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KEY PO INTS

� Pretransplant
conditioning affects
innate (NK and ILCs)
and adaptive (T helper
2 and type 2 cytotoxic
T cells) reconstitution.

� GC/JAK3-deficient
SCID receiving
nonconditioned HSC
grafts fail to develop
type 2 responses and
have mucosal IgA
deficiency with
dysbiosis.

Both innate and adaptive lymphocytes have critical roles in mucosal defense that contain
commensal microbial communities and protect against pathogen invasion. Here we
characterize mucosal immunity in patients with severe combined immunodeficiency (SCID)
receiving hematopoietic stem cell transplantation (HSCT) with or without myeloablation.
We confirmed that pretransplant conditioning had an impact on innate (natural killer and
innate lymphoid cells) and adaptive (B and T cells) lymphocyte reconstitution in these
patients with SCID and now show that this further extends to generation of T helper 2
and type 2 cytotoxic T cells. Using an integrated approach to assess nasopharyngeal
immunity, we identified a local mucosal defect in type 2 cytokines, mucus production, and
a selective local immunoglobulin A (IgA) deficiency in HSCT-treated SCID patients with
genetic defects in IL2RG/GC or JAK3. These patients have a reduction in IgA-coated
nasopharyngeal bacteria and exhibit microbial dysbiosis with increased pathobiont
carriage. Interestingly, intravenous immunoglobulin replacement therapy can partially
normalize nasopharyngeal immunoglobulin profiles and restore microbial communities in
GC/JAK3 patients. Together, our results suggest a potential nonredundant role for type

2 immunity and/or of local IgA antibody production in the maintenance of nasopharyngeal microbial homeostasis and
mucosal barrier function.

Introduction
Hematopoietic stem cell transplantation (HSCT) for severe com-
bined immunodeficiency (SCID) represents a life-saving therapy
for this heterogeneous group of hematopoietic disorders.1,2

HSCT generates a variable degree of hematolymphoid reconsti-
tution that depends on the pretransplant conditioning regimen
(eg, myeloablation) as well as the genetic defect being
treated.2,3 For example, T–B– natural killer cell (NK)1 SCID
resulting from defects in the antigen receptor recombination
pathway harbor immature lymphoid precursors in the thymus
and bone marrow. These patients may receive either myeloabla-
tion that can enhance myeloid and lymphoid reconstitution after
HSCT or reduced-intensity conditioning that may eliminate com-
petitive but abnormal thymocyte precursor cells or NK cells. In
contrast, patients with T–B1NK– SCID (caused by mutations in
the common g chain [gc] gene IL2RG or the Janus kinase JAK3)
lack lymphoid precursors and are generally not cytoreduced

before HSCT.3 As a result, lymphoid lineages engraft rapidly,
but myeloid reconstitution is less robust.

Innate lymphoid cells (ILCs) are tissue-resident lymphocytes,
enriched at mucosal barriers with roles in immune defense and
tissue remodeling.4,5 Diverse ILC subsets (ILC1/2/3) produce a
restricted range of cytokines that target hematopoietic as well
as non-hematopoietic (eg, stromal, epithelial, and endothelial)
cells.6 Previous studies have documented the developmental
and functional parallels between ILCs and T helper cells.7 This
homology suggests a potential functional redundancy during
immune responses but may also provide a means to synergisti-
cally promote immune defense.

Recently, it was shown that pretransplant conditioning allows
for better post-HSCT immune reconstitution with higher
frequencies of donor NK and ILC subsets in myeloablated
T–B–NK1 SCID and cancer patients compared with
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nonconditioned T–B1NK– SCID recipients.3 The differential
ILC engraftment in these patients results from a combination
of both absence of conditioning and inherent genetic
defects, providing a unique setting (ILC/NK1 vs ILC/NK–
phenotypes) to assess biological roles for ILC/NK cells in
human immunity. Interestingly, both HSCT groups showed
robust donor T-cell engraftment with restoration of cellular
immunity and recovery of immune competence. In a long-
term follow-up of these 2 HSCT-treated patient groups, no
obvious differences in clinical course or disease susceptibility
were noted. Because both HSCT groups showed similar clini-
cal recoveries (“cure”), it was concluded that NK cells and
diverse ILC subsets may be redundant for most aspects of
normal human immunity3,8 that more recently have been
extended to development and function of lymphoid tissues.9

Diverse ILC subsets are enriched at mucosal surfaces and, in
conjunction with adaptive T- and B-cell responses, promote bar-
rier defense and tissue regeneration after infection and inflam-
mation and regulate microbial communities that have a
symbiotic relationship with the host.10,11 The reciprocal interac-
tions and coordinated regulation of ILCs vs T helper cells for
immune defense remains unclear. A better characterization of
mucosal immunity in ILC/NK1 vs ILC/NK– HSCT patients may
shed light on the specific and/or redundant roles of innate lym-
phocytes at barrier surfaces for protection from disease.

