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KEY PO INT S

� STAT3-mutated
patients have increased
mutational burden and
neutropenia, whereas
select STAT3-activating
mutations are
associated with anemia.

� Recurrent mutations in
epigenetic and
chromatin modifiers,
especially KMT2D and
SETD1B, co-occur with
STAT3 mutations in LGL
leukemia.

Large granular lymphocyte (LGL) leukemia comprises a group of rare lymphoproliferative
disorders whose molecular landscape is incompletely defined. We leveraged paired
whole-exome and transcriptome sequencing in the largest LGL leukemia cohort to date,
which included 105 patients (93 T-cell receptor ab [TCRab] T-LGL and 12 TCRgd T-LGL).
Seventy-six mutations were observed in 3 or more patients in the cohort, and out of
those, STAT3, KMT2D, PIK3R1, TTN, EYS, and SULF1 mutations were shared between
both subtypes. We identified ARHGAP25, ABCC9, PCDHA11, SULF1, SLC6A15, DDX59,
DNMT3A, FAS, KDM6A, KMT2D, PIK3R1, STAT3, STAT5B, TET2, and TNFAIP3 as
recurrently mutated putative drivers using an unbiased driver analysis approach leveraging
our whole-exome cohort. Hotspot mutations in STAT3, PIK3R1, and FAS were detected,
whereas truncating mutations in epigenetic modifying enzymes such as KMT2D and TET2
were observed. Moreover, STAT3 mutations co-occurred with mutations in chromatin and
epigenetic modifying genes, especially KMT2D and SETD1B (P < .01 and P < .05,
respectively). STAT3 was mutated in 50.5% of the patients. Most common Y640F STAT3
mutation was associated with lower absolute neutrophil count values, and N647I mutation

was associated with lower hemoglobin values. Somatic activating mutations (Q160P, D170Y, L287F) in the STAT3
coiled-coil domain were characterized. STAT3-mutant patients exhibited increased mutational burden and enrichment
of a mutational signature associated with increased spontaneous deamination of 5-methylcytosine. Finally, gene
expression analysis revealed enrichment of interferon-g signaling and decreased phosphatidylinositol 3-kinase–Akt
signaling for STAT3-mutant patients. These findings highlight the clinical and molecular heterogeneity of this rare disorder.
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Learning objectives
Upon completion of this activity, participants will:
1. Describe nonsynonymous somatic variants in large granular lymphocyte (LGL) leukemia exomes, potential differences of these

mutational profiles across LGL leukemia subtypes, and potential associations of mutational groups with clinical features,
according to a paired exome and transcriptome study of LGL leukemia

2. Determine shared and unique molecular characteristics of LGL leukemia subtypes (T-LGL, where cells express ab T-cell receptor
[TCR], and GD-LGL, where cells express TCRgd) based on putative driver genes; and the transcriptomic and somatic mutational
landscape of STAT3-mutated patients compared with STAT3 wild type to identify their distinct molecular signatures and STAT3-
mutation–specific clinical associations, according to a paired exome and transcriptome study of LGL leukemia

3. Identify clinical implications of mutations and clinical features associated with LGL leukemia, according to a paired exome and
transcriptome study of LGL leukemia

Release date: May 19, 2022; Expiration date: May 19, 2023

Introduction
Large granular lymphocyte (LGL) leukemia is a rare lymphoproli-
ferative disorder of primarily CD81 T- or natural killer (NK)-cell
lineage usually manifested in elderly patients.1,2 T-LGL accounts
for 85% of all LGL cases.3 NK-LGL, or chronic lymphoprolifera-
tive disorder of NK cells,4 affects �10% of the patients. The
majority of T-LGL cells express T-cell receptor ab (TCRab; here-
after referred to as T-LGL), and few express TCRgd (hereafter
referred to as GD-LGL).5,6

One-third of LGL patients are asymptomatic at the time of pre-
sentation, and the remaining two-thirds display symptoms
related to neutropenia, such as oral ulcers and recurrent infec-
tions.2 Asymptomatic anemia is also frequently observed during
routine blood exams, and transfusion dependence is seen in
10% to 30% of cases. Patients are diagnosed based on the pres-
ence of expanded clonal T or NK cells. Treatment is noncurative
and includes immunosuppressives such as methotrexate, cyclo-
phosphamide, and cyclosporine.7

Somatic activating STAT3 mutations are observed in 28% to
75% of T-LGL and 30% to 48% NK-LGL leukemia patients.8-11

