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KEY PO INT S

� Donor-derived mLSTs
with native specificity
for leukemia-expressed
antigens can be
expanded ex vivo.

� Infusion of mLSTs after
hematopoietic stem cell
transplant is well
tolerated and may
contribute to
prevention of relapse.

Hematopoietic stem cell transplant (HSCT) is a curative option for patients with high-risk
acute lymphoblastic leukemia (ALL), but relapse remains a major cause of treatment failure.
To prevent disease relapse, we prepared and infused donor-derived multiple leukemia
antigen–specific T cells (mLSTs) targeting PRAME, WT1, and survivin, which are
leukemia-associated antigens frequently expressed in B- and T-ALL. Our goal was to
maximize the graft-versus-leukemia effect while minimizing the risk of graft-versus-host
disease (GVHD). We administered mLSTs (dose range, 0.5 3 107 to 2 3 107 cells per square
meter) to 11 patients with ALL (8 pediatric, 3 adult), and observed no dose-limiting toxicity,
acute GVHD or cytokine release syndrome. Six of 8 evaluable patients remained in
long-term complete remission (median: 46.5 months; range, 9-51). In these individuals we
detected an increased frequency of tumor-reactive T cells shortly after infusion, with
activity against both targeted and nontargeted, known tumor-associated antigens,
indicative of in vivo antigen spreading. By contrast, this in vivo amplification was absent in

the 2 patients who experienced relapse. In summary, infusion of donor-derived mLSTs after allogeneic HSCT is feasible
and safe and may contribute to disease control, as evidenced by in vivo tumor-directed T-cell expansion. Thus, this
approach represents a promising strategy for preventing relapse in patients with ALL.

Introduction
Patients with acute lymphoblastic leukemia (ALL) who relapse
after allogeneic hematopoietic stem cell transplant (HSCT) have
a dismal prognosis, with few effective therapeutic options.1-3

Donor lymphocyte infusions (DLIs) may promote a graft-versus-
leukemia (GVL) effect, but any potential benefit must be
weighed against the risk of graft-versus-host disease (GVHD)
caused by the alloreactive cells present in the infused prod-
uct.4,5 If DLIs are to be used as an adjuvant that prevents rather
than treats post-HSCT relapse, there is an urgent need to
enhance their safety by minimizing alloreactive T cells and ampli-
fying the tumor-specific T-cell content, thereby augmenting ben-
eficial GVL activity.

To achieve this goal, we developed an ex vivo strategy to selec-
tively enrich for donor-derived tumor-reactive populations. To
maximize the therapeutic potential, we expanded T cells with
reactivity for a cohort of leukemia-specific antigens that are fre-
quently expressed in ALL - WT1, PRAME, and survivin.6-11 We
reasoned that these multiple leukemia antigen–specific T cells

(mLSTs) could be safely administered to all patients with high-
risk B- or T-cell ALL after allogeneic HSCT, to prevent relapse.
We now detail the outcomes of patients with B-ALL, T-ALL, or
mixed phenotype acute leukemia (MPAL), who received mLSTs
as an adjuvant treatment after HSCT.

Methods
Clinical study
The protocol was approved by the Baylor College of Medicine
institutional review board; written informed consent was
obtained from all participants or parents in accordance with
institutional guidelines and the Declaration of Helsinki. Allo-
HSCT recipients with B- or T-cell ALL or MPAL were eligible.
Detailed inclusion and exclusion criteria are outlined in the pro-
tocol (registered at www.clinicaltrails.gov as #NCT02475707;
supplemental Methods, avaible on the Blood Web site). Once
enrolled, patients with engrafted transplants, at least 30 days
past HSCT, received a single infusion of mLSTs at 1 of 3 dose
levels (DLs; DL1, 0.5 3 107 cells per square meter; DL2, 1 3 107

per square meter; or DL3, 2 3 107 per square meter) and had
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the option to receive up to 6 additional infusions if they remained
in complete remission (CR). None of the patients received lym-
phodepleting chemotherapy before the mLSTs.

