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PLATELETS AND THROMBOPOIESIS
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KEY PO INTS

� Platelet CLEC-2 regu-
lates VWF and GPIba-
mediated integrin
aIIbb3 activation
that contributes to
thrombosis in a mouse
model of TTP.

� Eptifibatide and aspirin
decrease thrombosis
in mice with TTP,
documenting the
clinical importance
of integrin aIIbb3
activation.

Microvascular thrombosis in patients with thrombotic thrombocytopenic purpura (TTP)
is initiated by GPIba-mediated platelet binding to von Willebrand factor (VWF). Binding
of VWF to GPIba causes activation of the platelet surface integrin aIIbb3. However,
the mechanism of GPIba-initiated activation of aIIbb3 and its clinical importance for
microvascular thrombosis remain elusive. Deletion of platelet C-type lectin-like receptor
2 (CLEC-2) did not prevent VWF binding to platelets but specifically inhibited platelet
aggregation induced by VWF binding in mice. Deletion of platelet CLEC-2 also inhibited
aIIbb3 activation induced by the binding of VWF to GPIba. Using a mouse model of
TTP, which was created by infusion of anti-mouse ADAMTS13 monoclonal antibodies
followed by infusion of VWF, we found that deletion of platelet CLEC-2 decreased
pulmonary arterial thrombosis and the severity of thrombocytopenia. Importantly,
prophylactic oral administration of aspirin, an inhibitor of platelet activation, and
therapeutic treatment of the TTP mice with eptifibatide, an integrin aIIbb3 antagonist,
reduced pulmonary arterial thrombosis in the TTP mouse model. Our observations
demonstrate that GPIba-mediated activation of integrin aIIbb3 plays an important role

in the formation of thrombosis in TTP. These observations suggest that prevention of platelet activation with
aspirin may reduce the risk for thrombosis in patients with TTP.

Introduction
Thrombotic thrombocytopenia purpura (TTP) is a potentially fatal
disorder characterized by systemic microvascular thrombosis.
Thrombosis in patients with TTP is caused by platelet adhesion
to the ultra-large von Willebrand factor (VWF) multimers that
result from a deficiency of ADAMTS13.1 Current treatment of
acute episodes of immune TTP (iTTP) is effective.2-4 Therapeutic
plasma exchange removes anti-ADAMTS13 autoantibodies and
replaces ADAMTS13. Immunomodulation with corticosteroids
and rituximab suppresses anti-ADAMTS13 autoantibody produc-
tion. Caplacizumab, a nanobody to the A1 domain of VWF,
blocks platelet adhesion to VWF, resulting in a rapid recovery of
the platelet count and decreased microvascular thrombosis.5-8

However, management of patients with iTTP in remission is less
clear. After recovery from an acute episode, patients may have
persistent low levels of ADAMTS13 that are associated with
increased risk for transient cerebral ischemic attacks9 and

stroke.10,11 There is currently no effective long-term prophylactic
management to decrease risk for thrombosis during clinical
remission. Patients with hereditary TTP (hTTP) are at risk
for thrombosis throughout their lives.12 However, only plasma
prophylaxis or a “watch and wait approach” is currently
recommended.3

Recent success with caplacizumab highlights the importance
of VWF binding to platelet glycoprotein Iba (GPIba) as a key
step in pathogenesis of TTP. Interaction of VWF with platelet
GPIba is critical for platelet adhesion when the vascular wall
is injured.13-15 Upon VWF binding, GPIba also transduces sig-
nals, leading to platelet activation, including activation of
integrin aIIbb3, which is important for arterial thrombosis.16,17

