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KEY PO INT S

� A Lys311-to-glutamic
acid substitution in the
third kringle domain of
Plg is associated with
HAE.

� Plm-Glu311 catalyzes BK
release from HK and LK
independently of PKa.

Patients with hereditary angioedema (HAE) experience episodes of bradykinin (BK)-induced
swelling of skin and mucosal membranes. The most common cause is reduced plasma
activity of C1 inhibitor, the main regulator of the proteases plasma kallikrein (PKa) and
factor XIIa (FXIIa). Recently, patients with HAE were described with a Lys311 to glutamic
acid substitution in plasminogen (Plg), the zymogen of the protease plasmin (Plm). Adding
tissue plasminogen activator to plasma containing Plg-Glu311 vs plasma containing wild-type
Plg (Plg-Lys311) results in greater BK generation. Similar results were obtained in plasma
lacking prekallikrein or FXII (the zymogens of PKa and FXIIa) and in normal plasma treated
with a PKa inhibitor, indicating Plg-Glu311 induces BK generation independently of PKa and
FXIIa. Plm-Glu311 cleaves high and low molecular weight kininogens (HK and LK,

respectively), releasing BK more efficiently than Plm-Lys311. Based on the plasma concentrations of HK and LK, the
latter may be the source of most of the BK generated by Plm-Glu311. The lysine analog «-aminocaproic acid blocks
Plm-catalyzed BK generation. The Glu311 substitution introduces a lysine-binding site into the Plg kringle 3 domain,
perhaps altering binding to kininogens. Plg residue 311 is glutamic acid in most mammals. Glu311 in patients with HAE,
therefore, represents reversion to the ancestral condition. Substantial BK generation occurs during Plm-Glu311

cleavage of human HK, but not mouse HK. Furthermore, mouse Plm, which has Glu311, did not liberate BK from
human kininogens more rapidly than human Plg-Lys311. This indicates Glu311 is pathogenic in the context of human
Plm when human kininogens are the substrates.

Introduction
Hereditary angioedema (HAE) is a genetic condition affecting 1
in 50000 to 100000 individuals.1 Patients with HAE experience
recurring episodes of soft tissue swelling involving subcutaneous
tissues (hands and face), oropharyngeal mucosa, the genitals,
and the gastrointestinal tract.1-3 The underlying cause in most
cases is dysregulation of the plasma kallikrein-kinin system
(KKS).2,4,5 The KKS is composed of the zymogens prekallikrein
(PK) and factor XII (FXII) and the cofactor/substrate high molecu-
lar weight kininogen (HK).6-8 PK and FXII reciprocally convert
each other to the proteases plasma kallikrein (PKa) and FXIIa.6-10

PKa cleaves HK to release the vasoactive nonapeptide bradyki-
nin (BK).4-8 The effects of BK are mediated through the B2
receptor, which is constitutively expressed in many tissues.11,12

Basal BK production likely contributes to setting normal blood
vessel tone and permeability,13,14 while higher concentrations at
injury sites facilitate vascular leak, tissue swelling, and pain sen-
sation.4-8 In HAE, soft tissue swelling from excessive BK produc-
tion distinguishes the disorder from the more common
histamine-driven edema associated with allergic reactions.1-5

The primary regulator of PKa and FXIIa is the serpin C1 inhibitor
(C1-INH).1-3,15 In most patients with HAE, plasma C1-INH activity
is ,50% of normal.1-3 However, at least 10% of those with HAE
have normal C1-INH activity.2,10,16-19 Lysine or arginine substitu-
tions for Thr309 in FXII were reported in patients with HAE with
normal C1-INH in 200620 and have subsequently been identified
in .150 families.16-19 FXII-Thr/Arg309 creates a protease cleav-
age site that facilitates generation of a truncated FXII (DFXII),
which accelerates reciprocal activation with PK and overwhelms
the inhibitory capacity of C1-INH.6,21 In 2018, 2 groups reported
a Lys311 to glutamic acid substitution in the fibrinolytic zymogen
plasminogen (Plg) in patients with HAE with normal C1-INH
activity who lacked FXII-Thr309Lys/Arg.22,23 Plg-Glu311 has now
been reported in �150 patients in 33 families.16-19 We prepared
recombinant Plg-Lys311 and Plg-Glu311 and their activated plas-
min (Plm) forms (Plm-Lys311 and Plm-Glu311) and tested their
effects on BK production in purified protein- and blood-based
systems. We conclude that Plm-Glu311 is a potent kininogenase
that catalyzes BK release from human HK and the related pro-
tein low molecular weight kininogen (LK) independently of PKa
and FXIIa.
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Methods
Materials
Materials used were as follows: normal human plasma (Precision
BioLogic); human plasmas lacking FXII, FXI, PK, or kininogen
(George King Biomed); FXII, FXIIa, PK, PKa, HK, human and
mouse Plgs, human and mouse Plms, and corn trypsin inhibitor
(Enzyme Research Laboratory); fibrinogen and a-thrombin
(Haematologic Technologies); LK, soybean trypsin inhibitor,
E-aminocaproic acid (E-ACA; Sigma-Aldrich); tissue plasminogen
activator (tPA; alteplase; Genentech); S2302 (H-D-prolyl-L-phenyl-
alanyl-L-arginine-p-nitroanilide dihydrochloride; DiaPharma);
polyclonal horseradish peroxidase–conjugated immunoglobulin
(IgG) to hemagglutinin tag (HA) and rabbit anti-BK polyclonal
IgG (Invitrogen); PKa inhibitor KV999272 (formerly VA999272)
was previously described24; and BK (Eurofins Discover X, Fre-
mont, CA) and kallidin standards (Peptide Institute, Osaka,
Japan).