STAT5B mutations are infrequently observed in LGL in general
but commonly detected in rare CD41 variants.12,13 Patients with
STAT3 mutations exhibit lower absolute neutrophil counts
(ANC), whereas the association with anemia is variable in the lit-
erature.8,14-17 Since the discovery of STAT3 mutations, 3 small-
scale whole-exome sequencing (WES) studies have been
reported for 16 T-LGL and 3 NK-LGL, 4 NK-LGL, and 13
NK-LGL cases,18-20 along with our report of 7 whole genomes in
NK-LGL with a main emphasis on TET2 biology.21 Exome
sequencing studies have not been reported for the GD-LGL sub-
type. Mutations in genes that are frequently altered in clonal
hematopoiesis of indeterminate potential (CHIP) such as TET2
and DNMT3A have been reported in LGL leukemia.19-23

However, their prevalence and effect on the rest of the genomic
landscape remain unclear.

In the present study, we completed the most extensive paired
exome and transcriptome study of LGL leukemia to date with 105
patients, composed of T-LGL (n 5 93) and GD-LGL (n 5 12) sub-
types. We defined the landscape of nonsynonymous somatic var-
iants in LGL leukemia exomes, asked whether these mutational
profiles differed across LGL leukemia subtypes, and tested
whether mutational groups were associated with clinical features.
We identified putative driver genes and used them to determine
the shared and unique molecular characteristics of T- and GD-LGL
leukemia subtypes. Finally, we compare the transcriptomic and
somatic mutational landscape between STAT3-mutated and
–wild-type (WT) patients to reveal their distinct molecular signa-
tures and STAT3mutation–specific clinical associations.

Methods
Patient selection and sample processing
The study was conducted under institutional review board–
approved protocols for the LGL Leukemia Registry at the Univer-
sity of Virginia School of Medicine. One hundred five T-LGL
leukemia patients (CD81 TCRab and TCRgd; no CD41) meeting
diagnosis criteria by the World Health Organization4 (evidence
of clonality, persistence of chronic expansion .6 months) were
recruited for this study. See supplemental Methods for addi-
tional details (available on the Blood Web site).

WES and data processing
WES samples were sequenced by Tempus (Chicago, IL) to a target
depth of 1003 and 2003 for the normal (saliva) and the leukemic
(peripheral blood mononuclear cell [PBMC]) genome, respectively,
using an Illumina HiSeq.24 The paired-end sequences were
aligned with Novoalign (Novocraft, Selangor, Malaysia) to an
in-house g1k_v37_novoindex of human genome version GRCh37.
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Capture probes from Integrated DNA Technologies’ xGen Exome
Research Panel were used, and samples were prepped using the
KAPA HyperPrep Kit as described previously.24

The somatic mutations were identified using Mutect2 in the
Genome Analysis Toolkit25 v4.1.2.0, following Genome Analysis
Toolkit best practices. Additionally, databases of known cancer
mutations from COSMIC v77 and known population polymor-
phisms from dbSNP v138 were used as a whitelist and blacklist,
respectively, during somatic variant calling. The low-quality var-
iants were filtered away, and the variant call format files were
annotated with Ensembl’s Variant Effect Predictor.26 Annotated
variant call format files were converted to mutation annotation
format using vcf2maf.27

RNA sequencing (RNA-seq) and data processing
RNA libraries were constructed and sequenced (Tempus) as
described previously.24 Samples were hybridized with Integrated
DNA Technologies’ xGen Exome Research Panel followed by
amplification using a KAPA HiFi Library Amplification Kit.24 The
RNA libraries were sequenced to obtain at least 50 million reads
on an Illumina HiSeq 4000.

Results
Somatic variants within and across LGL disease subtypes and
their association with clinical phenotypes are incompletely
defined by previous sequencing studies.18-20 To better under-
stand the underlying molecular landscape of LGL leukemia, we
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Figure 1. Mutational characteristics of T and GD LGL leukemia subtypes. (A-B) Nonsilent mutation burden and affected gene counts in T and GD subtypes.
(C) Euler diagram of genes that are mutated in at least 3 patients, sectioned by LGL subtypes. Genes that are mutated in 4 or more patients and are shared between
T and GD-LGL (blue area) are labeled. (D-E) Single nucleotide variant class in the cohort and percent C.T mutation comparison in T and GD subtypes. (F-G) Microsatellite
instability scores and SBS1 signature contributions in T and GD subtypes.
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collected saliva and peripheral blood specimens from 105 LGL
patients, which included T-LGL (n 5 93) and GD-LGL (n 5 12).
Genomic and transcriptomic analyses were performed after
paired WES and leukemic bulk–RNA-seq. Patient demographics
are summarized in supplemental Table 1. Detailed clinical anno-
tations are provided in supplemental Table 2.