However, the molecular mechanism by which the GPIba sig-
naling is initiated and the clinical importance of GPIba
signaling-mediated integrin aIIbb3 activation in TTP remain
elusive.
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In this study, we documented that GPIba signaling-mediated
integrin aIIbb3 activation upon VWF binding required platelet
C-type lectin-like receptor 2 (CLEC-2), which is primarily
expressed on platelets and contributes to arterial thrombosis
through a previously unknown mechanism.18,19 We found that
CLEC-2 directly interacts with the extracellular domain of
GPIba in a sialylation-dependent manner, which is essential
for GPIba signaling. Deletion of platelet CLEC-2 decreased
arterial thrombus formation and the severity of thrombocyto-
penia in in a mouse model of TTP. We further documented
that treatment with eptifibatide, an inhibitor of integrin aIIbb3
function,20 reduced thrombus formation in mice with TTP. We
also observed that prophylactic oral administration of aspirin,
an inhibitor of platelet activation, reduced thrombus forma-
tion in mice with TTP. Thus, our findings reveal a novel role of

CLEC-2–mediated GPIba signaling and the clinical impor-
tance of the GPIba signaling-mediated aIIbb3 activation in
thrombus formation in TTP.

Materials and methods
Mice
Clec-2 floxed mice (Clec-2f/f) were generated as previously
described.21 Platelet Clec-2–deficient mice (Plt Clec22/2) were
generated by crossing Clec-2f/f mice with a mouse line express-
ing Cre specifically in megakaryocytes/platelets (Pf4Cre, the
Jackson Laboratory). Eight 16-week-old mice of both sexes were
used. All mice were in C57BL/6J genetic background. C57BL/6J
wild-type mice were purchased from the Jackson Laboratory.
Experiments were performed in compliance with protocols
approved by the Institutional Animal Care and Use Committee
of the Oklahoma Medical Research Foundation as well as the
University of North Carolina at Chapel Hill.

TTP mouse model
The TTP mouse model was generated as previously
described.22,23 Deficiency of ADAMTS13 was obtained by inject-
ing both anti-ADAMTS13 monoclonal antibodies (mAbs) 1 3B4
and 14H7 (both 1.25 mg/kg) into mice at day 0; the negative
control was obtained by injecting the nonfunctional blocking
anti-ADAMTS13 mAb 20A10 (2.50 mg/kg) into mice. After 24
hours, all mice were injected with VWF (5 mg/kg) purified from
human plasma via the tail vein to initiate the onset of TTP. Blood
was collected 7 days before injection of VWF (day 27, baseline)
and 1 day after injection of VWF for platelet counts (Hemavet),
lactate dehydrogenase (LDH) activity (Gentaur, Biovision, San
Jose, CA), and analysis of the multimeric pattern of VWF. After
blood collection on day 1, mice were euthanized and organs
were collected for histology and immunostaining analysis.

Statistics
Randomization and blinding were performed during experi-
ments. Data were expressed as mean 6 standard deviation
from at least 3 independent experiments unless otherwise indi-
cated. The two-tailed unpaired Student’s t test was performed
to analyze the significance by using GraphPad Prism 5, and
P , .05 was considered statistically significant.

More details of materials and methods are provided in the sup-
plemental data, available on the Blood Web site.