Here we further analyzed a large cohort of HSCT-treated
patients with SCID to assess impact of hematopoietic reconstitu-
tion on mucosal barrier function. We document a selective defi-
ciency in type 2 immunity, strong decreases in nasopharyngeal
immunoglobulin A (IgA), and nasal microbial dysbiosis in IL2RG/
JAK3-deficient patients receiving nonconditioned HSCT.

Methods
Patient and control cohorts
Healthy donors were recruited originally as part of the Milieu
Int�erieur cohort (https://www.milieuinterieur.fr/en/; supplemental
Materials and methods, available on the Blood Web site). HSCT-
treated SCID patients were followed up at Hôpital Necker-
Enfants Malades (French National Reference Center for Primary
Immunodeficiencies). Pathogenic mutations were identified in all
cases (supplemental Table 1). Written informed consent was
obtained from all patients and/or parents. Nasopharyngeal
swabs were obtained concurrently with blood samples during
routine visits (no evidence of ongoing infection, autoimmunity,
or allergy; no antibiotic use) and were processed as described
elsewhere.12,13

Cell isolation and fluorescence-activated cell
sorting analysis
Human peripheral blood mononuclear cells were isolated by
using density gradient centrifugation. For fluorescence-activated
cell sorting analysis, cells were first stained with Flexible Viability
Dye eFluor 506 (eBioscience) following by surface antibody
staining on ice. Fc receptors were blocked by using IgG from
human serum (MilliporeSigma). Samples were acquired with an
LSRFortessa (BD) and analyzed by using FlowJo version 10.7.1
(Tree Star). Bacterial species-specific antibody against microbiota
were assessed as described previously.14

Analysis of nasopharyngeal proteins
Total IgA, IgM, IgG1, IgG2, IgG3, and IgG4 were determined
by using the Bio-Plex Pro Human Isotyping Assay Panel (Bio-
Rad). Data were acquired on a Bio-Plex 200 System (Bio-Rad)
and analyzed with Bio-Plex Manager version 5 (Bio-Rad). IgA1
and IgA2 subclasses were measured by Simoa (Quanterix). Total
IgD were determined by using an enzyme-linked immunosor-
bent assay (ELISA) kit (MBS564048; MyBioSource). Total IgE was
determined by using an ELISA kit (88-50610; Invitrogen). Data
were collected with the Multiskan Spectrum (Thermo Fisher
Scientific).

Cytokines were quantified by Simoa Cytokine 3-Plex B, Discov-
ery, or Advantage Kits (Quanterix) except interferon-g and
interleukin-17F (IL-17F), which used Quanterix Homebrew
assays. Nasopharyngeal mucin levels were analyzed by using an
MUC5AC ELISA Kit (NBP2-76703; Novus Biologicals; diluted
1/50). Eosinophil cationic protein was determined for swabs
medium using an ELISA kit (MBS2602477; MyBioSource; diluted
1/2). Total protein content of the supernatants was calculated by
using the Bradford method.15

16S ribosomal RNA sequencing and analysis
16S ribosomal RNA (rRNA) sequencing and sequence process-
ing and statistical analysis have been described previously.12,13

A total of 2974329 reads (90131 reads on average per sample)
were obtained.

Bacterial quantification by quantitative reverse
transcription polymerase chain reaction assays
Bacterial quantitative polymerase chain reaction used universal
16S rRNA primers to measure total bacteria (16S_F: 59-ATTA-
CCGCGGCTGCTGG-39 and 16S and 16S_R: 59-ATTACC-
GCGGCTGCTGG-39) and Streptococcus pneumoniae (LytA
gene, F: 59- ACGCAATCTAGCAGATGAAGC-39 and R: 59-TGTT-
TGGTTGGTTATTCGTGC-39).

Statistical analysis
Statistics were performed by using GraphPad Prism (GraphPad
Software). P values were determined by a Kruskal-Wallis test, fol-
lowed by Dunn’s posttest for multiple group comparisons with
median reported. Correlations between the different assays
were calculated by using the Spearman test. Heatmaps were
generated with Qlucore OMICS Explorer version 3.5. Correlation
matrices were built using the Spearman correlation and com-
puted by using R version 4.0.3 (R Foundation for Statistical
Computing).