Recombinant proteins
Plgs and Plms Complementary DNAs for wild-type human Plg
(Plg-Lys311) and Plg with glutamic acid (Plg-Glu311) or alanine
(Plg-Ala311) substitutions at amino acid 311 were expressed in
Expi293 cells (Thermo Fisher Scientific). Plgs were concentrated
from conditioned media by binding to lysine-sepharose, purified
further by ion exchange and size exclusion chromatography and
converted to Plm (Plm-Lys311 and Plm-Glu311) by incubation with
urokinase immobilized on sepharose at 37�C.

Kininogens cDNAs encoding human HK and LK (supplemental
Figure 1, available on the Blood Web site), full-length mouse HK
(mHK1; supplemental Figure 2), and mouse HK lacking domain 5
and part of domain 6 (mHK3; supplemental Figure 3) in expression
vector pJVCMV9,10 were modified by adding an HA (Tyr-Pro-Tyr-
Asp-Val-Pro-Asp-Tyr-Ala) tag to the C terminus. Kininogens were
expressed in HEK293 cells and purified by chromatography using
anti-HA IgG coupled to agarose (Thermo Fisher Scientific; Pierce
Protein Biology). Preparations of recombinant kininogens are
shown in supplemental Figure 4. Preparation of human FXII lacking
amino acids 1 to 309 (DFXII) has been previously reported.10

Chromogenic assays
All reactions were conducted in 96-well PEG-20000–coated
plates in 100 mL of reaction buffer (20 mM of N-2-hydroxyethyl-
piperazine-N9-2-ethanesulfonic acid [pH, 7.4], 100 mM of NaCl,
0.1% PEG-8000, and 10 mM of ZnCl2) at 37�C. For all experi-
ments involving enzyme activation or activity, the term vehicle
refers to this buffer.

Discontinuous assays Plg, FXII, or PK (200 nM) was incubated
with tPA (20 nM), Plm (125 nM), FXIIa (20 nM), or PKa (20 nM).
In some experiments, before addition of enzymes and sub-
strates, fibrinogen (200 mg/mL) and thrombin (50 nM) were incu-
bated at 37�C for 20 minutes to form fibrin. Thrombin was
inhibited with hirudin (250 mM), followed by addition of enzymes
and substrates. At various times, aliquots were removed for
activity testing. For measuring PKa or FXIIa generation by Plm,
reactions were stopped with 2 mM of a2-antiplasmin for reac-
tions with PKa or 3.3 mM of aprotinin for reactions with FXIIa.
For measuring Plm generation by FXIIa and PKa, reactions were
stopped with 600 nM of corn trypsin inhibitor or 10 mM
of KV999272, respectively. S-2302 was added to a final

concentration of 200 mM, and changes in optical density at 405
nm were measured. Results were converted to FXIIa, PKa, and
Plm concentrations using control curves constructed with puri-
fied enzymes.

Continuous assays Fibrinogen (200 mg/mL) and thrombin (50
nM) were incubated at 37�C for 20 minutes, after which throm-
bin was inhibited with hirudin (250 mM). Plg (200 nM) and
S-2302 (200 mM) were added with or without tPA (300 pM), and
changes in optical density at 405 nm were followed.

Kinin assay
Normal, FXII-deficient, or PK-deficient plasma was supple-
mented with captopril (500 mM) and Plg (600 nM), and reactions
(40-mL volumes) were started with different concentrations of
tPA or DFXII at 37�C. At various times, 3-mL reaction volumes
were transferred to 12 mL of ice-cold ethanol. Samples were
clarified by centrifugation at 1000g for 10 minutes. Kininogen-
deficient plasma was supplemented with plasma-derived human
HK (640 nM), LK (2.3 mM) or both and then treated in a similar
manner to other plasmas. For purified protein assays, HK, LK,
mHK1, or mHK3 (200 nM) were incubated with different concen-
trations of PKa or Plm in reaction buffer (150 mL) at 37�C. At
various times, 10-mL volumes were transferred into 90 mL of ice-
cold ethanol and placed at 280�C overnight. Samples under-
went clarification by centrifugation at 10000g for 1 hour. For all
reactions, kinins were measured by enzyme-linked immunosor-
bent assay (ELISA; Enzo Life Sciences, Inc.). For any experiment
involving BK release, the term vehicle refers to 20 mM of tris(hy-
droxymethyl)aminomethane (Tris)-HCl and 136 mM of NaCl
(pH, 7.4).