Results
VWF and GPIba-mediated platelet aIIbb3
activation requires CLEC-2
VWF binding to GPIba initiates signaling that activates integ-
rin aIIbb3 in platelets.16 However, the underlying mechanism
is unclear. We found that platelets lacking CLEC-2 had
decreased aggregation in response to VWF (Figure 1A-B).
CLEC-2–deficient and wild-type (WT) platelets had compara-
ble aggregation in response to adenosine 59-diphosphate
(ADP) and collagen (data not shown). The surface expression
of the major platelet receptors involved in aggregation, such
as GPIIb, GPIba, GPIbb, and GPIa, were normal on CLEC-
2–deficient platelets (supplemental Figure 1A-D, available on
the Blood Web site), suggesting that the impaired function of
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Figure 1. CLEC-2 deficiency impairs GPIba-mediated integrin aIIbb3 activation.
Aggregation of washed WT and CLEC-2–deficient platelets in response to 10 mg/mL
of VWF and 2 mg/mL of botrocetin, which facilitates VWF binding to GPIba, in
the absence (A) or presence (C) of GR144053 trihydrochloride (GR). (B and D)
Quantification of platelet aggregation shown in (A) and (C), respectively. (E) Flow
cytometry analysis of binding of mAb Jon/A, which specifically binds to activated
integrin aIIbb3, to platelets. Washed platelets were stimulated with 2 mg/mL of
botrocetin (Botro) in the presence or absence of 10 mg/mL of VWF from human
plasma. After that, platelets were immediately incubated with mAb Jon/A, and mAb
Jon/A binding was analyzed with flow cytometry. The data are representative of 5
independent experiments, and data represent mean 6 standard deviation (SD).
*P , .05.
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GPIba in CLEC-2–deficient platelets is not caused by altered
surface expression of these receptors. Binding of VWF to WT
platelets and CLEC-2–deficient platelets was similar (supple-
mental Figure 2A). There were no direct interactions between
VWF and CLEC-2 (supplemental Figure 2B).

We then studied the role of CLEC-2 in the GPIba-mediated
aIIbb3 activation. VWF binding to platelets is followed by GPIba-
induced integrin aIIbb3 activation and platelet aggregation.
Blocking integrin aIIbb3 by an antagonist, GR144053, reduced
VWF-induced aggregation of WT platelets but did not affect the
response of CLEC-2–deficient platelets (Figure 1C-D). Binding of
VWF increased recognition of WT platelets by Jon/A, an antibody
that specifically recognizes activated integrin aIIbb324 (Figure 1E).
In contrast, VWF-induced binding of Jon/A to CLEC-2–deficient
platelets was significantly reduced (Figure 1E).

We further tested the role of CLEC-2 in GPIba-mediated
platelet adhesion to VWF under high shear with an in vitro
flow chamber system. Both WT and CLEC-2–deficient plate-
lets adhered to immobilized VWF, but WT platelets formed
much larger aggregates (Figure 2A-B). Integrin aIIbb3 antag-
onist, a tripeptide Arg-Gly-Asp (RGD peptide), reduced the
size of aggregates of WT platelets but not of CLEC-
2–deficient platelets (Figure 2A-B). These data indicate that
CLEC-2 is required for the GPIba-mediated activation of
integrin aIIbb3.

CLEC-2 is required for GPIba signaling
To determine how platelet CLEC-2 contributes to the GPIba-
mediated aIIbb3 activation, we studied the Src family kina-
se,25Akt, and p38MAPK, which are known to be essential in
GPIba-mediated aIIbb3 activation.25,26 VWF binding induced
phosphorylation of serine on Akt and tyrosine on p38MAPK in
WT platelets, respectively (Figure 3A-B). Src kinases are upstream
of Akt and p38MAPK in the GPIba signaling.25 We found that
PP2, a pan-inhibitor of Src kinases, abolished VWF-induced
activation of Akt and p38MAPK in WT platelets (Figure 3A-B).
However, VWF binding did not induce serine phosphorylation
of Akt and tyrosine phosphorylation of p38MAPK in CLEC-
2–deficient platelets (Figure 3A-B). In addition, VWF binding
induced tyrosine phosphorylation of Lyn, a primary Src kinase
in GPIba signaling,25 in WT but not in CLEC-2–deficient

platelets (Figure 3C). Consistent with the role of Src kinase acti-
vation in GPIba signaling, PP2 reduced VWF-induced aggrega-
tion of WT but not CLEC-2–deficient platelets (Figure 3D-E).
Furthermore, we found that GPIba in WT platelets was
enriched in lipid rafts, micromembrane domains considered
critical for GPIba signaling.27 However, CLEC-2 deletion
reduced the portion of raft-located GPIba (Figure 3F-G). As
controls, the distributions of Lyn, which locates in lipid rafts,28

and b actin, which is not located in cytoplasmic membrane,
were not altered in CLEC-2–deficient platelets (Figure 3F-G),
supporting the specificity of CLEC-2 deficiency-induced GPIba
reduction in the lipid rafts.