Landscape of somatic variants in LGL
leukemia exomes
We focused our efforts on nonsilent variants to increase the likeli-
hood of identifying changes that alter protein structure or function
and contribute to disease pathogenesis. Paired saliva-leukemic
WES of 105 individuals revealed a range of 1 to 169 (median: 45)
nonsilent somatic variants per patient after high confidence filter-
ing. There were no statistically significant differences between the
2 subtypes in either nonsilent mutation burden or mean affected
gene count (range: 1-163; median: 45; Kruskal-Wallis test;

nonsilent somatic variants, P 5 .475; mean affected gene count,
P 5 .468) (Figure 1A-B). After excluding intron, 59 flank, 39 and 59

untranslated region, intergenic region, and RNA mutation classes,
2717 genes were affected by these nonsilent mutations, with 76
genes being mutated in 3 or more patients (supplemental Table
3). Within these 76 genes, STAT3, KMT2D, PIK3R1, SULF1, EYS,
and TTN (Figure 1C) were found to be mutated across T and GD
subtypes. All somatic variants including silent variants are dis-
played in supplemental Table 4. We observed broad chromo-
somal arm-level somatic copy-number aberrations in 5 patients,
with 22q and 3p amplifications observed in 2 patients in each cat-
egory (supplemental Table 5). C.T and G.A base substitutions
(seen in 50.5% of all single nucleotide variant events) dominated
the somatic variant calls in this cohort (Figure 1D). Differences in
the percent of C.T base substitutions were not statistically signifi-
cant among the subtypes (P 5 .988) (Figure 1E). We also identi-
fied 1 patient (1822 GD-LGL) with many mutations within
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Figure 2. Oncoplot of putative drivers in LGL leukemia. (A) Seven different driver analysis tools identified 15 gene variants with putative driver roles present in at
least 3 LGL leukemia samples. Each row represents 1 of the 15 putative drivers, whereas the columns represent individual patients. LGL disease cohorts are color coded
at the top. Type of alteration in putative driver genes is indicated by the colored boxes, which are defined under “Alterations,” and gray indicates WT. The top bar
graph shows the number of amplification and deletion events. Right bar graph shows the distribution of variants for a given gene across the 2 LGL cohorts. Bottom
annotations represent clinical phenotypes of individual patients, with color definitions found in the rightmost annotation. ANC values above 1.5k/ml and HGB values
above 12 are annotated as “Normal,” and anything below is “Low.” Treatment indicates if patients were on LGL treatment (methotrexate, cyclophosphamide, or
cyclosporine) at the time of sample acquisition. Unknown values are colored in gray. (B) Kyoto Encyclopedia of Genes and Genomes pathway analysis of somatic
mutations observed in the cohort using SLAPenrich. The size of the nodes represents the number of genes in the cohort observed in the pathway. The color of the
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Figure 3. Lollipop plot of KMT2D, FAS, and PIK3R1 genes. Lollipop plot of (A) KMT2D, (B) FAS, and (C) PIK3R1 mutations detected in the 105-patient LGL leukemia
cohort. Annotations for individual domains are described at the bottom. Domain information was curated from simple modular architecture research tool and conserved
domain database.
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microsatellites (microsatellite instability [MSI]-high; MSIsensor
score .3.5; Figure 1F), though MSI scores were not significantly
different among the 2 LGL subtypes (P 5 .339). Additionally, we
used signeR to determine that the cohort was enriched for the
SBS1 signature.28 The C.T mutations dominate the SBS1 signa-
ture at CpG dinucleotides. This likely represents deamination of

5-methylcytosine at CpG dinucleotides, leading to T:G mis-
matches that are not repaired before DNA replication.29 The rela-
tive contribution of the SBS1 signature was not significantly
different between the 2 LGL subtypes (P 5 .427) (Figure 1G).
Together, these results show that multiple genomic level changes
and somatic variants were shared between T and GD subtypes.
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Identification and function of putative
driver mutations
We used a driver analysis approach30 to identify 15 genes with
putative roles (“putative drivers”) in the etiology of LGL leuke-
mia out of the 76 genes that were mutated in 3 or more
patients (Figure 2A; supplemental Figure 1). Thus, only a
select few genes with nonsilent mutations were identified by
our analysis pipeline as putative drivers. STAT3 was by far the
most frequently mutated gene across all LGL subtypes, with
nonsilent mutations in 53 out of 105 patients (50.5%). Putative
drivers that passed the loss-of-function transcript effect estima-
tor filter to identify loss-of-function mutations are annotated in
supplemental Table 6. These included several genes encoding
epigenetic modifiers (KMT2D, KDM6A, TET2, and DNMT3A).
Putative drivers that interact with the STAT3-signaling pathway