Mass spectroscopy
Purified kininogen samples were prepared in the same manner
as for the kinin ELISA. For all analytes, ionization was achieved
using matrix-assisted laser desorption ionization (MALDI). Ana-
lytes were deposited with matrix on MALDI targets. Matrix 2,5-
dihydroxybenzoic acid (Sigma) was purified by recrystallization
from hot water. Matrix solution was prepared with recrystallized
2,5-dihydroxybenzoic acid (15 mg/dL) in a water/acetonitrile/
formic acid ratio of 1:1:0.1. Matrix solution (1 mL) was spotted
onto the MALDI target with 1 mL of analyte sample and
allowed to dry at room temperature. Samples were analyzed
in a Bruker AutoFlex (Billerica, MA) mass spectrometer. Mass
spectrometry data were collected in positive ion reflectron
mode with a mass/charge (m/z) range from 600 to 6000. Spec-
tra are from an average of at least 100 laser shots per sample
spot. Mass spectra were analyzed with Compass 1.4 Flex
Series software (Bruker Daltonics).

Western blots
Plasma HK (200 nM) with PKa (2 nM), or plasma HK (800 nM)
with Plm-Lys311 or Plm-Glu311(250 nM) was incubated in reaction
buffer at 37�C. At various times, aliquots were removed into
nonreducing sodium dodecyl sulfate (SDS) sample buffer and
size fractionated on 10% polyacrylamide gels. Gels were either
stained with GelCode Blue or transferred to nitrocellulose and
probed with an anti-human BK antibody. Detection was by
chemiluminescence.
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Coprecipitation
Two micrograms of Plg or Plm (active site inhibited with FPR-
chloromethylketone) was incubated with recombinant human
HK or LK (2 mg) for 30 minutes in 500 mL of Tris-buffered saline
(20 mM of Tris-HCl [pH, 7.4] and 100 mM of NaCl). Kininogens
were precipitated with anti-HA magnetic beads (Pierce) and
washed 3 times with Tris-buffered saline/0.05% Tween-20.

Proteins were eluted with SDS nonreducing sample buffer and
size fractionated on 10% polyacrylamide gels. Gels were stained
with GelCode Blue (Pierce).

Surface plasmon resonance
HK was immobilized on a CM5 sensor chip using amine cou-
pling. Binding of Plg or Plm (25-400 nM) to HK was assessed by
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Figure 1. Recombinant Plg activation and effects on BK generation in normal plasma. (A) Coomassie Blue stained SDS–polyacrylamide gels of plasma-derived Plgs
(left), recombinant Plgs (center), and recombinant Plms (right). Shown in the center and right panels are 2-mg samples of plasma-derived Glu-Plg/Plm (P), Plg/Plm-Lys311

(Lys), and Plg/Plm-Glu311. Positions of molecular mass standards (kDa) are shown at the left of each figure, and positions of standards for zymogen Plg (Z) and the heavy
(HC) and light chains (LC) of Plm are shown on the right. (B) Activation of 200 nM of plasma-derived Glu-Plg (green), Lys-Plg (orange), or vehicle (no Plg; purple) by 20 nM
of tPA in reaction buffer. (C) Plg-Lys311 (blue), Plg-Glu311 (red), Plg-Ala311 (green), or vehicle (purple), 200 nM each, were incubated in reaction buffer with 20 nM of tPA. In
panels B and C, at indicated times, samples were removed for measurement of Plm by chromogenic assay. (D) BK generation in normal plasma supplemented with 600 nM
of Plg-Lys311 (blue), Plg-Ala311 (green), Plg-Glu311 (red), or vehicle (purple) after addition of tPA (final, 125 nM). (E) Controls for reactions in panel D. BK generation in normal
plasma supplemented with Plg-Glu311 and tPA (light green), Plg-Glu311 alone (blue), tPA alone (red), or vehicle (purple). (F) BK generation in normal plasma supplemented
with Plg-Glu311 (600 nM) after adding tPA to 250 (lavender), 125 (steel blue), 62.5 (blue) or 50 nM (magenta). (G) BK generation in normal plasma supplemented with 600
nM of Plg-Lys311 (blue) or Plg-Glu311 (red) after addition of tPA (various concentrations) and thrombin (50 nM; to generate fibrin). In panels B to D, error bars indicate
standard errors of the mean for duplicate experiments, each with 2 separate measurements. In panels F and G, results are for single representative experiments.
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a single-cycle assay at 25�C on a Biacore T200 device (Cytiva) in
running buffer (10 mM of N-2-hydroxyethylpiperazine-N9-2-etha-
nesulfonic acid [pH, 7.4], 150 mM of NaCl, 50 mM of EDTA, and
0.05% Tween 20). The data were fitted with a 1:1 Langmuir bind-
ing model using Biacore T200 evaluation software (Biacore AB),
which was also used to calculate kinetic and affinity constants.