Generation of mLSTs
mLSTs were generated as previously described.12 In brief,
monocyte-derived dendritic cells were loaded with overlapping
peptide libraries (pepmixes) spanning survivin, WT1, and PRAME
and cocultured with donor peripheral blood mononuclear cells
in T-cell medium supplemented with interleukin-7 (IL7), -12, -15,
and -6. From day 10 and weekly thereafter, responder T cells
were restimulated with pepmix-pulsed dendritic cells in the pres-
ence of IL15 or -2 until a sufficient number was achieved for
patient infusion.

mLST characterization and immune monitoring
Details are found in supplemental Methods. In brief, mLSTs
were phenotypically and functionally characterized using inter-
feron g (IFNg) enzyme-linked immunospot (ELIspot), flow cytom-
etry, and 51chromium-release assays.

Statistical analysis
Descriptive statistics were calculated, and clinical and correlative
characteristics were summarized as the mean, standard devia-
tion, standard error of the mean (SEM), median, and range.
Dose escalation was guided by the modified continual reassess-
ment method, as detailed in the “Study Design” of the clinical
protocol in the supplemental Methods. Dose-limiting toxicity
was defined as grade 3 or 4 GVHD or National Cancer Institute
Common Toxicity Criteria grade 3, 4, or 5 toxicity that was infu-
sion related and occurred within 4 weeks of infusion of mLSTs.
The data cutoff date for analysis was 1 September 2021.

Results and discussion
Fifteen patients were enrolled in the study, and we successfully
generated donor-derived mLSTs for each of these patients.
Eleven patients (3 adults and 8 children) with B-ALL (n 5 9),
T-ALL (n 5 1), or MPAL (n 5 1) who were recipients of
matched-sibling (n 5 9), matched-family (n 5 1), or haplo
(n 5 1) transplants, were infused with mLSTs (dose range,
0.5 3 107 to 2 3 107cells per square meter) at a median of 107
days after transplant (range, 48-167). The timing of the infusion
was driven by mLST availability or the clinical status of the
patient (eg, resolution of GVHD). Clinical characteristics and
outcomes are detailed in Table 1. Four patients were not
infused (supplemental Figure 1).

The 15 mLST lines generated for clinical use were composed of
CD31 T cells (mean 6 SEM: 95.1% 6 1.9%), with a mixture of
CD41 (22.8% 6 6.3%) and CD81 (52.5% 6 5.3%) cells, which
expressed central (CD45RO1/CD62L1; 13.5% 6 2.8%) and
effector memory markers (CD45RO1/CD62L2; 56.4% 6 3.8%)
(Figure 1A). mLST lines recognized the targeted antigens PRAME
(range, 0-1554; mean 6 SEM: 243 6 103 spot-forming cells
(SFCs)/2 3 105), WT1 (range, 0-2088; 227 6 134 SFCs/2 3 105),
and survivin (0-394; 57 6 31 SFCs/2 3 105) as judged by IFNg

ELIspot assays (Figure 1B). No alloreactivity was observed; none
of the lines reacted against nonmalignant patient-derived cells
(3.6% 6 0.8% specific lysis; effector/target ratio, 20:1), a product
release criterion (Figure 1C).

Ten patients received a single infusion of mLSTs (treating physi-
cians or families opted not to administer additional infusions),
whereas 1 patient (who developed mixed chimerism) received a
total of 4 infusions to prevent overt relapse. All infusions were
safe and well tolerated. No patient developed acute post-mLST
GVHD. A single patient, with a history of acute GVHD early after
transplant that had resolved with therapy before mLSTs, devel-
oped moderate chronic GVHD 5 months after infusion. There
were no instances of cytokine release syndrome, neurotoxicity,
or grade $3 adverse events that were attributable to mLSTs.

