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KEY PO INTS

� GATA1s-generating
mutations and trisomy
21 in either order
results in a
megakaryoblastic
leukemia similar to
myeloid leukemia of
Down syndrome.

� Germline GATA1s-
generating mutations
are associated with
familial predisposition
for leukemia and
myelodysplastic
syndrome.

Individuals with Down syndrome are at increased risk of myeloid leukemia in early
childhood, which is associated with acquisition of GATA1 mutations that generate a short
GATA1 isoform called GATA1s. Germline GATA1s-generating mutations result in congenital
anemia in males. We report on 2 unrelated families that harbor germline GATA1s-generating
mutations in which several members developed acute megakaryoblastic leukemia in early
childhood. All evaluable leukemias had acquired trisomy 21 or tetrasomy 21. The leukemia
characteristics overlapped with those of myeloid leukemia associated with Down syndrome,
including age of onset at younger than 4 years, unique immunophenotype, complex
karyotype, gene expression patterns, and drug sensitivity. These findings demonstrate
that the combination of trisomy 21 and GATA1s-generating mutations results in a unique
myeloid leukemia independent of whether the GATA1 mutation or trisomy 21 is the
primary or secondary event and suggest that there is a unique functional cooperation
between GATA1s and trisomy 21 in leukemogenesis. The family histories also indicate
that germline GATA1s-generating mutations should be included among those associated
with familial predisposition for myelodysplastic syndrome and leukemia.

Introduction
Down syndrome (DS) is associated with transient abnormal mye-
lopoiesis (DS-TAM) in newborns and a more than 100-fold
increased risk of myeloid leukemia during the first 5 years of
life.1 Myeloid leukemia of DS (ML-DS) is characterized by mega-
karyoblastic phenotype, early age of onset, and favorable
response to chemotherapy. Virtually all patients with DS-TAM
and ML-DS have somatic mutations in exon 2 (or rarely exon 3)
of the X-linked gene GATA1, which encodes a key erythroid and
megakaryocytic transcription factor. These mutations produce a
short GATA1 isoform (called GATA1s) that lacks the amino termi-
nal transactivation domain. Similar germline GATA1s-generating
mutations result in congenital anemia in males,2 which is some-
times considered Diamond Blackfan anemia.3,4

Leukemias typically arise after the sequential acquisition of
mutations in a single-cell lineage, suggesting that there is a
requirement for cooperating events in leukemogenesis.5 The
importance of the order of the mutations (initiating and second-
ary events) is uncertain, although studies in myeloproliferative
neoplasms suggest different phenotypes according to the order
in which the mutations were acquired.6

We describe 2 families with germline GATA1s-producing
mutations in which several members developed acute meg-
akaryoblastic leukemia (AMKL) in early childhood. All evalu-
able leukemias had acquired trisomy 21 or tetrasomy 21
and clinical and molecular characteristics similar to those of
ML-DS.
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Methods
All family members provided written informed consent to partici-
pate in this study. The study was approved by the institutional
review boards of Boston Children’s Hospital and Massachusetts
Institute of Technology and the ethical committee of the Health
Region Midt (Denmark).

Targeted GATA1 sequencing
For family 1, genomic DNA was purified from Ficoll-separated
blood or bone marrow (BM) or from paraffin-embedded material.
Sanger sequencing of GATA1 exon 2 and adjacent regions were
performed on genomic DNA using published polymerase chain

reaction primers.7 Myeloid next-generation sequencing (NGS) in
the index patient of family 1was performedby SophiaGenetics.

Data processing and whole-exome sequencing
For family 2, genomic DNA was purified from peripheral blood.
Whole-exome sequencing (WES) and data processing were per-
formedby theGenomics Platformat theBroad Institute ofMassachu-
setts Institute of Technology and Harvard (http://genomics.
broadinstitute.org/) using Illumina Nextera exome capture (�38 Mb
target) and sequenced (150-bp paired reads) to cover.80% of tar-
gets at 203 and a mean target coverage of.1003. WES sequenc-
ing data were processed by using a pipeline consisting of Picard
command-line tools with genomic alignment using the Burrows-
Wheeler Alignment (BWA) aligner (BWA-MEM) to the human
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Figure 1. Identification of GATA1 mutations in affected members of 2 families. (A) Pedigree diagram of families. Arrows indicate index cases. (B) Schematic
diagram of normal GATA1 gene splicing and translation and the impact of the c.-21 A.G and c.2 T.C variants. mRNA, messenger RNA; Wt, wild type.
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genome build 38. Single nucleotide variants and insertions/deletions
(indels) were jointly called across all samples in the full Center for
Mendelian Genomics cohort using Genome Analysis Toolkit

HaplotypeCaller package version 3.5. Default filters were applied to
single nucleotide variant and indel calls using the Genome Analysis
Toolkit VariantQuality ScoreRecalibration approach.