Results
Recombinant Plg
Full-length Glu-Plg is converted to Lys-Plg by removal of the
N-terminal PAN domain (Figure 1A, left). Glu- and Lys-Plg are
converted to Plm by cleavage of the Arg561-Val562 peptide
bond. Because Lys-Plg is in an open conformation with a more
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Figure 2. Recombinant Plg and the KKS. (A-B) Activation of FXII (A) or PK (B), 200 nM each, by 200 nM of Plm-Lys311 (blue), Plm-Glu311 (red), or vehicle (purple).
Reactions without FXII or PK for Plg-Lys311 and Plg-Glu311 are indicated in green and gray, respectively. (C-E) BK generation in normal plasma (C), PK-deficient plasma
(D), or FXII-deficient plasma (E) supplemented with 600 nM (final concentration) of Plg-Lys311 (blue) or Plg-Glu311 (red) after addition of tPA (125 nM final concentration).
(F) BK generation in normal plasma after addition of DFXII (160 nM; lavender), DFXII and KV999272 (10 mM; steel blue), or vehicle (light blue). (G) BK generation in
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of the mean for duplicate experiments, each with 2 separate measurements. In panel I, error bars indicate standard errors for 2 experiments.
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accessible activation cleavage site, it is activated by tPA �10-
fold faster than Glu-Plg in the absence of fibrin (Figure 1B).
Recombinant Plg-Lys311, Plg-Glu311, and their Plm forms were
compared with plasma Glu-Plg and Glu-Plm, as shown in Figure
1A (center and right). Plg-Ala311 (supplemental Figure 5) was
prepared as a control. Although the recombinant Plgs are Glu-
Plgs,25,26 they are activated similarly to Lys-Plg (Figure 1C). This
is due to glycosylation differences near the activation site in Glu-
Plg expressed in HEK293 cells (isoform 1) and plasma-derived
Glu-Plg (mostly isoform 2).25,26 To account for this, Plg-Glu311

and Plg-Ala311 were compared with wild-type Plg-Lys311, rather
than plasma-derived Glu-Plg, in activity assays. Plg bound to
fibrin adopts an open conformation that accelerates activation
by tPA (supplemental Figure 6A). Plg-Lys311 and Plg-Glu311 are
activated comparably to plasma-derived Glu-Plg in the presence
of fibrin (supplemental Figure 6B).

Plg activation and BK generation in
normal plasma
When tPA was added to normal plasma supplemented with
recombinant Plg, BK generation was substantially greater with
Plg-Glu311 than with Plg-Lys311 or Plg-Ala311 (Figure 1D-E). There
was a threshold for inducing measurable BK in this system that
required relatively high tPA concentrations (Figure 1F), likely
reflecting slow tPA-catalyzed Plg activation in the absence of
fibrin and the short plasma half-life of tPA. Adding thrombin to
plasma to convert fibrinogen to fibrin led to measurable BK pro-
duction at a 10-fold lower tPA concentration (Figure 1G), again
with more BK generated with Plg-Glu311. The enhanced activity
associated with the Glu311 substitution cannot be attributed spe-
cifically to loss of Lys311, because Plg-Ala311 did not create the
gain-of-function phenotype noted with Plg-Glu311 (Figure 1D).

Plg-Glu311 enhances BK generation independently
of PKa and FXIIa
Plm activates FXII.27-30 Increased BK generation in plasma con-
taining Plg-Glu311 may, therefore, reflect enhanced FXII activa-
tion by Plm-Glu311.27-30 However, Plm-Glu311 and Plm-Lys311

were comparable, relatively weak, activators of FXII (Figure 2A)
and PK (Figure 2B). Furthermore, Plg-Glu311 enhanced BK gen-
eration comparably in normal (Figure 2C), PK-deficient (Figure
2D), and FXII-deficient (Figure 2E) plasmas. Rapid HK cleavage
may be induced in normal plasma by adding DFXII, identified in
patients with HAE with FXII-Lys/Arg309 substitutions.10 DFXII is
activated by PKa �40 times faster than FXII, accelerating recip-
rocal activation of PK.10 Accordingly, DFXII-induced BK genera-
tion was blocked by the PKa inhibitor KV999272 (Figure 2F).24 In
contrast, BK generation induced by adding tPA to plasma con-
taining Plg-Glu311 was unaffected by KV999272 (Figure 2G),
consistent with Plm-Glu311 driving BK generation independently
of PKa.