(TNFAIP3, PIK3R1, and FAS) were also identified. Of note,
TNFAIP3 mutations in our cohort did not overlap with previ-
ously reported mutations in LGL leukemia.31 These 9 frame-
shift and nonsense mutations spanned across the gene and
were identified as high-confidence loss-of-function mutations
(supplemental Table 6). Another putative driver, ABCC9, has a
known role as a potassium channel and is a STAT3 target
gene.32 STAT5B mutations were detected in far fewer samples
than STAT3 as previously described.12 Kyoto Encyclopedia of
Genes and Genomes pathways that are recurrently altered by
nonsilent mutations in the cohort (Figure 2B) include the path-
ways involved in cancer, including pancreatic cancer and acute
myeloid leukemia. Additional pathways include genes involved
in JAK-STAT signaling, chemokine signaling, and cytokine-
cytokine receptor interaction.
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Out of 15 putative driver genes, select candidates demonstrated
high potential impact on LGL pathogenesis based on previous
literature and the occurrence of hotspot mutations (Figure 3).
We observed high-confidence loss-of-function mutations across
the coding region of KMT2D, the second most frequently
mutated driver gene (Figures 2 and 3A). KMT2D encodes his-
tone H3 lysine 4 mono-methyltransferase and is thought to be a
tumor suppressor as loss of Kmt2d is shown to promote lung
tumorigenesis33 and increase incidence of germinal
center–derived lymphomas in mice.34 Additionally, we detected
nonsense, frameshift, and missense mutations in the death
domain of FAS in 3 T-LGL patients (Figure 3B). Somatic

mutations in this domain are associated with a related disorder,
autoimmune lymphoproliferative syndrome, characterized by
lymphoid precursor resistance to Fas-mediated apoptosis.35,36

Finally, we observed 3 distinct mutations affecting the inter-SH2
domain of PIK3R1 (Figure 3C). Specifically, the mutations were
detected in 3 T-LGL patients (1 in-frame deletion at
K448_L449del, 2 K567E mutations) and 1 GD-LGL patient
(N564D mutation). Additional phosphatidylinositol 3-kinase
(PI3K) family mutations were observed in PIK3CD, PIK3CA,
PIK3AP1, PIK3R3, PIK3R4, and PIK3C2A (supplemental Table 7).
These observations indicate that the somatic mutations in T-LGL
patients frequently lead to aberrant PI3K signaling.
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Other notable drivers included genes with known tumor-
suppressor function in leukemia and solid cancers. Four T-LGL
patients exhibited mutations in KDM6A, which encodes a lysine-
specific demethylase with deleterious mutations previously
reported in T-cell acute lymphoblastic leukemia and other can-
cers (supplemental Table 4).37-41 High-confidence loss-of-func-
tion mutations (S495Pfs*65, Y129Mfs*80, M90Hfs*24) in
ARHGAP25, a GTPase-activating protein for Rac that is

associated with tumor-suppressive functions,42,43 were observed
for 2 T-LGL and 1 GD-LGL patient (supplemental Table 4).

Co-occurrence and mutual exclusivity of putative
driver mutations
Comutation analysis was completed to identify putative redundant
or cooperating molecular events. KMT2D mutation exhibited sig-
nificant co-occurrence with STAT3 mutation, being observed in 10
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out of 11 total KMT2D mutant patients (P 5 .0084; Figure 4A).
SETD1B mutations also significantly co-occurred with STAT3
mutations (P 5 .027; Figure 4A). Furthermore, approximately half
of the KMT2D-mutated samples showed similar variant allele fre-
quencies (VAF) of KMT2D and STAT3 mutations, compatible with
coexistence in the same clone (Figure 4B; see supplemental
Figure 2 for analysis on all KMT2D-mutated samples). Three out of
6 SETD1B-mutated samples also showed coexistence in the same
clone with STAT3 (Figure 4C). Of note, all 5 T-LGL patients with
TET2 and STAT3 mutations had TET2 mutations in the same pre-
dicted clone as STAT3 based on VAF density clustering (supple-
mental Figure 3). No direct association with specific STAT3 amino
acid change and TET2, KMT2D, or SETD1B mutation was
observed (Figure 4B-C; supplemental Figure 3). The significant co-
occurrence of STAT3 mutations with KMT2D, SETD1B, and TET2
mutations suggests that STAT3 activation may cooperate with epi-
genetic modifications in driving the disease.