Three of the 11 patients infused were not evaluable, as each
received .0.5 mg/kg prednisone or equivalent within 4 weeks
of infusion (supplemental Table 1). Two received stress doses of
hydrocortisone for the treatment of septic shock, and 1 received
prednisone for elevated liver transaminases attributable to acet-
aminophen overdose (.4 g/d). Liver enzymes normalized once
acetaminophen was discontinued.

The remaining 8 infused patients who received mLSTs as adju-
vant treatment while in CR after HSCT were evaluable for long-
term safety and efficacy. Six remained in minimal residual
disease–negative CR at a median of 46.5 months after infusion
(range, 9.5-51 months). Two patients relapsed; 1 of those
(patient 3) received a reduced-intensity conditioning regimen
due to underlying comorbidities before transplant and was
infused with mLSTs 3 months after HSCT. She developed mixed
chimerism 6 weeks later, subsequently received 3 additional
infusions at monthly intervals, and remained in CR for 6 months
from the initial mLST infusion date but ultimately relapsed and
died. The second patient (patient 12) underwent a reduced-
intensity conditioning haploidentical HSCT and received mLSTs
4 months after HSCT but relapsed 10 months later. Subsequent
treatment with tisagenlecleucel was unsuccessful but with sal-
vage chemotherapy followed by a second allogeneic HSCT, she
again achieved CR.

To investigate the contribution of the infused mLSTs in sustain-
ing remission we evaluated the frequency of tumor-reactive T
cells in peripheral blood before and after infusion. We analyzed
both T-cell responses to the antigens targeted by the infused
mLSTs (WT1, survivin, PRAME), as well as against a range of
other nontargeted tumor-associated antigens (TAAs) including
SSX2; MAGE-A4 -A1, -A2B, and -C1; MART1; AFP; and
NYESO1. We reasoned that detection of such cells could be
indicative of an active GVL effect mediated by mLSTs, produc-
ing in vivo TAA spreading, thereby enhancing the antitumor
benefits of our therapy. All patients, who achieved a long-term
CR, showed an expansion of tumor-specific cells (both infused
and endogenous), which peaked within 4 weeks of infusion (Fig-
ure 1D; supplemental Figure 2). By contrast, in the 2 patients
who relapsed, we saw no evidence of this immune signature
(Figure 1E). Supplemental Figure 3 details the results of the non-
evaluable patients.

In summary, the preparation and infusion of donor-derived
mLSTs in patients with ALL after allogeneic HSCT is feasible and
safe, and, as evidenced by in vivo tumor-directed T-cell expan-
sion and antigen spreading in patients, may contribute to dis-
ease control. Early relapses after HSCT are associated with poor
outcome, and their prevention may improve survival after trans-
plant.13,14 This strategy represents a promising addition to
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Figure 1. Characterization and in vivo fate of donor-derived mLSTs. (A-C) Characterization of donor-derived mLSTs. (A) Phenotype and memory/activation profile.
(B) Specificity of mLSTs as measured by IFNg ELIspot for 15 products generated using all 3 antigens as a stimulus. Data are shown as mean SFCs 6 SEM/2 3 105 and
each color represents an individual antigenic specificity. (C) Lack of in vitro mLST cytolytic activity against normal recipient cells at effector/target ratios from 40:1 to 5:1.
(D) In vivo behavior of mLSTs in patients who remain in remission (n 5 6). Expansion of T cells specific for targeted TAAs (left) and other nontargeted TAAs (right) in
patients who responded to therapy. Results are reported as mean SFCs 6 SEM/2 3 105 at each specified time point. (E) In vivo behavior of mLSTs in patients who
relapsed. Lack of T-cell expansion against either targeted (left) or nontargeted TAAs (right) immediately after infusion in patients 3 and 12 who eventually relapsed.
Results are reported as SFC/2 3 105 at each specified time point. Arrows indicate the time of relapse.
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approaches for prophylaxis for relapse after HSCT and warrants
larger, controlled studies.
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