections.40,41 Although the deletion typically
encompasses the critical platelet signaling receptor GP1BB, the
role of hemizygosity at this region for thrombocytopenia and
bleeding has recently been called into question.42 Furthermore,
immune cytopenias responsive to immunomodulation have
been previously documented in this patient population,43,44

confounding the ontogeny of their platelet phenotypes.

In a recent excellent review, Pecci and Balduini provide relative
frequencies of the genetic etiology behind identifiable inherited
thrombocytopenias in a large 335-family collection from Italy.45

First, they note that in their estimation, �50% of patients with
high suspicion for an inherited thrombocytopenia will not have a
known, identifiable underlying cause. Of those families where a
more precise genetic diagnosis is made, the combination of fea-
tures discussed above plus medical history and physical

examination could provide high diagnostic support for an inher-
ited thrombocytopenia in over half of patients. However, ulti-
mately, the majority of pathogenic genetic variants may present
as isolated thrombocytopenia (Table 1).

Genetic diagnosis, cost, and ethical
considerations
Since the application of next-generation sequencing (NGS) to
patients with inherited thrombocytopenias, there has been an
explosion of newly identified causative genes. Indeed, in the
5-year period from 2015-2019, at least 20 distinct genetic enti-
ties causing inherited thrombocytopenia were identified. Several
recently identified thrombocytopenia genes may have normal
sized platelets, no distinctive morphology on review of periph-
eral smear, and are not associated with other hematopoietic or
extrahematopoietic organ system involvement such as with
IZKF5-,46 ETV6-,47-50 and THPO-related thrombocytopenia.
These examples highlight how NGS can provide diagnostic clar-
ity that may change management, for example advising on and
screening for malignancy risk in ETV6, RUNX1, and ANKRD26
patients and their families. Indeed, NGS is now being used in

Transcription
factors/splice factors
GATA1
GFI1B
IZKF5
RNU4ATAC
RUNX1
ETV6
FLI1
HOXA11
EVI1
RBM8A

Receptors/signaling
PTPRJ
GP1BA
GP1BB
GP9
ITGA2B
ITGB3
PRKACG
SLFN14
ANKRD26
MPL
THPO

Metabolism/mitochondria
ABCG5
ABCG8
CYCS

Cytoskeleton
TUBB1
ACTN1
TPM4
MYH9
DIAPH1
FLNA
CDC42
WAS
WIPF1
ARPC1B
FYB

Ion channels
STIM1
TRPM7

Other
NBEAL2
MPIG6B
SRC
KDSR

Sialylation
GNE
SLC35A1
GALE

Figure 1. Genes that cause inherited thrombocytopenias grouped by established and potential cellular mechanisms involved in megakaryocyte biology. These
genes also correspond to the tier 1 and tier 2 gene lists curated by the International Society of Thrombosis and Hemostasis Genomics in Hemostasis Subcommittee.
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many centers as an up-front component in the evaluation of
inherited thrombocytopenias. In the United States, several NGS-
targeted panels are available (including Versiti, 23-gene panel;
Prevention Genetics, 30-gene panel; Blueprint Genetics,
37-gene panel; and several academic hospital–based clinical lab-
oratories). Of note, when ordering panel-based testing, it is
important to ensure that known noncoding pathogenic variants
are covered, for example 59 UTR variants in ANKRD26. Addition-
ally, although NGS can detect small deletions, larger structural
variants are missed; therefore, if those are suspected, other
techniques such as Multiplex ligation-dependent probe amplifi-
cation or array comparative genomic hybridization should be
used. It is also important to mention that most commercial pan-
els use software-automated reporting, therefore potentially miss-
ing small insertions and deletions. As highlighted in Table 1,
none of these targeted panels incorporate all known causes of
inherited thrombocytopenia, creating an inherent risk for false
reassurance in the setting of “negative” genetic testing. Further-
more, it has been shown that the diagnostic yield of these
genetic panels is much lower than expected.51 Recently,
Downes et al showed that in a large cohort of well phenotyped
patients with disorders of bleeding and thrombosis, the diagnos-
tic rate for patients with thrombocytopenia or a known disorder
of platelet function was almost 50% and 26%, respectively, find-
ings that were supported in another report by Bastida et al,
underscoring the importance of adequate clinical and laboratory
phenotyping.52