Functional and clinical characterization of
STAT3 mutation
Previous studies have found recurrent, somatic activating
mutations affecting the SH2 domain of STAT3. In agreement
with those previous studies, we found nonsilent mutations in
the SH2 domain of STAT3 in 51 out of 105 (48.6%) patients
(Figure 5A; supplemental Table 4). We also observed a single
mutation in the DNA-binding domain (H410R) and previously
unreported mutations in the coiled-coil domain (Q160P,
D170Y, and L287F; Figure 5A; supplemental Figure 4). To
explore the functional significance of novel mutations in the
coiled-coil domain, we transfected HEK293 cells with expres-
sion vectors for WT, Q160P, D170Y, L287F, and Y640F (posi-
tive control8) along with a STAT3 luciferase reporter vector
containing a STAT3-responsive cis-inducible element. All
novel mutants exhibited luminescence signal 129- to 794-fold
higher than empty vector and WT STAT3 controls (Figure 5B;
supplemental Figure 5). Y640F exhibited the strongest signal
and was statistically significant compared with all other exam-
ined mutations. Phospho-Y705 STAT3 levels were also
strongly increased (1.5- to 2.7-fold higher) in all novel mutants
relative to WT (Figure 5C; supplemental Figure 5).

STAT3 mutation at any site was significantly associated with
lower neutrophil (ANC, P 5 .0042) counts (supplemental
Figure 6) as previously observed.8 We also observed lower
hemoglobin (HGB, P 5 .071) and hematocrit (HCT, P 5 .063)
values in STAT3-mutated patients (supplemental Figure 6).
Lastly, we retrospectively collected bone marrow pathology on
42 patients to detect differences between STAT3-WT (n 5 18)
vs -mutant patients (n 5 24) (supplemental Figures 7 and 8). No
association with bone marrow cellularity, lymphocyte percent,
myeloid to erythroid ratio, reticulin grade, presence of TCR
clone, T-cell intracellular antigen, or granzyme staining was
found with STAT3 mutation. Other somatic mutations, such as
TET2, were not analyzed given the very low number of mutated
samples (n 5 2) with associated bone marrow data.

Our large patient cohort allowed us to further stratify the
STAT3 mutation group into common somatic activating var-
iants Y640F (n 5 31), D661Y (n 5 9), and N647I (n 5 11) to
determine their association with the key clinical features,

neutropenia, and anemia, which are indicators for treatment in
LGL leukemia. Previous studies and supplemental Figure 6 ana-
lyzed all STAT3 mutants together in comparisons with STAT3
WT.8,14-17 We found that Y640F mutation exhibited significantly
lower ANC values (P 5 .045; Figure 5D). ANC values for
D661Y (P 5 .059) and N647I (P 5 .853) mutation also trended
toward lower levels than WT. Notably, N647I mutation was
associated with significantly lower HGB values (P 5 .047), with
D661Y mutation trending similarly (P 5 .074). However, the
range of HGB values was not significantly different for the most
frequent somatic activating mutation, Y640F, compared with
WT (P 5 .9999) (Figure 5E). HCT and red blood cell values
showed similar changes (supplemental Figure 8). There was no
association with white blood cell, absolute lymphocyte count,
mean corpuscular volume, red cell distribution width, platelets,
or age for STAT3 mutation groups.

Mutational landscape of STAT3-WT and -mutant
LGL leukemia
As defined by the counts of nonsilent somatic variants in
exomes, the total mutational burden has been reported to be
a function of age in other hematological malignancies.44 We
investigated if there were a relationship between the mutational
burden and clinical features in LGL leukemia, which includes
mutation status for STAT3 and flow-cytometric profiling. We
used least absolute shrinkage and selection operator regulariza-
tion and determined that the STAT3 mutation status, the
CD31CD571 fraction, and the patient’s age at the time of
sequencing were all significant predictors of the mutational bur-
den (Figure 6A-C). Additional analysis including silent variants
also showed increased mutational burden in STAT3-mutated
samples (supplemental Figure 9). Together, these variables
explain only �35% of the variance in the mutation burden,
highlighting the heterogeneity of the disease. Additionally, over-
all mutational burden was not significantly different among the
Y640F, D661Y, and N647I STAT3 mutation groups (P 5 .7512,
Kruskal-Wallis).