Results
This study analyzed a cohort of 21 patients with SCID who have
been successfully treated with HSCT at Necker Hospital since
1977. Patients with SCID and X-linked as well as autosomal etiol-
ogies were included; some patients required immunoglobulin
replacement therapy (IgRT) by subcutaneous injection of IgG for
specific clinical conditions (including recurrent respiratory tract
infections16-18) (supplemental Table 1). Several patients have
been previously reported.3,9 The group “GC/JAK3” were
T–B1NK– SCID (IL2RG and JAK3) patients who received non-
myeloablative HSCT, and the group “SCID-other” were
T–B–NK1 or T–B1NK1 SCID (RAG1/2, ARTEMIS, major
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Figure 1. Fluorescence-activated cell sorting analysis of peripheral blood mononuclear cells reveal a defect in differentiation of type 2 lymphocytes in
HSCT-treated GC/JAK3 patients. (A) Unsupervised Uniform Manifold Approximation and Projection (UMAP)27 of single live CD451Lin–CD3–CD4–CD71 cells was applied
for CD56, CD16, CD94, NKp46, CD94, CD127, CD161, CD25, CD117, and CRTH2 fluorescence parameters. (B) Supervised analysis of circulating ILCs including two CD561

subsets of NK cells and two CD1271 subsets denoted as ILC2 (CRTh21) and ILCP (ILC precursors, CRTh2–CD1171CD45RA1NKp44–) (manually gating strategy presented
in supplemental Figure 1A). (C) UMAP analysis on CD41 T cells, including CXCR3, CCR4, CRTH2, CCR6, CXCR5, CD25, CD127, and CD45RA fluorescence parameters
(supplemental Figure 2A). (D) Supervised analysis of circulating T-cell populations. The different subsets were identified as follow: naive (CD45RA1), Th1
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Figure 1 (continued) (Treg–CD45RA–CXCR5–CCR6–CXCR31CCR4–), Th17 (Treg–CD45RA–CXCR5–CCR61), Th2 (Treg–CD45RA–CXCR5–CCR6–CXCR3–CCR41CRTH21/2), and
Treg (CD127loCD251) (manually gating strategy is provided in supplemental Figure 1B). (E) UMAP analysis on CD81 type 2 cytotoxic T-cell (Tc2) subset
including CCR4 and CRTH2 fluorescence parameters (supplemental Figure 3). (F) Supervised analysis of circulating CD81 Tc2 subset defined as
CD45RA–CD25–CD94–CD56–CXCR5–CCR6–CXCR3–CCR41CRTH21/2. Panels B, D, and F: box plots with median 6 minimum to maximum. P values were determined with the
Kruskal-Wallis test followed by Dunn’s posttest for multiple group comparisons; *P , .05, **P , .005, ***P , .001. n.s., not significant.
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histocompatibility complex class II, IL7RA) patients, the majority
of whom received pretransplant cytoreduction. All HSCT-treated
SCID patients exhibited successful donor hematopoietic recon-
stitution and recovered T-cell immunity. Once clinically stable,
patients were discharged and followed up periodically in our
outpatient clinic. The follow-up period varied from 18 to 42
years.

HSCT-treated GC/JAK3 patients have reduced
circulating type 2 lymphocytes
Although HSCT-treated SCID patients have stable T-cell recon-
stitution with balanced CD4/CD8 ratios, naive T cells, and T-cell
receptor excision circles,1,3,19 an in-depth analysis of their differ-
entiated T-cell subsets has not been previously performed. ILC
and NK cell reconstitution in SCID patients with SCID receiving

myeloablative conditioning for HSCT has only been reported in
two RAG-deficient patients.3 As reciprocal interactions between
ILCs and T cells have been documented,20-23 previously
reported lack of NK and ILCs in the nonconditioned SCID recipi-
ents might be associated with perturbations in their T-cell com-
partment. We paid particular attention to differentiated T-cell
subsets that can be identified by expression of specific chemo-
kine receptors (see "Methods"; supplemental Figure 1 describes
fluorescence-activated cell sorting gating).24,25 Nonconditioned
GC/JAK3 patients receiving IgRT post-HSCT (supplemental
Table 1) were analyzed separately.

Circulating ILCs include CD561 NK cells (CD56111CD16– and
CD561CD161 cells) and CD1271 ILC2 (CRTH21) and ILCP (ILC
precursors, CRTH2–CD1171 CD45RA1NKp44–).26 Using unsu-
pervised clustering analysis, we observed a significant reduction
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in frequencies of NK cells and ILC2 but not ILCP in GC/JAK3
and GC/JAK31IgRT patients compared with healthy control
subjects (HC) and SCID-other patients (Figure 1A-B), confirming
previous reports in HSCT-treated IL2RG/JAK3-deficient and
RAG-deficient patients3 and further extending this observation
to other SCID etiologies.