The extracellular domain of CLEC-2 is required
for GPIba-mediated platelet activation
Studies have shown that the extracellular domain of CLEC-2 plays
an important role in arterial thrombosis with unknown underlying
mechanisms.29 We hypothesized that CLEC-2 contributes to arte-
rial thrombosis by interacting with GPIba through its extracellular
domain. To test this hypothesis, we generated a chimeric CLEC-2
that fused the extracellular domain of mouse CLEC-2 with the Fc
domain of human IgG2 (CLEC-2/Fc) (Figure 4A). Preincubation of
WT platelets with the chimeric CLEC-2/Fc inhibited VWF binding-
induced platelet aggregation and integrin activation under stirring
or flow conditions (Figure 4B-F). Interestingly, CLEC-2/Fc did not
rescue the defects in VWF-induced platelet activation of CLEC-
2–deficient platelets (Figure 4B-D), suggesting that either the
transmembrane domain and/or the cytoplasmic domain of CLEC-
2 is also required for GPIba signaling, which requires further stud-
ies to elucidate the complex nature of signaling transduction
mediated by CLEC-2 and GPIba.

Phosphorylation of the hemi-immunoreceptor tyrosine-based
activation motif (hemITAM) in the cytoplasmic domain of CLEC-
2 is essential for vascular integrity during inflammation.30 To
address the role of CLEC-2 hemITAM in GPIba signaling, CLEC-
2 was precipitated from the lysates of WT platelets that were
treated with saline, VWF, or podoplanin that activates hemITAM
signaling. Western blots showed that podoplanin, but not VWF,
induced tyrosine phosphorylation of CLEC-2 (supplemental Fig-
ure 3A-B). Therefore, CLEC-2 hemITAM does not contribute to
VWF/GPIba signaling.
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Figure 2. CLEC-2 deficiency impairs platelet
aggregation on immobilized VWF under flow.
Washed platelets treated with albumin or 20 mg/mL
of RGD, an integrin aIIbb3 antagonist, were
perfused over immobilized plasma VWF (150 mg/mL)
at 10 dyne/cm2 for 10 minutes. After removing
nonadherent platelets, adhered platelets were fixed
with 2% paraformaldehyde (PFA), stained with
anti-CD41 antibodies, and observed with microscopy.
(A) Representative images of platelet aggregation on
immobilized VWF under flow. (B) Quantification of
platelet aggregation on immobilized VWF under
flow. Adherent platelets described in (A) were
quantified by analyzing the pixels of CD41-positive
areas in each field. The data are representative of 5
independent experiments, and data represent
mean6 SD. *P, .05.
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CLEC-2 interacts with sialylated extracellular
domain of GPIba
To further address how CLEC-2 interacts with GPIba, we con-
ducted immunoprecipitation experiments. Chimeric CLEC-2/Fc
precipitated GPIba, but not GPVI, from WT platelet lysates
(supplemental Figure 4A). Additionally, chimeric CLEC-2/Fc
could not pull down GPIba from IL4R/GPIba mice (supplemen-
tal Figure 4A), in which the GPIba extracellular domain was
replaced by the extracellular domain of human interleukin (IL) 4
receptor.31 GPIba has an extracellular mucin-like domain, which
is heavily modified by mucin-type O-glycans capped with sialic
acids (sialylated O-glycans).32 We found that removal of sialic
acids from WT platelets by sialidase abolished the pull-down of