Next, we compared the mutational landscapes of STAT3-
mutant and -WT LGL leukemia. STAT3-mutant samples exhibit
increased mutation prevalence for genes such as KMT2D and
SETD1B involved in chromatin modification (Figure 6D; see
supplemental Table 9 for entire list) as well as epigenetic modi-
fier TET2. Conversely, DNMT3A mutations were found exclu-
sively in STAT3-WT patients in our cohort. Further analysis
revealed that the relative contribution of the SBS1 signature,
which is enriched in LGL leukemia (Figure 1E), was significantly
higher in STAT3-mutated patients compared with STAT3 WT
(Figure 6D; supplemental Figure 10). Taken together, this sug-
gests that STAT3-mutated patients harbor a distinct genomic
profile characterized by epigenetic and mutational aberrations.

Transcriptomic analysis of STAT3-WT and -mutant
LGL leukemia
We next examined the transcriptome differences of patients
with somatic mutations in STAT3 compared with STAT3 WT. Six
hundred fifty four genes were significantly upregulated and 458
genes were significantly downregulated in T-LGL patients with
STAT3 mutations after accounting for batch effects, sex, and
purity of the samples (supplemental Table 10). The top 10 dif-
ferentially expressed genes with higher expression in the
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STAT3-mutated group (Figure 7A) included PDGFRB, which was
previously reported as highly expressed in LGL leukemic cells,45

and JAK3, which is activated in various hematologic malignan-
cies.46,47 Aberrant expression of myeloid lineage–specific genes
was also observed, including ZBTB46, C1QB, and C1QC for
STAT3 mutants, and PGC and FGFR2 for STAT3 WT. Functional
enrichment analysis using gProfiler followed by EnrichmentMap
visualization revealed key module differences in cytokine signal-
ing, antigen processing, apoptosis, PI3K-Akt signaling, Runx2
activity, and hedgehog signaling between STAT3-mutant and
-WT patients (supplemental Figure 11A). Gene set enrichment
analysis of these network modules demonstrated over-
representation in STAT3 mutants, except for enrichment of
PI3K-Akt signaling in STAT3-WT samples (Figure 7B).

RNA-seq analysis was confirmed by sorting CD81 cells from nor-
mal controls as well as the original date-matched sample used
for whole-exome and RNA-seq. RNA and protein expression
were determined using RT-qPCR (Figure 7C,E) and western blot-
ting (Figure 7D,F). STAT3-mutated CD81 samples strongly over-
express the myeloid lineage–specific ZBTB46 compared with
WT samples and CD81 normal controls (Figure 7C). We also
demonstrated decreased expression of AKT3 and PDGFB, both
genes in the PI3K-Akt signaling axis, in STAT3 mutants com-
pared with STAT3-WT samples and normal controls (Figure 7C).
We then probed for PI3K-Akt signaling cascades in CD81 iso-
lated normal, WT, and STAT3-mutated samples. Three patients
in both groups exhibited increased levels of phospho-AKT,
phospho-p44/42 MAPK, and phospho-GSK3b compared with
normal CD81. Conversely, 2 patients in both groups showed lit-
tle activation of these readouts (Figure 7D). There was no statis-
tical difference in PI3K-Akt signaling, primarily due to this
patient heterogeneity (supplemental Figure 12A-C).

Finally, unbiased clustering of patients with leading edges from
the hallmark interferon-g gene set revealed increased expression
of interferon-g pathway genes in STAT3-mutant patients (sup-
plemental Figure 11B). We examined STAT3 and STAT1 gene
expression in CD81 isolated samples (Figure 7E) but did not
observe statistically significant differences in messenger RNA
(mRNA) levels. However, immunoblots showed high abundance
of phospho-STAT3 and phospho-STAT1 in STAT3 mutant relative
to WT patient samples and normal controls (Figure 7F; supple-
mental Figure 12D-E). We also detected high PDGFRb protein
expression levels in STAT3 mutants (Figure 7F; supplemental
Figure 12F), consistent with RNA-seq analysis (Figure 7A,E).
In sum, these analyses show a distinct transcriptomic profile of
STAT3-mutant patients with highlights in interferon and interleu-
kin signaling.