Mutant GATA1 mRNA

GATA1 c.-21A>G
ATG ATG

5431 2 6

1 3 4 5 6

AUG

5431 6

ZFZFGATA1s protein

Family 1: GATA1 c.-21A>G resulting in exon 2 skipping

GG

ACG ATG

5431 2 6

ZFZFGATA1s protein

1 2 3 4 5 6Mutant GATA1 mRNA

Family 2: GATA1 c.2. T>C resulting in alternate (exon 3) translational initiation codon usage

B

AUGACG

ATG

5431 2 6

1 2 3 4 5 6Wild type GATA1 mRNA

AUG

TAD ZFZFFull-length GATA1 protein

Wild type GATA1 locus

AG

GATA1 c.2 T>C

Figure 1. (continued)
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Figure 2. Similarities between ML-DS and the leukemias that developed in the patients with germline GATA1 c.-21 A>G and c.2 T>C variants. (A) Immunochemical
and histochemical characteristics of ML-DS and the patient leukemias. The overlap includes the unique characteristics of ML-DS compared with non-DS myeloid leukemia
such as co-expression of myeloid markers (CD13, CD33, and CD38), early progenitor markers (CD34 and CD117), megakaryocytic/erythroid markers (CD41/61, CD42b, CD36,
CD71, and CD235a), T-lymphocyte markers (CD4 and CD7), natural killer cell markers (CD56), but absence of monocytic and B-lymphocyte markers.16,17 CD7 expression
(indicated in bold) is an important marker distinguishing ML-DS from non-DS AMKL.16,17 (B) Heat map showing gene expression (using Human Genome U133 Plus 2.0 Array)
of samples from diagnostic blood and BM of AMKL in non-DS (3864-5036) and ML-DS (5809-7535) using unsupervised hierarchical clustering.18 Red, high gene expression;
green, low gene expression. Patient IV-2 clusters with most of the ML-DS patients. (C) In vitro drug sensitivity (lethal concentration [LC50]) of the leukemia from family 1 patient
IV-2 compared with ML-DS and non-DS myeloid leukemia patients.19 MPO, myeloperoxidase; p25-p75, 25th – 75th percentile; TdT, terminal deoxynucleotidyl transferase.
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Variant annotation and identification
Called variants were annotated as previously described.8 Two
main inheritance models were explored: X-linked recessive for the
anemia seen in the 2 affected males (III-3 and III-4) and dominant
inheritance for the leukemias seen throughout the family. In both
inheritance models, the GATA1 variant chrX:48791111:T.C was
flagged as the likely causal variant. The genes ANKRD26, ETV6,
GATA2, CEBPA, RUNX1, SAMD9, SAMD9L, and DDX41 were
manually inspected for potentially relevant variants, and none
were identified.

Results
Family 1
The index case (IV-2, Figure 1A; supplemental Table 1)
presented at 27 months of age with AMKL, karyotype
48,XX,der(6)del(6)(q15q22),der(7)ins(6;7)(q23q25;q32),121,121
[24]/46,XX[1]. Myeloid NGS showed 3 JAK2 variants:
c.2047A.G p.(Arg683Gly) (variant allele frequency [VAF], 4%),
c.2082C.G p.(Phe694Leu) (VAF, 3%), and c.1832T.C
p.(Leu611Ser) (VAF, 11%). She had no phenotypic signs of
DS. Immunophenotyping, gene expression, and in vitro drug
sensitivity studies showed patterns similar to those of ML-DS
and patterns different from those of non-DS myeloid leukemia
(Figure 2).

Acute myeloid leukemia (AML) therapy induced complete remis-
sion, including normal karyotype with disomy 21 in 1000 cells
analyzed by fluorescence in situ hybridization. Macrocytosis and
extreme lyonization (92%) were found during remission,
although the dominant GATA1 allele was not identified. Myelo-
dysplastic syndrome (MDS), which progressed to AML with
46,XX,-7,t(11;21)(q23;q21),121[25] occurred 3.5 years from the
end of therapy. Myeloid NGS identified a RUNX1 variant
c.308_309dup, p.(Thr104Leufs*19) (VAF, 9%). She received a
haploidentical hematopoietic stem cell transplantation (HSCT)
with her mother as donor. She is in good health, including nor-
mal hematology 12.5 years from AML and 8.5 years from MDS
diagnoses.

The father had had macrocytic anemia since childhood with nor-
mal neutrophil and platelet counts and moderate BM trilineage
dysplasia. MDS with trilineage dysplasia was diagnosed at age
47 years. Karyotype was normal. Myeloid NGS identified an
ASXL1 variant c.2632delA p.(Ser878fs) (VAF, 24%). Matched
unrelated donor HSCT was performed. He is well with hematol-
ogy within the normal range 14 months after HSCT.