The genes that populate these panels are selected based on
previous discoveries; however, as more patients are sequenced,
new variants will be reported for whom it is difficult to assign
pathogenicity. Indeed, there is a roughly linear relationship
between the number of genes on an NGS-based panel and the
number of variants of uncertain significance reported per
patient.53 And despite guidelines for variant classification out-
lined in the critical American College of Medical Genetics/Asso-
ciation for Molecular Pathology standards,54 there are disease
contexts for which rarity, benign variation, phenotypic variability,
and other potential confounders have generated interlaboratory
discordance in variant interpretation. In these contexts, including
in the familial platelet disorders, there has been a clear need for
expert review of variants. The goal is that systematic curation of
these variants can allow for the determination of strong variant-
disease associations. Recently, 2 international expert panels, the
ClinGen Platelet Gene Curation Expert Panel55 and the Interna-
tional Society on Thrombosis and Haemostasis Subcommittee
on Genomics in Thrombosis and Hemostasis,56 reported their
initial curation efforts with the ultimate goal of sharing the infor-
mation publicly and in real time for use by clinicians that work
with patients with inherited disorders of hemostasis including
inherited thrombocytopenias.

One challenge in the United States is the highly variable access
to insurance coverage for NGS-based testing. For example, the
Center for Medicare and Medicaid Service supports NGS testing
nationally only for the indications of assessing germline breast
and ovarian cancer risk.57 Other germline indications are treated
as “nationally noncovered.” Current estimates are that 80% of
insured individuals have coverage for targeted sequencing pan-
els, which drops to only 56% for Medicaid enrollees.58 Several
aspects of genetic testing for inherited thrombocytopenia syn-
dromes raise ethical questions beyond cost. For patients withoutTa
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a family history of hematopoietic malignancy, it is crucial to
explain the potential to identify variants in leukemia-associated
genes such as RUNX1, ETV6, or ANKRD26. Understanding the
purpose of testing for a minor is also critically important: does
the testing serve a critical diagnostic function and therefore can
be performed after acquiring informed consent, or does the
testing serve a predictive purpose that will not change clinical
management during the pediatric age range and therefore
should be deferred?59 Finally, clinicians should be experienced
in the interpretation and counseling of results, including variants
of uncertain significant or variants with implications for disease
carrier status. For a further review of this topic, please see the
recent guideline for ethical considerations of genetic testing in
inherited platelet disorders.60

Variant interpretation
Exome sequencing has played a major role in the identification
of pathogenic variants in inherited thrombocytopenias. How-
ever, as mentioned before, variant interpretation, especially for
novel variants, requires careful curation and, if available, access
to additional family members to facilitate the correct diagnosis.
Additionally, insurance coverage for exome sequencing is esti-
mated at only 63% of insured persons, dropping to 39% for
patients with Medicaid. Although research-based exome or
whole-genome sequencing (WGS) has led to an explosion in

newly identified variants, there are several important considera-
tions that can guide clinical and discovery-based interpretation
including phenotyping and functional validation of variants.

Consider the discovery of GATA1 variants and their role in
thrombocytopenia syndromes (Table 2). One of 6 members of
the GATA transcription factor family, GATA1 contains 2
N-terminal transcriptional activation domains and C-terminal zinc
fingers responsible for binding its consensus (A/T)GATA(A/G)
sequence (reviewed in Crispino et al61). Although constitutive
loss of GATA1 in mice is embryonic lethal,62 an inducible model
highlighted its requirement for normal and stress erythropoiesis
and demonstrated profound thrombocytopenia.63 Germline var-
iants in GATA1 are linked to a variety of human diseases with
aberrant hematopoiesis. An X-linked form of thrombocytopenia
with globin chain imbalance resembling b-thalassemia was first
described in 1977,22 with the causative pathogenic variant
confirmed over 25 years later. This study linked the original
pedigree to a pathogenic GATA1 change p.R216Q impacting
the ability of GATA1 transcription factor to bind DNA.64

These patients demonstrate bone marrow dyserythropoiesis
but only mild anemia. Although a second pedigree with the
same variant phenocopied the original mild thrombocytopenia,
b-thalassemia–like imbalance in globin synthesis, and dysery-
thropoiesis,65 this latter study also commented on a severe
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Figure 2. Complex Venn diagram showing the extrahematopoietic manifestations of select germline inherited thrombocytopenia syndromes. *The role of
GP1BB in the thrombocytopenia associated with 22q11 del has been recently disputed (see Zwifelhofer et al42).
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reduction of a-granules as detected on electron microscopy, a
finding confirmed in an additional pedigree whose authors
elected to term the syndrome “X-linked gray platelet syn-
drome.”66 Interestingly, a variant affecting the same residue but
with a different substitution, p.R216W, has overlapping clinical
features with the additional finding of congenital erythropoietic
porphyria characterized by cutaneous photosensitivity, hirsutism,
and red urine.67 Similarly, although most variants that impact
the ability of GATA1 to bind its cofactor FOG1 are characterized
by thrombocytopenia with dyserythropoiesis and transfusion-
dependent anemia68-72 including the variant p.D218Y,73

overlapping variants p.D218N and p.D218G patients have
thrombocytopenia alone without erythrocyte abnormalities.74,75