Discussion
Here, we define the genomic landscape of LGL leukemia using
an integrated and comprehensive genomic approach in 105
samples. This is the first WES report for GD-LGL subtype. We
identified shared somatic mutations and putative drivers
between T-LGL and GD-LGL leukemia. We detected nonsilent
mutations in 2717 genes, including novel somatic mutations that
are minor in frequency in LGL leukemia. Moreover, 76 genes
were mutated in 3 or more patients, thus more clearly defining
the prevalence and gene targets of recurrent mutational events
as well as high-confidence loss-of-function variants. Overall, the

numbers of nonsilent mutations, affected genes, and mutational
signatures were similar across both subtypes. Multiple algo-
rithms were used to predict driver mutations in 15 genes, which
were generally detected across subtypes. The 12 GD-LGL sam-
ples did not reveal any unique mutational events from 93 T-LGL
samples. Most studies that rely on STAT3 molecular profiling for
mutational subgroup analysis in LGL leukemia target the SH2
domain. We found mutations in the coiled-coil and DNA-
binding domains in 3.8% of the cohort. Our functional assays
determined that the novel mutations in the coiled-coil domain
of STAT3 are also activating and should be included in any sub-
group analysis.

We observed multiple mutational and transcriptomic landscape
differences between STAT3-mutated and -WT groups and clini-
cal differences between different STAT3 point mutations that
previous studies were underpowered to detect. Thus, we have
refined the molecular characterization of this disease and identi-
fied genes that may contribute to lymphoproliferation, such as
recurrent mutations in the death domain of FAS and hotspot
PIK3R1 mutations. PDGFRB was strongly overexpressed at the
mRNA and protein levels in STAT3-mutated samples, providing
additional insight into our previous observation.45

Our mutational signature analysis showed that a SBS1 replicative
signature has a higher relative contribution toward the somatic
mutation profile in STAT3-mutated samples, indicating increased
cell division in those samples relative to STAT3 WT. Unlike acute
myeloid leukemia, where age is the most significant predictor of
mutation burden, both STAT3 status and the CD31CD571 frac-
tion are better predictors of mutational burden in LGL. CD57
expression in T lymphocytes is a well-recognized marker of repli-
cative senescence (clonal exhaustion).48 In summary, our analysis
indicates that the increased mutational burden in STAT3-mutant
patients may be associated with lymphocyte replication stress.

The frequent co-occurrence of STAT3 mutations with mutations
in epigenetic modifiers in LGL leukemia is an important theme
emerging from this study. Others recently reported that STAT3-
mutated patients have high protein levels of epigenetic regula-
tor DNMT1 and are characterized by global hypermethylation.49

In our study, all TET2 mutations were found in the same pre-
dicted clone as STAT3 if STAT3 mutations were present.
KMT2D and SETD1B mutations were associated with a STAT3-
mutated clone approximately half the time. Since our original
discoveries in LGL leukemia,8,9,12,50 STAT3 or STAT5B activa-
tion/mutation has been a prominent pathogenic mechanism in
T-cell leukemia/lymphomas.51-55 However, to our knowledge,
concurrent epigenetic modifier mutations in patients with pre-
dominant STAT3 mutation have only been observed in a rare
T-cell lymphoma, breast implant–associated anaplastic large cell
lymphoma.56 The significant co-occurrence of loss-of-function
mutations in KMT2D and TET2 with STAT3 suggests a unique
cooperative relationship in LGL leukemia.

Previously, we reported that dysregulation of Fas-mediated apo-
ptosis is a fundamental pathogenic mechanism in LGL leuke-
mia.57 Genetic lesions in the death domain of Fas were
previously not detected in studies that included 5 and 7 patient
PBMC samples, respectively.57,58 Somatic FAS mutations, clus-
tered mainly in the death domain, are observed in autoimmune
lymphoproliferative syndrome type 3, which is characterized by
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elevated numbers of double-negative TCRab CD31 CD42

CD82 T cells.35,36 These mutations impair normal FAS signaling,
leading to accumulation of autoreactive lymphocytes.59 Here,
we discovered that T-LGL leukemia cells also harbor mutations
in the death domain of FAS. FAS mutation was present in a
patient harboring STAT3, KMT2D, and TNFAIP3 mutations, and
2 patients with a concurrent STAT3 mutation. Somatic FAS
mutations in T-LGL leukemia provide another etiologic mecha-
nism for LGL leukemic cells to resist apoptosis, persist in the cir-
culation, and accumulate to elevated numbers.