GPIba by CLEC-2/Fc (supplemental Figure 4B), indicating that
sialylation of GPIba is required to interact with CLEC-2. We fur-
ther examined this interaction with a recombinant GPIba
(GPIba-His), which fuses the extracellular domain of GPIba with
a His tag. GPIba-His was sialylated as lectin MAL II, which recog-
nizes a 2, 3-linked sialic acids, and detected saline-treated
but not sialidase-treated GPIba-His (supplemental Figure 4C).
CLEC-2/Fc directly pulled down GPIba-His, and this interaction
was prohibited by sialidase treatment (supplemental Figure 4D).
Addition of GPIba-His to platelet lysates reduced precipitation
of platelet GPIba by CLEC-2/Fc (supplemental Figure 4E-F),
confirming the sialylation-dependent interaction of GPIba with
CLEC-2.
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Figure 3. CLEC-2 deficiency impairs GPIba signaling. (A) Akt, (B) p38 MAPK, and (C) Lyn activation in platelets stimulated with human plasma VWF and botrocetin,
which facilitates VWF binding to GPIba. Washed platelets were preincubated with dimethyl sulfoxide (DMSO) or 10 mM of PP2, an inhibitor of Src family kinases, at
room temperature for 30 minutes and then stimulated with 2 mg/mL of botrocetin with or without 10 mg/mL of VWF for 5 minutes. Then platelets were lysed, and acti-
vation of Akt and p38MAPK was analyzed by western blotting. P-Akt, P-p38, and P-Lyn are the activated kinases. (D) Aggregation of PP2-treated platelets in response
to botrocetin and VWF. Washed platelets were pretreated with DMSO or 10 mM of PP2 at room temperature for 30 minutes, and then aggregation of WT and CLEC-
2–deficient platelets in response to botrocetin and VWF was observed. (E) Quantification of platelet aggregation shown in (D). (F) Flotation assay of lipid raft localization
of GPIba. Washed platelets were lysed with 1% triton X-100, and the lysate was applied to the top of 5% to 40% gradient of Optiprep. After centrifugation, the distribu-
tion of GPIba, Lyn, and b actin in fractions from top to bottom of the gradient was analyzed by western blot. (G) Quantification of GPIba that located in lipid rafts
shown in (F). The data are representative of 5 independent experiments.
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We noticed that lack of the extracellular domain of GPIba (IL4R/
GPIba) did not affect CLEC-2 expression or the signaling and
platelet activation upon ligand binding to CLEC-2 (supplemental
Figure 5A-D). Platelets from CLEC-2–deficient mice exhibited a
moderate increase in their size, resembling that of platelets from
IL4R/GPIba mice (supplemental Figure 5E-F). Therefore, CLEC-2
is required for GPIba signaling but not vice versa.

CLEC-2 regulation of GPIba-induced platelet
activation is important for thrombus formation in TTP
The role of GPIba signaling in platelet activation was previously
studied in vitro.25,33 However, its significance in thrombosis
in vivo was not studied. Because CLEC-2 is required for GPIba
signaling, we examined thrombus development in platelet
CLEC-2–deficient mice using a mouse model of TTP, in which
thrombus formation is initiated by VWF binding to GPIba. We
found that thrombus formation was significantly reduced in
CLEC-2–deficient mice upon induction of TTP (Figure 5A-B;

supplemental Figure 6). In WT mice, VWF injection decreased
the platelet count and increased plasma LDH levels, a parameter
of tissue damages (Figure 5C-D). CLEC-2–deficient mice exhib-
ited less severe thrombocytopenia and tissue damage as well as
signs of thrombosis relative to that in WT mice after VWF injec-
tions (Figure 5C-D). In addition, platelet CLEC-2 deletion did not
change the distribution of VWF multimers or the percentage of
ultra-large VWF multimers (Figure 5E). Therefore, CLEC-2 defi-
ciency in platelets reduces thrombus formation and decreases
the severity of thrombocytopenia in the mouse model of TTP.