Truncating GATA1 variants caused by splice site alterations lead
to exon 2 skipping and production of an expressed protein that
lacks the N-terminal transactivating domain. These patients pre-
sent with dyserythropoietic, steroid-responsive anemia with clini-
cal features overlapping Diamond-Blackfan anemia (DBA),
though only 2 of 5 pedigrees demonstrate elevated erythrocyte
adenosine deaminase.76-80 Interestingly, although the various
exon 2 bordering splice variants were shown to produce the
same short form of GATA1, only 1 pedigree was affected by
thrombocytopenia,80 whereas 2 separate families with the identi-
cal variant did not.77,78 Across several families, confirmed het-
erozygous GATA1 females were either asymptomatic or
demonstrated mild thrombocytopenia and imbalanced globin
chain synthesis reflecting skewed X-inactivation.

This example highlights the challenges that phenotypic variabil-
ity can pose to the clinician and researcher. However, under-
standing the phenotypic overlap with DBA has led to further
mechanistic insight into DBA pathogenesis. In an elegant study
from the Sankaran laboratory, primary hematopoietic cells from
patients with DBA and variants in the classic DBA gene RPS19
were shown through polysome profiling to have a specific
decrease in GATA1 messenger RNA translation and a decreased
amplitude in the GATA1 target gene transcriptional signature.81

Ineffective erythropoiesis in cultured primary cells could be par-
tially rescued by GATA1 overexpression, suggesting potential
therapeutic implications.

Platelet phenotype variability as well as incomplete penetrance
can also confound novel variant identification. Whole-exome or
genome-based NGS strategies to identify novel, rare patho-
genic variants can derive increased power by incorporating mul-
tiple family members, both affected and unaffected. Especially
in families with an apparent autosomal dominant transmission
pattern, filtering out variants that are absent from unaffected
individuals can be an effective step to narrow variants of interest.
Adding to this complexity, in some GATA1 pedigrees, affected
individuals can have improvement in their thrombocytopenia
with age. Thrombocytopenia can be mild and potentially unrec-
ognized in some family members, for example as seen across
several large pedigrees of RUNX1-mutated familial platelet dis-
order. In the recently described syndrome of IKZF5-related
thrombocytopenia,46 rare missense variants from WGS of 105
thrombocytopenic patients were identified through a Bayesian
inference framework using over 10000 unaffected individuals.
However, in one pedigree with 6 family members that ultimately
underwent analysis for the variant in question, 1 family member
carried the proposed pathogenic p.G134E yet had a normal
platelet count of 184. The variant otherwise segregated with

disease, which was characterized by a mild thrombocytopenia
with normal platelet size and mild bleeding symptoms. This is
one example of how in whole-exome sequencing/WGS studies
of large pedigrees, mildly affected individuals may be pheno-
typed as “unaffected” and the variant filtered out as not segre-
gating with disease. This emphasizes the need for complete
phenotyping on individuals both affected and unaffected, with
attention to not only absolute platelet number but also morphol-
ogy and, when available, functional testing.

Validation of variants
Validation of potential novel variants should be accompanied by
functional testing when possible. For decades, investigators
have used molecular biology, cell biology and imaging and bio-
chemistry techniques to successfully validate specific genetic
variants in megakaryocytes, platelets, and other cell models,
including western blots for protein detection, confocal micros-
copy for cellular defects associated with cytoskeleton genes,
and reporter assays for transcription factors. Additionally, animal
models of inherited thrombocytopenias have been generated
over the years with mixed results. For example, whereas mouse
knock-out models for Myh9, Nbeal2, and Gp1bb appear to rep-
licate the phenotype observed in humans, others such as Runx1,
Was, and Mpl only replicate certain features of the human dis-
ease82,83 but not all. More recently zebrafish models have been
successfully used to validate variants in PTPRJ84 and SRC31 and
to establish a model of congenital amegakaryocytic thrombocy-
topenia (MPL).85 Optimally, primary bone marrow hematopoietic
tissue from affected patients and normal controls could be com-
pared with assess markers of megakaryocyte maturation and
morphology, granule production, and platelet function using
platelet aggregation studies, flow cytometry, and other func-
tional methods. However, it is also increasingly recognized that
in vitro culture of megakaryocytes has limitations, although
some new technologies have allowed investigators to culture
megakaryocytes and study their function from minimal volumes
of bone marrow aspirates.86