We next characterized naive and differentiated CD41 T-cell
subsets in this SCID cohort. Unsupervised clustering analysis
allowed us to identify T-cell subsets, including naive (CD45RA1),
T regulatory (Treg) (CD127loCD251), follicular T helper
(Treg–CD45RA–CXCR51), T helper 1 (Th1) (Treg–CD45RA–

CXCR5–CCR6–CXCR31CCR4–), Th2 (Treg–CD45RA–CXCR5–
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Figure 2. HSCT-treated GC/JAK3 patients have a generalized defect in nasopharyngeal type 2 immunity. (A) Nasopharyngeal levels of type 1 cytokines (interferon
[IFN]-g and tumor necrosis factor [TNF]-a). (B) Nasopharyngeal levels of type 2 cytokines (IL-4, IL-5, and IL-13). (C) Nasopharyngeal levels of type 3 cytokines (IL-17A,
IL-17F, and IL-22). (D) Nasopharyngeal levels of IL-33, IL-6, and eosinophil cationic protein (ECP)/RNase 3. (E) Heatmap representation of the mean of the concentration
of all nasopharyngeal cytokines in healthy and HSCT-treated SCID patients. Panels A-D: box plots with median 6 minimum to maximum. P values were determined
with the Kruskal-Wallis test followed by Dunn’s posttest for multiple group comparisons; *P , .05, **P , .005, ***P , .001. n.s., not significant.
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CCR6–CXCR3–CCR41CRTH21/2), and Th17 (Treg–CD45RA–

CXCR5–CCR61). A significant reduction was observed in clusters
of CCR41CRTH21/2 cells corresponding to the Th2 subset, as
well as a reduction in naive T cells (CD45RA1) in GC/JAK3 and
GC/JAK31IgRT patients compared with HC and SCID-other
patients (Figure 1C-D). Other T helper subsets (ie, Th1, Th17,
follicular T helper) were normally present in all HSCT SCID
patients (Figure 1D; supplemental Figure 2).

A similar analysis was performed on CD81 T cells. The unsuper-
vised clustering analysis showed a significant decrease in the
CCR41CRTH21 cluster corresponding to the type 2 cytotoxic T
cell subset in CD81 T cells in GC/JAK3 and GC/JAK31IgRT
patients (Figure 1E-F), whereas other CD81 T-cell subsets were
similar in SCID-other patients compared with HC (supplemental
Figure 3).

The observations of a relative decrease in naive CD41 T cells
with a compensatory increase in activated CD81 T cells after
HSCT for SCID confirm earlier work,28 while our detailed assess-
ment of differentiated T-cell subsets allowed us to identify a
selective deficiency in blood CD41 Th2 cells and CD81 type 2
cytotoxic T cells in HSCT-treated GC/JAK3 patients. In all SCID
etiologies, differentiation of other T helper subsets (ie, Th1,
Th17, Treg) appeared largely intact. These results suggest that
nonconditioned HSCT-treated GC/JAK3 patients manifest a
generalized and selective deficiency in innate and adaptive lym-
phocytes involved in type 2 immunity.

HSCT-treated GC/JAK3 patients have reduced
nasopharyngeal type 2 cytokines
We next assessed mucosal immune responses in HSCT-treated
SCID patients. Nasopharyngeal swabs were obtained concur-
rently with blood samples and were processed as described
elsewhere12,13 to yield nucleic acids as well as a soluble fraction
that harbored cytokines, antibodies, antimicrobial peptides, and
various metabolites. Because differentiated T helper cells and
ILCs maintain mucosal homeostasis,4,5 we used digital ELISA
(Simoa) to quantitate cytokines associated with Th1/ILC1, Th2/
ILC2, and Th17/ILC3 responses in these nasopharyngeal
samples.

We found no significant differences in the levels of type 1 cyto-
kines (interferon-g, tumor necrosis factor-a) in normal controls
compared with HSCT-treated GC/JAK3 or SCID-other patients
(Figure 2A). In contrast, levels of type 2 cytokines IL-5 and IL-13
were clearly decreased in nonconditioned GC/JAK3 patients,
whereas IL-4 levels were within healthy ranges (Figure 2B).
Although the deficiency in nasopharyngeal IL-13 persisted in
GC/JAK3 patients receiving intravenous immunoglobulin (IVIG),
IL-4 and IL-5 levels were somewhat higher in these patients
compared with nonconditioned GC/JAK3 patients who did not
receive IgRT. Concerning inflammatory type 3 cytokines (IL-17A,
IL-17F, and IL-22), nasopharyngeal mucosal levels were not dif-
ferent from controls except in GC/JAK3 patients being treated
with IgRT (Figure 2C). It is unclear whether these increases in
nasopharyngeal cytokines result from IgRT treatment or are
related to other mechanisms that underlie the need to treat (eg,
infections) with IgRT.

Type 2 cytokine secretion is regulated by stromal-derived factors
and promotes activation of hematopoietic (ie, eosinophils
and mast cells) as well as nonhematopoietic (goblet cells)
targets.29,30 We found that IL-33 (a major inducer of recruitment,
activation, and IL-5 and IL-13 production by type 2 lympho-
cytes31-33) was not reduced in nasopharyngeal samples
(Figure 2D), whereas eosinophil cationic protein (a marker for tis-
sue eosinophilia34,35) was reduced in GC/JAK3 patients consis-
tent with reduced IL-5 levels (Figure 2B,D). Nasopharyngeal IL-6
levels were not significantly elevated in any SCID patient,
although they tended to be higher in GC/JAK31IgRT patients
(Figure 2D). When all data were clustered, the heatmap clearly
distinguished the defective type 2 cytokine production (in partic-
ular, IL-5 and IL-13) in the context of nonconditioned HSCT for
GC/JAK3 and irrespective of IgRT (Figure 2E).