Blocking integrin aIIbb3 activation reduces
thrombus formation in TTP
Because CLEC-2 is required for GPIba-mediated activation of
integrin aIIbb3, which is essential for thrombosis, we tested
whether blocking integrin aIIbb3 activation reduces thrombus
development in the mouse model of TTP. At the time of VWF
infusion, saline or eptifibatide, an integrin aIIbb3 antagonist,
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Figure 4. The extracellular domain of CLEC-2 is
required for GPIba-mediated platelet activation.
(A) Schematic for the construction of a chimeric
CLEC-2 that fused human IgG Fc with the CLEC-2
extracellular domain (CLEC-2/FC). hFC, human
IgG Fc control; N, N-terminus; C, C-terminus. (B)
Recombinant CLEC-2 inhibited VWF-induced
platelet aggregation. Washed WT platelets were
pretreated with Fc or CLEC-2/Fc at 37�C for 1 hour,
and aggregation of platelets in response of human
plasma VWF was measured. (C) Quantification of
platelet aggregation shown in (B). (D) Activation of
integrin aIIbb3 on CLEC-2/Fc-treated platelets.
Washed WT platelets were pretreated with Fc or
CLEC-2/Fc at room temperature for 1 hour and then
treated with VWF in the presence of botrocetin for 5
minutes at 37�C. Then, integrin aIIbb3 activation was
measured with antibody Jon/A by flow cytometry.
(E) Recombinant CLEC-2 inhibited platelet aggregation
on immobilized VWF under flow. WT platelets were
preincubated with Fc or CLEC-2/Fc (30 mg/mL) for 1
hour at 37�C and were then perfused over plates
coated with VWF from human plasma (100 mg/mL) at
10 dyne/cm2 for 10 minutes. Adherent platelets were
fixed with 2% PFA and stained with anti-mouse
CD41, followed by Alexa 488-conjugated secondary
antibodies. Representative images were presented.
(F) Quantification of aggregated platelets shown in
(E). The data are representative of 3 independent
experiments and represent mean 6 SD. *P , .05.

GPIba-MEDIATED PLATELET ACTIVATION IN TTP blood® 21 APRIL 2022 | VOLUME 139, NUMBER 16 2527

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/139/16/2523/2055956/blood_bld-2021-012896-m

ain.pdf by guest on 21 M
ay 2024



was injected intravenously every 6 hours, and 24 hours later,
mice were euthanized for analysis. In saline-treated mice, forma-
tion of VWF- and platelet-rich thrombi in lungs and reduced
platelet counts were observed (Figure 6A-C; supplemental Fig-
ure 7). In eptifibatide-treated mice with TTP, thrombus formation
was reduced (Figure 6A-B; supplemental Figure 7). Eptifibatide
also decreased the severity of thrombocytopenia (Figure 6C).
These findings indicate that integrin aIIbb3 activation plays an
important role in the pathogenesis of TTP.

Inhibition of platelet activation by aspirin reduces
thrombus formation in TTP
Thromboxane A2 (TxA2) is a major effector to induce platelet
aggregation upon VWF binding.34 In response to VWF binding,
we found that washed WT platelets released more TxA2, mea-
sured by its stable metabolite of TxB2 by enzyme-linked
immunosorbent assay. However, CLEC-2–deficient platelets
had significantly reduced TxA2 release upon VWF binding
(Figure 7A). Because aspirin inhibits TxA2 synthesis, we examined
the effect of aspirin on thrombus formation in TTP. Aspirin was
given to WT mice through oral gavage35 twice a day, beginning
at 5 days before induction of TTP until mice were euthanized for
analysis. Aspirin administration abolished platelet aggregation in

response to arachidonic acid, indicating the efficacy of aspirin
treatment (Figure 7B), whereas oral aspirin did not alter platelet
expression of integrin aIIbb3 (CD61) (Figure 7C). In aspirin-
treated mice with TTP, platelets adhered to VWF but did not
form large thrombi in lungs (Figure 7D-E; supplemental Figure
8). Compared with saline-treated mice with TTP, thrombocytope-
nia in aspirin-treated mice with TTP was less severe (Figure 7F).
These data indicate that oral prophylactic administration of aspi-
rin decreases thrombus formation in TTP.