Targeted GATA1 sequencing was performed on members of the
extended family. The variant GATA1 c.-21A.G (NG_008846)
located in the exon 2 splice acceptor site was identified in the
index case, the father (III-2), paternal aunt (III-3), and paternal
grandmother (II-3) (supplemental Figure 1). This causes exon 2
skipping and exclusive GATA1s production through an alternate
exon 3 in-frame ATG initiation codon, as previously described9

(Figure 1B). The paternal aunt and grandmother with the
GATA1 variant had normal complete blood counts apart from
borderline thrombocytopenia in the grandmother (supplemental
Table 1).

Family 2
The index case (III-2; Figure 1A; supplemental Table 1) presented
at 18 months of age with AMKL and karyotype 48,XX,111,121/
48,idem,t(1;14)(q21;q32)/49,idem18. She had no phenotypic
signs of DS, but the leukemia immunophenotype overlapped
ML-DS (Figure 2A). AML therapy induced complete remission with
normal karyotype including disomy 21. She remained in complete
remission at follow-up 5 years from completion of chemotherapy,
although her remission BM tests showed hypoplasia with mild ery-
throid andmegakaryocytic dysplasia.

The proband’s younger brother (III-3) was diagnosed with con-
genital dyserythropoietic anemia at 6 months of age. He
remained transfusion-dependent until undergoing unrelated
umbilical cord HSCT at 6 years of age. The proband’s younger
half-brother (III-4), different father, had transfusion-dependent
anemia from early childhood. At 21 months, he developed
AMKL with unavailable cytogenetics and immunophenotype
overlapping ML-DS (Figure 2A). He underwent matched unre-
lated HSCT because of persistent residual disease after AML
induction and is in good health 10 years after receiving a trans-
plant. The proband’s mother (II-2) has lifelong macrocytic ane-
mia without a need for transfusions. The proband’s maternal
grandmother (I-2) died in her 40s as a result of a myocardial
infarction, and the maternal great aunt (I-3) died as a result of
leukemia as a teenager.

WES of peripheral blood from patients II-2, III-2 (in remission),
III-3, and III-4 revealed the variant GATA1 c.2 T.C (NG_008846)
in all individuals (supplemental Figure 2). This changes exon 2
translation initiator ATG to ACG (Figure 1B) and leads to nearly
exclusive production of GATA1s, as previously described10

(Figure 1B).

Discussion
Germline GATA1s-producing variants have been reported as a
cause of anemia in males.3,4 Our report indicates that these
patients are also at increased risk for hematologic malignancies
associated with acquisition of trisomy 21 or tetrasomy 21. In
addition, a 4-year-old boy with a c.2T.C GATA1 mutation
developed MDS with complex cytogenetics that included tri-
somy 21.11

Abnormal hematopoiesis in carrier females could result from
extreme lyonization as seen in X-chromosome diseases.12 We
were unable to determine definitively whether extreme lyoniza-
tion favoring the GATA1-mutant allele played a role in the
females’ diseases. Regardless, our report indicates that female
carriers of GATA1s-generating mutations are at risk for hematol-
ogy malignancy.

Leukemogenesis is generally considered as a series of events
with acquisition of many mutations before the leukemia pheno-
type develops in adults.13 Leukemogenesis in children may be
simpler, especially in DS in which only 2 documented aberra-
tions, trisomy 21 and GATA1 mutations, are sufficient to cause
DS-TAM, although additional aberrations may be needed for
ML-DS,14 and complex karyotype is common.15
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The AMKLs in our patients shared many features of ML-DS,
including unique immunophenotype, gene expression, drug
sensitivity, secondary JAK2 mutations,12 complex karyotype,15

and onset before 4 years of age. The disease in these patients
suggests that the order of AML-associated oncogenic events
may not be important because constitutional trisomy 21 with
acquired GATA1 mutations results in a disease similar to consti-
tutional GATA1 mutation with acquired trisomy 21.

Previous reports identified children with germline mosaicism for tri-
somy 21 who developedML-DSwith acquiredGATA1s-generating
mutations in the trisomy 21 cells.13 These findings in concert with
our current report underscore the unique functional synergy
between trisomy 21 and GATA1s in producing age-specific mye-
loid leukemia.14 The mechanisms underlying this cooperativity
remain incompletely understood. GATA1s expression in human
fetal liver hematopoietic stem cells cooperates with trisomy 21 to
promote blast and megakaryocyte expansion in xenotransplanta-
tion models.15 The ERG, ETS2, miR-99a, miR-125b, and miR-155
genes located on human chromosome 21 cooperate with GATA1s
to perturb hematopoiesis and drive the development of AMKL in
experimental systems.15,16 Our data suggest that either order of
mutations preserves this cooperative effect.

The 2 families presented here challenge our concept of initiating
and secondary events and suggest that the combination of
GATA1s-generating mutation and trisomy 21 results in a unique
myeloid malignancy regardless of the order of events. Our
observations also indicate that GATA1s-generating mutations
should be added to the list of constitutional abnormalities that
predispose to MDS and leukemias in both males and females.
Signs of worsening cytopenias should prompt appropriate
investigation.
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