Systemic and mucosal immunoglobulin subtypes
in HSCT-treated SCID patients
Previous studies have analyzed the impact of pre-HCST condi-
tioning on systemic antibody levels after hematopoietic reconsti-
tution for SCID.18,36 In particular, busulfan administration is
correlated with higher donor chimerism, especially in the B-cell
compartment.36 We found that nonconditioned GC/JAK3
patients exhibited somewhat elevated total serum IgM, but all 6
patients studied had normal total serum IgG levels (Figure 3A),
confirming that GC/JAK3–deficient B cells can produce switched
IgGs in the presence of normal T cells.18 In contrast, serum IgA
was undetectable (selective IgA deficiency) in one-half of
HSCT-treated GC/JAK3 patients, mirroring previous reports.37,38

SCID-other patients harbored normal immunoglobulin subtype
distributions and levels. Interestingly, need for IgRT in GC/JAK3
patients did not clearly correlate with any selective serum immu-
noglobulin deficiency but was dictated by the clinical context
(history of recurrent respiratory tract infections).

We next assessed mucosal immunoglobulins in HSCT-treated
SCID patients by measuring immunoglobulin isotypes and sub-
classes in paired nasopharyngeal samples. We found that total
nasopharyngeal IgM and IgG were elevated in GC/JAK3
patients compared with controls but less so compared with
SCID-other patients (Figure 3B), which seemed related to higher
levels of IgG3 (supplemental Figure 4A). In contrast, all GC/
JAK3 patients exhibited a strong reduction in total nasopharyn-
geal IgA that concomitantly involved both IgA1 and IgA2
(Figure 3C; supplemental Figure 4B) and a significant reduction
in total nasopharyngeal IgE (Figure 3D). Interestingly, total naso-
pharyngeal IgD levels were significantly increased in GC/JAK3
patients. Lastly, GC/JAK31IgRT patients “normalized” nasopha-
ryngeal immunoglobulin distributions with increased IgA and
IgE (Figure 3C-D), although the mechanistic basis remains
unclear. Together, our results illustrate the distinct profiles of
systemic and local mucosal IgA responses in HSCT-treated SCID
patients.

IgG and IgD may provide mucosal protection in
the context of IgA deficiency
We next analyzed the binding of different immunoglobulin isotypes
to nasopharyngeal microbiota using a flow cytometer–based
assay.12 We found a significant decrease in the percentage of IgA-
coated nasopharyngeal microbes as well as the density of IgA
coating (IgA mean fluorescence intensity, not shown) in GC/JAK3
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patients compared with SCID-other patients and HC (Figure 4A-B).
Interestingly, GC/JAK31IgRT patients exhibited a partial but signif-
icant increase in IgA-coated nasopharyngeal microbes (Figure 4B)
consistent with the increase in nasopharyngeal IgA (Figure 3C).
Whether the increase in IgA activity after IgRT results from an indi-
rect effect following stimulation of type 2 cytokine production39-41

remains unclear.

Compensatory IgG responses to gut commensal bacterial
communities may operate in the absence of IgA-specific
responses.42 Because other immunoglobulin isotypes and
subclasses were normally present (IgD) or elevated (IgM
and IgG) in GC/JAK3 patients (Figure 3B), we quantitated
the fraction (%) and intensity (mean fluorescence intensity)