Discussion
GPIba is well studied as a receptor to initiate platelet adhesion
to the vessel wall under arterial flow conditions by interacting
with VWF.15,36 Multiple studies have shown that the role of
GPIba in arterial thrombosis is more than the initiation of plate-
let adhesion on exposed VWF in the injured vessel.37,38 Our
data document the important role of GPIba signaling-triggered
integrin aIIbb3 activation in arterial thrombosis in TTP.

GPIba has a critical signaling function; however, how the
GPIba-mediated signaling is initiated upon binding to VWF has
been unclear. Our results demonstrate that CLEC-2 regulates
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GPIba-mediated signaling and the consequent aIIbb3 activa-
tion. Recent studies show that the extracellular domain of
CLEC-2, but not the hemITAM signaling of CLEC-2, is required
for arterial thrombosis.19 However, podoplanin, the only physi-
ological ligand for CLEC-2, is not expressed on blood cells or
blood vascular endothelial cells in thrombosis models18 and
therefore cannot be involved in arterial thrombosis. How CLEC-
2 contributes to arterial thrombosis remains to be addressed.
In this study, we discovered that CLEC-2 interacts with the
extracellular domain of GPIba in a sialylation-dependent man-
ner, which contributes to the localization of GPIba into lipid
rafts and facilitates GPIba signaling-mediated aIIbb3 activation.

These observations are consistent with a previous study docu-
menting that the snake venom aggretin, a CLEC-2 ligand, pulls
down GPIba.39 In addition, our previous study demonstrated
that CLEC-2 binding to its endogenous ligand podoplanin
requires sialylated O-glycans on the extracellular domain of
podoplanin.40 Like podoplanin, the extracellular domain of
GPIba is also modified by mucin-type sialylated O-glycans.41,42

Removing sialylated O-glycans by enzymatic cleavage reduces
VWF-induced platelet activation.43 Consistent with this, we
found that sialylation of GPIba is required to interact with CLEC-
2. Interestingly, both CLEC-2 and GPIba are expressed at similar
levels on platelets, as demonstrated by a recent proteomics
study.44 Of note, the copy number of CLEC-2 was previously
considered much lower than that of GPIba on platelets based
on an early study using antibody binding with flow cytometry.45

However, binding of antibodies to CLEC-2 is known to induce
internalization of CLEC-2.46 Thus, the copy number of CLEC-2

on platelets measured with antibody binding may be artificially
much lower than its true copy number. CLEC-2–deficient mice
and IL4R/GPIba mice share some phenotypes, including
increased size of platelets and moderately increased tail bleed-
ing time,31 which are reminiscent, albeit less severe, of pheno-
types of Bernard-Soulier syndrome. Therefore, our data not only
show that CLEC-2 physically interacts with GPIba but also sug-
gest that CLEC-2 may be a part of the GPIb-IX-V complex, at
least in some conditions such as upon VWF binding.

We found that CLEC-2 deficiency results in GPIba reduction in
the lipid rafts in platelets, supporting a potential mechanism by
which CLEC-2 regulates GPIba signaling. Location of GPIba in
lipid rafts has been reported for 20 years with unclear mecha-
nisms.27 CLEC-2 should not alter the integrity and composition
of lipid rafts because CLEC-2–deficient platelets respond
normally to ADP and collagen, which is dependent on lipid
rafts.47-50 It has been reported that both N- and O-glycans
enhance membrane receptors to locate into lipid rafts.51,52 Our
data suggest that glycan-dependent interaction between CLEC-
2 and GPIba may contribute to their localization into lipid rafts,
which requires further study.