BK generation after KKS activation
PKa can activate Plg by a fibrin-independent mechanism,31,32

suggesting KKS activation could generate Plm that may contrib-
ute to BK formation. However, we found that PKa and FXIIa
were weak activators of Plg-Lys311 and Plg-Glu311 when com-
pared with tPA (Figure 2H). As shown in Figure 2I, DFXII was
added to plasma to activate the KKS. Adding Plg-Lys311 or Plg-
Glu311 to this system modestly increased BK production that
may be slightly greater with Plg-Glu311 than Plg-Lys311. How-
ever, this would not account for the difference in magnitude of
the effects of Plg-Lys311 or Plg-Glu311 in plasma treated with tPA
(Figure 2C-E).

Plm cleaves kininogens
Human plasma contains 2 kininogens, HK and LK, which are
encoded by alternatively spliced messenger RNAs from the
Kng1 gene.33,34 Sequential cleavage of HK by PKa after Arg371

and Lys362 releases BK (Arg363-Pro-Pro-Gly-Phe-Ser-Pro-Phe-
Arg371), whereas LK cleavage by tissue kallikreins after Arg371

and Met361 releases the decapeptide kallidin (Lys-BK, Lys362-
Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg371).35,36 HK and LK each
contain a disulfide bond (Cys10-Cys596 and Cys10-Cys389,
respectively) that connects the N and C termini of the protein
(Figure 3A; supplemental Figure 1).36,37 PKa cleavage of the
Arg371-Ser372 peptide bond produced a pronounced downward
shift in HK migration on nonreducing SDS–polyacrylamide gel
electrophoresis corresponding to conversion of HK to a linear
form (Figure 3B; supplemental Figure 4). Cleavage of the Lys362-
Arg363 bond then released BK, causing an additional subtler
downward shift. A western blot using an anti-BK IgG was consis-
tent with the BK sequence remaining associated with HK after 1
cleavage and then being released by the second cleavage (Fig-
ure 3B, right). LK cleavage by PKa caused a slight upward shift
in migration. A higher PKa concentration was required to
observe LK cleavage than that required with HK (Figure 3C).

HK cleavage patterns produced by incubation with Plm-Lys311

or Plm-Glu311 are shown in Figure 3D-E, respectively. Corre-
sponding western blots (Figure 3D-E, lower) indicate BK is
released by Plm-Glu311 more rapidly than by Plm-Lys311. Per-
haps Plm-Glu311 makes the second cleavage after Lys362 that
releases BK more efficiently than Plm-Lys311. Alternatively, Plm-
Lys311 and Plm-Glu311 may cleave HK at different sites. A similar
shift to that observed with PKa occurred when LK was incubated
with Plm-Lys311 (Figure 3F) or Plm-Glu311 (Figure 3G). For HK
and LK, additional cleavage occurred over time with Plms that
were not observed with PKa, indicating PKa and Plm cleave the
kininogens differently.

BK generation
PKa released BK from HK at a rate 50- to 100-fold higher than
from LK (Figure 4A). BK release from HK catalyzed by Plm-Lys311

was at least 50-fold slower than in reactions with PKa
(Figure 4B). Interestingly, PKa and Plm-Lys311 released BK from

Figure 3 (continued) Blue. (B) Time course of HK cleavage by PKa. Human plasma–derived HK (200 nM) was incubated with PKa (2 nM) in reaction buffer at 37�C. The
right panel is a western blot of samples from a reaction similar to that in panel D using an antibody to BK. (C) Time course of LK cleavage by PKa. Human
plasma–derived LK (200 nM) was incubated with 2 (left) or 50 nM (right) of PKa in reaction buffer at 37�C. (D-E) Human plasma–derived HK (800 nM) incubated with 160
nM of Plm-Lys311 (D) or Plm-Glu311 (E). Bottom shows western blots for samples from reactions in the top using an antibody to BK. (F-G) Human plasma–derived LK (200
nM) incubated with 50 nM of Plm-Lys311 (D) or Plm-Glu311 (E). For all panels, positions of molecular mass standards (kDa) are indicated on the left. Positions of standards
for uncleaved HK or LK, cleaved forms of HK (Cl HK) or (Cl LK), and PKa or Plm are indicated on the right. Numbers at the tops of gels represent incubation times in
minutes.
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LK at similar rates (Figure 4C). Furthermore, Plm-Lys311 released
BK at a rate approximately three- to fourfold higher from LK
than from HK (Figure 4D). Plm-Glu311 liberated BK at an initial
rate at least 10-fold faster from HK (Figure 4B) and two- to