of nasopharyngeal microbes that were coated with IgG,
IgA, or IgD by using a recently reported multiplexing tech-
nique.12 The majority of nasopharyngeal microbes in
healthy individuals are coated with IgA in combination with
IgD and to a lesser extent with IgG (Figure 4C). SCID-other
patients showed a similar pattern of nasopharyngeal
microbe coating, whereas nasopharyngeal microbes in GC/
JAK3 patients were more abundantly coated with IgG and
IgD alone. Finally, we observed an increase in IgA-/IgG-
double coated nasopharyngeal microbes in GC/JAK3
patients receiving IgRT, consistent with the increased naso-
pharyngeal IgA in these individuals. These results are con-
sistent with the notion that IgG42 and IgD43-45 may provide
a layer of mucosal protection during IgA deficiency.
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Figure 3. HSCT-treated GC/JAK3 patients without immunoglobulin replacement therapy have a decrease in nasopharyngeal secretory IgA. (A) Serum
immunoglobulin concentrations in healthy and HSCT-treated SCID patients. (B) Nasopharyngeal concentrations of total IgM, IgD, and IgG in healthy and HSCT-treated
SCID patients. (C) Nasopharyngeal concentrations of total IgA and IgA1 and IgA2 in healthy and HSCT-treated SCID patients. (D) Nasopharyngeal concentrations
of total IgE in healthy and HSCT-treated SCID patients. Panels A through D: box plots with median 6 minimum to maximum. P values were determined with the
Kruskal-Wallis test followed by Dunn’s posttest for multiple group comparisons; *P , .05, **P , .005, ***P , .001. n.s., not significant.
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Figure 4. HSCT-treated GC/JAK3 patients without IVIG replacement therapy have decreased IgA-coating of nasopharyngeal bacteria. (A) Representative dot
plots of IgA, IgG, and IgD binding to nasopharyngeal microbiota in healthy and HSCT-treated SCID patients. (B) Percentage of IgA/IgG/IgD–coated nasopharynx
microbes in healthy and HSCT-treated SCID patients. (C) Double IgA/IgG or IgA/IgD–coated nasopharynx microbes in healthy and HSCT-treated SCID patients. Panels
A through C: box plots with median 6 minimum to maximum. P values were determined with the Kruskal-Wallis test followed by Dunn’s posttest for multiple group
comparisons; *P , .05, **P , .005, ***P , .001. FCS-W, forward scatter, width; n.s., not significant.
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Figure 5. HSCT-treated GC/JAK3 patients without IVIG replacement therapy have nasopharyngeal microbiota dysbiosis. (A) Unsupervised principal coordinate
(PC) analysis of 16S RNA sequencing Operational Taxonomic Units of the HC and HSCT-treated SCID patients along the first two PC axes, based on Bray-Curtis
distances. The respective PERMANOVA test showing that nasopharynx microbiota from SCIDX/JAK3 patients is significantly different from HC. (B) The beta (b)
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HSCT-treated GC/JAK3 patients have
nasopharyngeal microbiota dysbiosis
Secretory IgA produced locally at mucosal sites plays an essen-
tial role in host defense12 and shapes commensal microbiota
composition and activity in each individual.46 To characterize
local nasopharyngeal microbial communities, we performed 16S
rRNA gene sequencing from nasopharyngeal samples, calcu-
lated bacterial b diversity, and subjected sequenced operational
taxonomic units to principal coordinate analysis. We found that
nasopharyngeal samples derived from HSCT-treated GC/JAK3
patients without IVIG replacement therapy clustered distinctively
from the HC and SCID-other patient samples (Figure 5A) and
had elevated b diversity based on Bray-Curtis, Euclidean, and
Jaccard distance matrices (Figure 5B). Accordingly, Shannon
and Simpson diversity indices were reduced in these GC/JAK3
patients (Figure 5C). We further applied a nonmetric multidi-
mensional scaling using Bray-Curtis distances and found a similar
distinctive clustering of GC/JAK3 patients not treated with IVIG
(supplemental Figure 5A). In contrast, SCID-other patients with
more complete hematopoietic reconstitution exhibited nasopha-
ryngeal microbial communities that were more similar to HC
(Figure 5A-C; supplemental Figure 5B). Total bacterial load was
also increased in GC/JAK3 patients not treated with IgRT

compared with HC and other SCID patients (supplemental
Figure 5C).

Nasopharyngeal microbial communities in these different SCID
patients were further characterized by annotation of the 16S
rRNA data sets. It has been reported that the nasopharyngeal
microbiota of healthy individuals is enriched in commensal bac-
teria, including Corynebacterium and Dolosigranulum gen-
era.47,48 We found a general reduction in Dolosigranulum and
Comamonas genera in HSCT SCID patients compared with HC
and a selective reduction in Corynebacterium, Cutibacterium,
and Staphylococcus genera in GC/JAK3 patients compared with
other SCID patients and HC (Figure 5D-E). These “cornerstone”
bacterial communities (particularly Corynebacterium and Dolosi-
granulum genera) can reduce carriage of several pathobionts
(S pneumoniae, Haemophilus influenzae, and Moraxella catar-
rhalis) that may be present in normal healthy individuals.49,50

Relative abundance of Streptococcus, Haemophilus, and Morax-
ella were not significantly increased in HSCT SCID-other patients
compared with HC, although a higher abundance of Streptococ-
cus and Haemophilus, genera were detected in GC/JAK3
patients who were not treated with IgRT (Figure 5D,F). This was
in part due to the increased abundance of S pneumoniae (Fig-
ure 5G; supplemental Figure 5D). Finally, a significant negative
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Figure 5. (continued)
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Figure 6. Defective type 2 immunity underlies nasopharyngeal dysbiosis in HSCT-treated GC/JAK3 patients. (A) Nasopharyngeal MUC5AC concentration in HC
and HSCT-treated SCID patients. (B) Individual correlation plot between nasopharyngeal MUC5AC concentration and a-diversity. (C) Individual correlation plot between
nasopharyngeal MUC5AC concentration and Dolosigranulum genus abundance (%) or S pneumoniae abundance (%). (D) Individual correlation plot between nasopharyngeal
MUC5AC concentration and nasopharyngeal IL-4, IL-5, and IL-13 concentration. (E) Individual correlation plot between nasopharyngeal MUC5AC concentration and
nasopharyngeal secretory IgA (SIgA). (F) Heatmap representation of statistically different (P , .05) nasopharyngeal features between GC/JAK3 patients and the other patients
and the three-dimensional principal coordinate analysis representation. Panel A: box plots with median 6 minimum to maximum. P values were determined with the Kruskal
Wallis test followed Dunn’s posttest for multiple-group comparisons; *P , .05, **P , .005. In panels B through E, s represents Spearman coefficient and p the P value. n.s.,
not significant.
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correlation of S pneumoniae abundance with Dolosigranulum
genus abundance could be detected in the nasopharynx (Figure
5H).