Our discovery of PIK3R1 mutations in T-LGL (K567E) and
GD-LGL (N564D), combined with a previously reported mutation
in NK-LGL (S565IinsEYREIDKRMNS),18 identifies a hotspot of
mutations in PIK3R1 in all 3 LGL subtypes. This hotspot region
resides in the binding domain of the p110a subunit of PI3K, and
mutations in this region lead to its activation.60,61 PIK3CA enco-
des p110a, and activating mutations of PIK3CA are found in
other cancers and reported to be oncogenic.60,62 Notably, het-
erozygous germline mutations affecting the inter-SH2 domain of
PIK3R1, where LGL leukemia mutations were observed, led to
activated PI3 kinase d syndrome 2 that is characterized by promi-
nent expansion of peripheral blood CD81 T cells.63-66 PIK3R1
mutation is also reported in other cancers, with the highest fre-
quency in endometrial and pancreatic cancer.67 Additionally, acti-
vation of the PI3K-Akt pathway promotes resistance to apoptosis
in LGL leukemia.68 Furthermore, additional PI3K family mutations
in our cohort (supplemental Table 7), including PIK3CA and
PIK3CD, provide further support for the potential role of this
pathway in T-LGL leukemia, consistent with our previous report
of PIK3CD and PIK3AP1 mutations in NK-LGL.21 The PI3K-Akt
pathway is a central hub for many signaling pathways and is
known to be activated in LGLs relative to normal controls.69

Our data suggest decreased transcriptional activation of the
pathway in STAT3-mutant leukemic samples that exhibit other
mechanisms of PI3K-Akt activation at the protein level. Hetero-
geneity of PI3K-Akt signaling in patient samples (Figure 7)
limits the ability to draw firm conclusions and highlights the
need for additional studies in a larger cohort. In sum, obser-
vance of somatic mutations in PI3K family genes and increased
phospho-protein levels in select patients demonstrate multiple
mechanisms of PI3K pathway activation in both WT and
STAT3-mutant patients.

Previous studies have described an association between STAT3
mutation status and lower ANC values.8,14,15,17 However, the
association of STAT3 mutation with indicators of anemia has not
been reported consistently.8,14-17 Here, we found that the most
common Y640F mutation was associated with lower ANC values,
and N647I mutation was associated with lower HGB values.
Unexpectedly, patients with the most common somatic activat-
ing mutation, Y640F, exhibited similar HGB and HCT values to
STAT3 WT in our large cohort with 52 STAT3-WT, 31 Y640F, 9
D661Y, and 11 N647I patients. This observation may explain
why general STAT3 mutation status is inconsistently associated
with anemia in previous studies that did not define or separate
specific STAT3 mutation groups. Consistent with this result, male
patients harboring D661Y, but not Y640F, mutations were
previously associated with higher mean corpuscular volume
and lower HGB values.17 Exact mechanisms to explain how

different STAT3 mutations lead to such striking and selective
differences in blood parameters remain to be elucidated. Fur-
ther, bone marrow pathology was similar between STAT3-
mutated patients and WT patients, including when STAT3
mutation types were stratified.

Our use of nonsorted PBMC to generate whole-exome and RNA-
seq data are a potential limitation of this study. Even though the
median leukemic fraction as assessed by clinical flow cytometry in
the study is 66%, and the samples were sequenced to an average
coverage of 200-fold, this approach has limitations in its ability to
characterize the various minor clones. In a sample with a leukemic
fraction of 66% and an average coverage of 200-fold, somatic
mutations with a mean expected allelic fraction of 0.03 with
power 0.8 can be detected. The approach of using bulk PBMC
samples may also detect somatic variants within nonlymphocyte
compartments. For example, 2 putative driver genes in this study,
KMT2D and TET2, have been proposed to reflect early stages of
hematopoiesis, resulting in mutation detection within myeloid as
well as NK-LGL leukemia compartments.20 However, the precise
definition of clonal compartments and evolution in LGL leukemia,
and potential interplay with clonal hematopoiesis of indeterminate
potential mutations, awaits more detailed single-cell and longitudi-
nal analyses. Finally, an additional potential concern is that gene
expression profiles may represent signals that are not autonomous
to the leukemic LGLs. However, we modeled the leukemic fraction
along with gender and batch differences so that the gene expres-
sion reflected sample purity in our analyses. Importantly, we
directly confirmed overexpression of representative genes identi-
fied by RNA-seq in purified CD81 cells from LGL patients.

In conclusion, we identified recurrent putative driver mutations
that may underlie the pathogenesis of LGL leukemia. However,
we also observed that a significant percentage of LGL patients
sequenced do not harbor notable recurrent somatic mutations
in the exonic region. These findings suggest the possibility that
mutations in nonexonic regions of the genome, epigenetic
mechanisms, or germline involvement could contribute to path-
ogenesis and are worthy of future research. Finally, we found
unique differences between STAT3-mutant and -WT leukemic
samples in mutational burden and signature, transcriptome, and
clinical associations. These findings highlight the emerging etio-
logic insights into this rare and heterogeneous disorder, which
in turn may be leveraged as potential targets to improve thera-
peutic outcomes in this disease.
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