threefold faster from LK (Figure 4C) than from Plm-Lys311.
Indeed, BK release catalyzed by Plm-Glu311 was comparable
for HK and LK (Figure 4E). In experiments with HK, peak BK
generation roughly correlated with Plm-Glu311 concentration
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Figure 4. BK generation from HK and LK. For all reactions, samples were collected at the indicated time points, and BK concentration was determined by ELISA. (A)
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Figure 6. Binding of Plg and Plm to HK. (A) Surface plasmon resonance. Human HK was immobilized on CM5 sensor chips, and binding affinities for Plgs or Plms (25-400
nM) were measured by a single-cycle assay at 25�C. Binding curves for Plg-Glu311 and Plm-Glu311 are shown in red and for Plg-Lys311 and Plm-Lys311 in blue. Data were fitted
with a 1:1 Langmuir binding model (dashed line). Association rate constants (ka), dissociation rate constants (kd), and equilibrium dissociation constants (KD) are as listed in
the table. (B) Coprecipitation. Human recombinant HK (2 mg) was incubated for 30 minutes in 500 mL of buffer with or without 2 mg of active site–inhibited Plm-Lys311 or
Plm-Glu311. HK was precipitated with anti-HA IgG bound to magnetic beads. Proteins were eluted with SDS nonreducing sample buffer and size fractionated on a 10%
polyacrylamide gel, followed by staining with Coomassie Blue (left). Similar to the left panel, except controls with Plm-Lys311 or Plm-Glu311 but no HK were included (center).
Similar to the left panel, except human HK was replaced with mouse HK (right). For all panels, positions of molecular mass standards (kDa) are shown to the left of each
image, and positions of controls for HK and Plms are shown to the right of each image. Human and mouse HK normally contain 2 bands. The 2 arrows for the Plm controls
are needed because human and mouse Plms migrate slightly differently. (C) Coprecipitation experiment for human recombinant LK run in an identical manner to the studies
for HK in panel B. Note that coprecipitated Plms migrate above LK, whereas they run lower than HK, on SDS–polyacrylamide gel electrophoresis.
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(Figure 4F), suggesting a stochiometric interaction rather than a
Michaelis-Menten–type process. When comparing these data
with results shown in Figure 3, it is again apparent that kinino-
gen cleavage on SDS polyacylamide gels does not necessarily
reflect BK release, probably because Plms are cleaving kinino-
gens at locations other than those required to release BK.

Plasma from a person with a congenital deficiency of HK and LK
(supplemental Figure 7)38 was supplemented with physiologic
concentrations of plasma-derived HK (640 nM), LK (2.3 mM), or
both. Plg-Lys311 or Plg-Glu311 was added, followed by tPA to
activate Plg. For Plg-Lys311 and Plg-Glu311, BK generation was
greater in plasma containing LK than in plasma containing HK
(Figure 4G). As shown in Figure 1E, BK generation was greater
with Plg-Glu311 (Figure 4G, left) than with Plg-Lys311 (Figure 4G,
right). As in Figure 2G, adding KV999272 to block PKa activity
did not affect results (supplemental Figure 8).

Mass spectroscopy
The ELISA used in this study does not distinguish between BK
and kallidin (Lys-BK) and may detect other novel peptides con-
taining BK sequence. We addressed this issue with mass spec-
troscopy. Mass spectra for BK and kallidin standards are shown
in Figure 5A. Although incubating HK without a protease did
not result in detectable cleavage on SDS–polyacrylamide gel
electrophoresis, a mass peak at m/z 5 1200 was observed in
the MALDI analysis that did not correspond to BK or kallidin.
This may reflect contamination of the HK preparation with an
unknown protease. Incubating HK with PKa or Plm-Glu311 gener-
ated a peak (m/z 5 1060) corresponding to BK (Figure 5A).
Plm-Lys311 did not produce a detectable BK peak in these
experiments. Time courses of BK formation during HK incuba-
tion with PKa or Plm-Glu311 are shown in Figure 5B. The
proteases generated similar patterns over time, indicating Plm-
Glu311 does not form BK from an intermediate such as kallidin.
Similarly, peaks representing BK were detected during LK cleav-
age by PKa or Plm-Glu311, with no evidence of kallidin genera-
tion (supplemental Figure 9). These data show that Plm-Glu311,
like PKa, cleaves HK and LK after Arg371 and Lys362 to form BK.

Plg binding to kininogens
We examined Plg/Plm binding to HK by surface plasmon reso-
nance. The amounts of Plg-Glu311 and Plm-Glu311 bound to HK
were greater than the amounts of Plg-Lys311 and Plm-Lys311 (Fig-
ure 6A). Plm-Glu311 also gave a stronger signal than Plm-Lys311 in
coprecipitation experiments with HK (Figure 6B) and LK (Figure
6C). However, Kds for binding of Plgs and Plms containing Lys311

and Glu311 to HK determined by surface plasmon resonance
were comparable (Figure 6A), indicating different affinities do not
explain the enhanced BK generation associated with Plg-Glu311.