IgRT is an established treatment to combat infections in HSCT-
treated SCID patients for whom S pneumoniae is a leading
cause of disease.51 Nasopharyngeal samples from GC/JAK3
patients receiving IgRT clustered closer to SCID-other patients
and HC (Figure 5A). Moreover, IgRT in GC/JAK3 patients
“normalized” microbiota diversity (b Shannon and Simpson
diversity indices) with higher representation of Corynebacterium
and reduced levels of Streptococcus (Figure 5B-D). Moreover,
we could confirm a decrease in S pneumoniae in GC/
JAK31IgRT patients (Figure 5G). Intriguingly, IgA level under
IgRT correlated with microbial a-diversity indicating the intricate
interplay between immune selection and maintenance of com-
plex commensal communities (supplemental Figure 5E). Taken
together, these data suggest that HSCT-treated GC/JAK3
patients without IgRT can present persistent nasopharyngeal
microbial dysbiosis with expansion of bacteria associated with
increased morbidity and mortality risk. Because IgRT appears to
ameliorate the nasopharyngeal dysbiosis, one may consider
potential use of IgRT in all GC/JAK3 patients to pre-empt or
correct this abnormality.

Role for type 2 immunity and nasal IgA in
maintaining commensal microbiota diversity and
protection against “pathobiont” carriage
Secretory IgA is implicated in human nasopharyngeal microbial
homeostasis52 and may protect mucosal surfaces from pathogen
invasion through agglutination.53,54 However, other “nonspecific”
barriers, including a dense mucus layer, restrict commensal
and pathobiont colonization at mucosal sites.55 Although
total protein levels in nasopharyngeal samples from SCID
patients and HC were not significantly different (supplemen-
tal Figure 3B), we found that GC/JAK3 patients (treated or
not with IgRT) had markedly reduced MUC5AC levels com-
pared with SCID-other and HC (Figure 6A). MUC5AC levels
were positively correlated with a-diversity, Dolosigranulum,
and Corynebacterium genera abundance and strongly nega-
tively correlated with S pneumoniae abundance (Figure 6B-C).
These results suggest that nasopharyngeal mucus plays a role
in homeostasis of local commensal microorganisms and is
selectively reduced after HSCT for GC/JAK3.

We next looked for possible correlations in the cytokine data set
that could associate with reduced MUC5AC levels in these
patients with SCID. The reduction in nasopharyngeal IgA and
type 2 cytokine levels in GC/JAK3 patients (Figures 2 and 3) par-
alleled the observed reductions in MUC5AC (Figure 6D-E), sug-
gesting a possible link. Type 2 cytokines are known to regulate
barrier immunity by promoting mucus production,29,30 but other
factors stimulate epithelial cell renewal and differentiation,
including IL-22.56 IL-22 levels were correlated with MUC5AC lev-
els (supplemental Figure 6C). All 2-parameter correlations are
presented in supplemental Figure 6D. Together, these results
identify critical soluble factors that coordinate local mucosal
immune defense in the nasopharynx via mucus production.
Finally, a supervised analysis of nasopharyngeal factors that
were significantly different in GC/JAK3 patients reiterates the
key parameters that integrate the unique mucosal immune

profile of these individuals (Figure 6F), including reduced type 2
cytokines, reduced MUC5AC levels, reduced IgA, and microbial
dysbiosis.

Discussion
In this report, we assess local mucosal immunity in the human
nasopharynx in a well-characterized cohort of patients with SCID
treated with curative HSCT. Previous studies on systemic
immune reconstitution after bone marrow transplantation have
highlighted differences in homeostasis of peripheral pools of
innate and adaptive lymphocytes.1,3,18,19 Pretransplant condi-
tioning regimens may allow for differential engraftment of donor
hematopoietic precursor cells and downstream myeloid and
innate lymphocyte pools, the latter including NK cells and ILCs.3

The impact of differences in “innate reconstitution” on overall
systemic immune responses appeared limited given the similar
clinical profiles of these HSCT-treated SCID patients.3 These
studies raised questions concerning the specific vs redundant
functions of innate lymphocytes in human immunity.