In this study, we used a mouse model of TTP following an infu-
sion of VWF after blocking ADAMSTS13 with antibodies, which
has greater relevance for the first 24 hours of acute iTTP. We
chose this model because our study focused on the CLEC-2/
GPIba signaling-mediated platelet activation in the initiation of
thrombus formation in TTP. This model may not represent
the entire course of a TTP episode because subsequent
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thrombolysis without additional supplementation of VWF may
reduce thrombosis after 24 hours. The clinical importance of
these observations is supported by the role of GPIba signaling
aIIbb3 activation in thrombosis in this acute TTP model. In

addition, deletion of platelet CLEC-2 impaired GPIba signaling-
induced activation of integrin aIIbb3 and decreased thrombus
formation in our mouse model of TTP. We also documented
that blockage of integrin aIIbb3 by eptifibatide or inhibition of
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platelet activation by aspirin reduced thrombus formation and
the severity of thrombocytopenia with a mouse model of TTP.

The role of platelet activation in the pathogenesis of TTP has
not been well studied. Our data show that activation of integrin
aIIbb3 is important for thrombus formation in a mouse model of
TTP. Our data also show that CLEC-2 specifically controls the
GPIba signaling-induced activation of integrin aIIbb3. Deletion
of platelet CLEC-2 decreased thrombosis and the severity of
thrombocytopenia. These findings indicate that GPIba signaling
upon VWF binding is the primary stimulus for platelet activation
during TTP.

Current management of acute episodes of TTP is effective.2,3

However, there is currently no effective long-term prophylactic
management to decrease risk for thrombosis for patients with
iTTP during clinical remission. Also, current prophylactic man-
agement of patients with hTTP is not effective.12 Integrin aIIbb3
plays an essential role in the formation of arterial thrombi, as evi-
denced by the effectiveness of multiple antagonists of integrin
aIIbb3 as anti-thrombotic therapy.53 In early clinical practice,
preceding documentation of effectiveness of therapeutic plasma
exchange, prevention of platelet activation by dipyridamole and
aspirin was a standard treatment for acute episodes of iTTP.54

Because of the effectiveness of plasma exchange, dipyridamole
and aspirin became obsolete. Here, we have documented the
importance of integrin aIIbb3 in thrombus formation during
TTP, which will provide a potential strategy for prevention of
thrombosis for patients with iTTP after effective treatment of an
acute episode and for patients with hTTP, perhaps for a lifetime.

Our observations suggest that GPIba-triggered signaling is the
major approach to activate integrin aIIbb3 that contributes to
thrombosis in TTP. Most importantly, we found that inhibition of
platelet activation by aspirin significantly reduced the severity of
TTP. Aspirin inhibits the cyclooxygenase-1 enzyme activity in pla-
telets that reduces the production of an important platelet ago-
nist, TxA2. Integrin aIIbb3 is activated by the released TxA2 and
ADP from platelets when VWF binds GPIba.16,17 Therefore, aspi-
rin may reduce thrombosis in TTP by inhibiting GPIba-induced
TxA2 release. Because aspirin is an effective treatment to reduce
the risk for stroke,55,56 it may be beneficial during remission of
iTTP, when risk of stroke may be increased.10,11 Aspirin may also
provide effective stroke prophylaxis for patients with hTTP. The
risk for increased bleeding caused by aspirin prophylaxis should
be minimal, even if patients with TTP become thrombocytopenic.
The safety of aspirin prophylaxis is suggested by the uncommon
risk for severe bleeding caused by caplacizumab, which is used

for treatment of patients with iTTP who have severe thrombocyto-
penia.7,8 In the 175 patients receiving caplacizumab in these 2
reports, 47 (25%) had bleeding symptoms, but only 7 (4%) were
described as severe, requiring caplacizumab interruption.7,8

Our data indicate that aspirin, an inexpensive, convenient, and
relatively safe medicine, may play an important role in thrombo-
prophylaxis for both iTTP and hTTP.
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