Glu311 restores a consensus binding site for basic
amino acids
Plg and Plm bind lysine and arginine residues on fibrin through
Asp-X-Asp/Glu motifs on their kringle domains.37,39 Plg has 5
kringle domains.25,26 In human Plg, an Asp-X-Asp/Glu motif is
present on kringles 1, 2, 4, and 5, but Lys311 disrupts the motif
(Asp-X-Lys) in kringle 3. Interestingly, Plg-Glu311, which creates
an Asp-X-Asp/Glu motif in kringle 3, is the standard in mammals
(supplemental Figure 10). The Glu311 substitution in patients
with HAE, therefore, restores the ancestral pattern. This raises

the possibility that an interaction between Plg/Plm-Glu311 kringle
3 and basic amino acids on HK contributes to BK release.
«-ACA, a lysine analog used therapeutically to reduce fibrinolysis
by inhibiting Plg binding to fibrin, inhibits BK release from HK
by Plm-Lys311 and Plm-Glu311 (Figure 7A).40 Both Plms, there-
fore, appear to bind basic residues on HK . The additional bind-
ing site on kringle 3 provided by Glu311 may alter binding
orientation to facilitate cleavage of the kininogen Arg371-Ser372

and Lys362-Arg363 bonds.

Murine HK
The observation that Plg residue 311 is glutamic acid in most
mammals, but is associated with HAE only in humans, is intrigu-
ing. Interestingly, little BK was released from full-length mHK1
(supplemental Figure 3) by either Plm-Lys311 or Plm-Glu311 (Fig-
ure 7B). Furthermore, BK release from human HK and mouse
HK was similar when plasma-derived human Plm (Lys311) or
mouse Plm (Glu311) was used to catalyze reactions (Figure 7C).
These data suggest HAE requires Glu311 in the context of
human Plm, in combination with features specific to human kini-
nogens. Mice have, in addition to mHK1, an HK form (mHK3)
lacking the D5 domain and part of the D6 domain found in
mHK1, as a result of alternative messenger RNA splicing
(supplemental Figures 3 and 4A).41 Incubating mHK3 with
human or mouse Plm produced similar results to those for
mHK1 (Figure 7C-D).

Discussion
The most common cause of HAE is reduced plasma C1-INH
activity.1-4,15-19 As the main regulator of PKa and FXIIa, C1-INH
maintains BK generation within an appropriate range. Angio-
edema associated with low C1-INH is highly responsive to PKa
inhibitors,42-44 reduction of plasma PK,45 or a FXIIa neutralizing
antibody,46 indicating dysregulated FXIIa-mediated generation
of PKa is causative. Given this, the source of BK during acute
episodes of angioedema in patients with low C1-INH is almost
certainly HK, because LK is a poor PKa substrate. Patients with
signs and symptoms of HAE, but with normal C1-INH levels,
were first reported in 2000.47,48 It is estimated that this condi-
tion, called HAE with normal C1-INH, accounts for .10% of
patients with HAE and perhaps substantially more.16-19 Muta-
tions in genes for FXII,10,20,49 Plg,22,23,50,51 angiopoietin-1,52 and
kininogen53 were identified in large families and are presumed
causative. Suspect mutations in genes for myoferlin54 and hep-
aran sulfate 3-O-sulfotransferase 655 have also been reported.
The manifestations of HAE, therefore, may be caused by a vari-
ety of defects affecting kinin production or vascular sensitivity to
kinins.

Plg-Glu311 was reported in 2018 in patients in Germany by Bork
et al22 and by Dewald.23 The prevalence of the mutation is not
known, but Plg-Glu311 patients have been identified in several
European countries, Japan, and the United States, suggesting
wide distribution.51 A relationship between fibrinolysis and kinin
generation was described by Kaplan and Austen28 in 1971.
Oral-lingual edema after thrombolytic therapy is a well-
recognized clinical example of this association.56,57 Plm activates
FXII,29,30 while PKa activates Plg and the Plg activator prouroki-
nase.31,32,57-59 It has been proposed that Plg-Glu311 may have
an enhanced capacity to activate the KKS.16 Hypothetically, if
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Plm-Glu311 activates FXII faster than Plm-Lys311, or if PKa acti-
vates Plg-Glu311 more rapidly than Plg-Lys311, a positive feed-
back cycle that amplifies PK activation could result, leading to
excessive kinin production.