Because ILCs abundantly populate mucosal sites, we explored
their potential immune roles by comparing HSCT-treated SCID
patients who exhibit variable innate lymphocyte reconstitution.3

Clear differences were observed in mucosal immune parameters
in a subset of patients with SCID and genetic defects in GC or
JAK3 that were not conditioned prior to HSCT. We documented
a generalized reduction in mucosal type 2 immunity and IgA
production and an inability to maintain “healthy” commensal
bacterial communities consistent with a defect in nasopharyn-
geal mucosal barrier function. In contrast, other SCID etiologies
(with or without myeloablative protocols before HSCT) exhibited
normal type 2 cytokines and IgA production without nasal dys-
biosis. Thus, the underlying SCID etiology is apparently a major
factor for the observed defects in mucosal immunity.

Local IgA production is a hallmark of mucosal immunity and is
largely driven by specific immune responses to resident
microorganisms.57 Cytokines promote IgG and IgE produc-
tion.58 In contrast, the key soluble factors that regulate switch
to IgA are a matter of debate.57,59 Previous studies have
documented absence of serum IgA in about one-half of
HSCT-treated GC/JAK3 patients.18,36-38 Here we found that
mucosal IgA was absent in all HSCT-GC/JAK3 patients exam-
ined, including those with normal circulating IgA. Interest-
ingly, nasopharyngeal type 2 cytokines were most strongly
perturbed in these patients, suggesting a causative link to
mucosal IgA production. Type 2 cytokines can promote the
survival and differentiation of tissue resident memory B cells
and IgA-secreting plasma cells,60-64 thereby increasing IgA
production.30,65-68 Along these lines, a recent report
described a major role for ILC2-derived IL-5 in promoting
local mucosal IgA production in mice.69 Whether locally gen-
erated IL-5 (by ILC2 or Th2 cells) regulates mucosal IgA pro-
duction in humans remains unclear.

An alternative explanation for the observed IgA deficiencies
may result from a defective immunoglobulin switch in residual
GC/JAK3-deficient host B cells, the latter not being fully
replaced by donor HSCT after nonablative conditioning.36 The
inability of GC/JAK3-deficient B cells to respond to any
gc-dependent cytokine might also reduce IgA switch
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mechanisms and result in selective IgA deficiency. However,
nasopharyngeal IgG subclasses were not decreased in HSCT-
treated GC/JAK3 patients, and serum IgG levels were normal,
consistent with the ability of GC/JAK3-deficient host B cells to
switch immunoglobulin isotypes.18 However, these patients
have an intrinsic B-cell deficiency (defective response to IL-2, IL-
9, and in part to IL-4) that can affect antibody production. gc-
dependent signals in epithelial cells70 may also play a role.
These observations suggest a contribution of impaired gc-
dependent signaling pathways to the defective mucosal IgA
production in these patients.

Th2 differentiation is considered as a “default” pathway that
can be subverted to alternative T helper fates by environ-
mental signals.71,72 However, Th2 differentiation requires
reinforcing signals through STAT6 (ie, IL-4 and IL-13) to
upregulate GATA3 expression and seal Th2 cell fate.73 The
defect in generation of Th2 cells in HSCT-treated GC/JAK3
patients may result from the absence of these STAT6-
dependent signals, perhaps delivered by innate lympho-
cytes (ie, NK T cells, ILC2). In addition, ILC2 can prime tissue
Th2 responses via DC recruitment.20-23

The mucus layer that lines mucosal surfaces provides a physical
barrier to commensal micro-organisms as well as pathogens and
segregates “niches” harboring complex microbial biofilms.74

Secreted mucins (MUC5AC) are produced by goblet cells in the
nasopharyngeal mucosa and tracheobronchial surface epithe-
lium of the lower respiratory tract that act as a “scaffold” to pre-
sent and organize secreted proteins such as secretory IgA,
antimicrobial peptides, and cytokines. Type 2 cytokines (includ-
ing IL-13) activate goblet cells to produce mucus.29,30 Whether
the loss of MUC5AC in GC/JAK3 patients secondary to reduced
IL-13 predisposes these individuals to microbial dysbiosis will
require further study.

Finally, nasopharyngeal IgA deficiency in HSCT-treated GC/
JAK3 patients is associated with local microbial dysbiosis
that may have been present prior to HSCT. It is well estab-
lished that mucosal IgA plays a major role in regulating bac-
terial communities in the gut,46,75 and the reduction in
nasopharyngeal IgA observed in GC/JAK3 patients is corre-
lated with loss of microbial diversity and frequently accom-
panied by increased pathobiont carriage. Although other
immunoglobulin subclasses are present (and even elevated)
in the nasopharynx in these patients and are able to coat
bacteria, IgA remains a nonredundant immune factor
required for microbial mucosal homeostasis.
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