Recently, investigators were able to use induced pluripotent
stem cells from patients with ETV6 and RUNX1 variants, as well
as introducing the same gene variants by clustered regularly
interspaced short palindromic repeats (CRISPR)/CRISPR-associ-
ated protein 9 in an isogenic induced pluripotent stem cell line
and studied their effect on hematopoietic progenitor and mega-
karyocyte maturation.87 In the absence of primary patient sam-
ples, current technology also allows for the in vitro manipulation
of hematopoietic stem and progenitor cells either through over-
expression of variant alleles or through genetic deletion via
CRISPR/CRISPR-associated protein 9. These cells can be differ-
entiated with TPO along the megakaryocytic pathway to form
proplatelet-forming megakaryocyte-like cells, allowing investiga-
tors to study the effect of these genetic defects on megakaryo-
cyte differentiation and maturation.88

Structural modeling can be useful in predicting the impacts of
variants on protein function; however, limitations exist, including
the availability of a 3-dimension model and translation to func-
tional impact. For example, a recent study looking at the impact
of a large number of ETV6 variants identified through sequenc-
ing of an acute lymphoblastic leukemia cohort developed a
reporter system of transcriptional repressor activity.89 Variants
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predicted to be pathogenic and those that emerged from stud-
ies of individual thrombocytopenic/familial leukemia pedigrees
do not strictly occur in the region at the ETV6-DNA interface.
Emerging technologies such as base editor screens will allow for
more rapid variant screening in relevant cellular models.90 It is
important to mention that although exome and short-read
genome sequencing may allow for discovery of novel missense
or small insertion/deletion variants, other genomic technologies
are required to detect larger copy number or structural altera-
tions. For example, long-read genomic sequencing facilitated
the recent discovery of a structural variant causing a paired-
duplication inversion leading to pathogenic gain-of-function
WAC-ANKRD26 fusion.91 These variants will not be discernable
by currently available clinical testing but may also be overlooked
by most research-based sequencing efforts. As costs for long-
read genome sequencing and additional advanced genomic
techniques come down, the availability of these newer platforms
will likely facilitate additional complex structural genomic abnor-
malities associated with inherited thrombocytopenia syndromes.

Lastly, there is an increasing appreciation for the effects of
genes initially identified as being most important for megakaryo-
poiesis or thrombopoiesis on nonplatelet hematopoietic cells. A
clear example is TPO, originally described as a cytokine that
stimulates megakaryopoiesis92,93 but later identified as playing
an important role in HSC maintenance,94 especially in promoting
HSC quiescence.95,96 Patients with Roifman syndrome due to
biallelic germline variants in RNU4ATAC also display abnormal
differentiation of B cells with associated hypogammaglobuline-
mia and recurrent viral infections.97 Beyond factors implicated in
differentiation, factors associated with platelet differentiation
and granule formation such as NBEAL2 have also been shown
to impact mast cell differentiation and granule generation98 as
well as demonstrating clinical phenotype consistent with broader
immune dysregulation.99 This immune dysregulation also occurs
in patients with variants in actin cytoskeletal organization genes
(Table 1), for example patients with germline variants in ARPC1B
who demonstrate megakaryocyte differentiation defects100 but
also disruption of T-cell lineage development.101 As additional
genes are added to the growing list of thrombocytopenia disor-
ders, careful phenotyping will allow researchers to extend this
new knowledge to other hematopoietic compartments.

Conclusions
Over the last 2 decades, the advancement in genomic tech-
niques and decreased cost of sequencing have allowed for the
elucidation of the genetic basis of many inherited thrombocyto-
penias. For most of these newly discovered genes, this was the
result of international collaborative efforts that included clini-
cians, scientists, and statistical geneticists, underscoring the
importance of collaboration and team science. Although the
sequencing of patients and families that led to these discoveries
paved the way for better understanding of megakaryocyte and
platelet biology, challenges remain on the validation of genetic
variants in available models. Ultimately, this “bedside to bench”
approach that moved the field forward will hopefully make its
way back to better inform patients about their disease.
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