Our data suggest an alternative scenario in which Plg-Glu311

contributes to angioedema by directly catalyzing kinin release
from HK and LK. HK is a component of the KKS, serving as a
substrate for PKa and a cofactor for PK and FXI binding to
surfaces during contact activation. LK lacks the elements for sur-
face, PK, and FXI binding found on the HK D5 and D6 domains
and is thought to function primarily as a substrate for tissue kal-
likreins.60,61 Previously, several groups reported HK cleavage by
Plm, although it is not clear that BK was a major product of the
reaction.31-33,62 In our analysis, both wild-type Plm-Lys311 and
mutant Plm-Glu311 readily cleaved human HK and LK, but BK
release was substantially greater with Plm-Glu311. Interestingly,
Plm-Glu311 catalyzed BK release from HK and LK at comparable
rates. Furthermore, Plm-Lys311 released BK from LK 3 to 4 times
faster than from HK. Because the plasma concentration of LK is
two- to fourfold greater than HK, most BK generated by either
Plg-Lys311 or Plg-Glu311 may come from LK, a premise sup-
ported by our studies with supplemented kininogen-deficient
plasmas.

Replacing Plg-Lys311 with glutamic acid creates a consensus bind-
ing site for lysine and arginine side chains in the kringle 3
domain, similar to those normally found on kringles 1, 2, 4, and
5.25,26 The ability of «-ACA to inhibit HK cleavage by Plm indi-
cates binding to basic amino acids is important for the Plm-HK
interaction, as shown previously by Kleniewski et al.63,64 Lysine
binding to kringle 3 may alter the orientation of kininogen-bound
Plm relative to the kininogen Arg371-Ser372 and Lys362-Arg363

cleavage sites. Curiously, residue 311 is normally glutamic acid in
mammalian Plgs. Lys311 is found only in humans and the closely
related chimpanzee and gorilla (supplemental Figure 10). How-
ever, Glu311 is linked to HAE only in humans. Our data support
the conclusion that it is the combination of Glu311 in human Plm
and human kininogen that is pathogenic. HK and LK share com-
mon D1, D2, D3, and D4 domains. There are differences in distri-
bution of basic amino acids in these domains between human
and mouse kininogens that may underlie the different susceptibil-
ities of the proteins for Plg-Glu311–catalyzed BK release (supple-
mental Figure 2).

There is a predilection for oral-lingual edema in Plg-Glu311 car-
riers.51 Tongue swelling occurs in 80% of symptomatic Plg-Glu311

patients and is often the only manifestation of HAE.16-19,22,51

Edema involving the extremities, gastrointestinal tract, and larynx
is less common, and the prodromal rash (erythema marginatum)
associated with HAE is rare in Plg-Glu311 patients. Observa-
tions of patients with bleeding tendencies indicate that the
oral cavity has relatively high intrinsic fibrinolytic activity.65

Therefore, the predilection for oral-lingual angioedema in
Plg-Glu311 patients may, at least in part, reflect normal robust
Plg activation in the mouth. Angiotensin-converting enzyme
inhibitors, which inhibit BK degradation, may also trigger oral-
lingual angioedema. A recent case report by Wang et al66

describes successful treatment of a patient with angiotensin-
converting enzyme inhibitor–induced angioedema with the
lysine analog tranexamic acid, raising the possibility that local
Plm-mediated production of BK contributes to the syndrome.

Our study raises the possibility that certain therapeutic
approaches commonly used to treat patients with HAE,
including C1-INH supplementation and PKa inhibition, may
be less effective in Plg-Glu311 patients. In a case series, Bork
et al51 reported a mean angioedema episode duration of 4.3
6 2.6 hours (201 episodes) in 13 patients with Plg-Glu311

treated with the B2 receptor antagonist icatibant, compared
with 44.7 6 28.6 hours (149 episodes) in the same patients in
the absence of treatment (88% reduction in episode dura-
tion). In 12 patients receiving C1-INH infusion (74 episodes),
treatment had a more modest effect (mean episode duration
decreased from 48.2 6 32.5 to 31.5 6 8.6 hours). These
results suggest icatibant is more effective than C1-INH in Plg-
Glu311–associated HAE and are consistent with a relatively
small contribution to angioedema from the KKS. However,
such a conclusion should be considered tentative. A majority
of Plg-Glu311 carriers receiving C1-INH in this study were con-
sidered to have had good responses,51 perhaps reflecting a
KKS contribution to the disease process. Alternatively,
C1-INH inhibits Plm and tPA,67,68 and this could be relevant
at doses used to treat angioedema. There are few data on
the efficacy of PKa inhibitors in Plg-Glu311 patients. Such
information will be important in determining the contributions
of different BK-generating pathways that may operate in
Plg-Glu311 patients. World Allergy Organization/European
Academy of Allergy and Clinical Immunology 2021 guidelines
calling for screening for known mutations in HAE patients
with normal C1-INH will also help in this regard.
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