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KEY PO INT

� T-cell expression of
GPR109A is necessary
for metabolic function
and alloreactivity.

The intestinal microbiota is essential for the fermentation of dietary fiber into short-chain
fatty acids (SCFA) such as butyrate, acetate, and propionate. SCFAs can bind to the
G-protein-coupled receptors GPR43 and GPR109A (HCAR2), with varying affinities to
promote cellular effects in metabolism or changes in immune function. We explored the role
of GPR109A as the main receptor for butyrate in mouse models of allogeneic hematopoietic
cell transplantation (allo-HCT) and graft-versus-host disease (GVHD). Deletion of GPR109A

in allo-HCT recipients did not affect GVHD, but transplantation of T cells from GPR109A knockout (KO) (Gpr109a2/2)
mice into allo-HCT recipient mice significantly reduced GVHD morbidity and mortality compared with recipients of
wild-type (WT) T cells. Recipients of Gpr109a2/2 T cells exhibited less GVHD-associated target organ pathology and
decreased proliferation and homing of alloreactive T cells to target tissues. Although Gpr109a2/2 T cells did not exhibit
immune deficits at a steady state, following allo-activation, Gpr109a2/2 T cells underwent increased apoptosis and were
impaired mitochondrial oxidative phosphorylation, which was reversible through antioxidant treatment with
N-acetylcysteine (NAC). In conclusion, we found that GPR109A expression by allo-activated T cells is essential for
metabolic homeostasis and expansion, which are necessary features to induce GVHD after allo-HCT.

Introduction
The intestinal microbiota consists of trillions of bacteria, most of
which are nonpathogenic commensals important for maintaining
intestinal homeostasis. One microbial function that is beneficial
to the host is the fermentation of nondigestible carbohydrates
into metabolites, notably the short-chain fatty acids (SCFA) ace-
tate, propionate, and butyrate. SCFAs bind to specific G-protein-
coupled receptors GPR41, GPR43, and GPR109A (encoded by
Ffar2, Ffar3, and Hcar2, respectively) on various cell types to reg-
ulate intestinal homeostasis.1,2 SCFA uptake can also occur
through passive diffusion across the membrane or active trans-
port via SLC5a8.3 SCFAs play a significant role in promoting and
maintaining mucosal homeostasis.4-7 For example, butyrate can
enhance the protective intestinal mucus layer by inducing MUC-2
expression in epithelial cells,8 and mice lacking either GPR43 or
GPR109A are more susceptible to chemically induced colitis.9,10

Butyrate also inhibits histone deacetylase (HDAC) activity in den-
dritic cells to induce differentiation of regulatory T cells, or it can
act directly on CD41 T cells in a GPR43-dependent manner to
enhance regulatory T-cell differentiation.11,12

Recent studies by our group and others have demonstrated the
importance of the intestinal microbiota and its metabolites in
the pathophysiology of graft-versus-host disease (GVHD) follow-
ing allogeneic hematopoietic cell transplantation (allo-HCT).13-17

Allo-HCT is a therapy for hematologic malignancies adminis-
tered with the intent to cure. Still, nearly 50% of patients
develop GVHD, an inflammatory and often lethal syndrome pri-
marily mediated by alloreactive donor T cells. Acute GVHD pre-
dominantly affects the intestines, skin, and liver, and patients
with lower gastrointestinal tract involvement are at the highest
risk of mortality.

GVHD is accompanied by marked changes in the composition
of intestinal microbes and their associated metabolites, such as
SCFAs.18-21 In the context of GVHD, we recently reported that
propionate and, to a lesser extent, butyrate, activates GPR43
expression on IECs, leading to activation of the NLRP3 inflam-
masome and downstream IL-18 expression, which promotes
maintenance of intestinal epithelial barrier function resulting in a
reduction of GVHD in mice.22,23 In another study, we
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Figure 1. GPR109A2/2 T cells cause less GVHD than WT T cells. (A) Survival and clinical GVHD scores of lethally irradiated C57BL/6 (B6) or Gpr109a2/2 recipients
transplanted with 53 106 T cell-depleted bone marrow (BM) cells and 13 106 LP/J splenic T cells (LP BM 1 T). Controls were transplanted with T cell-depleted BM only
(LP BM). (B) Survival and clinical GVHD scores of lethally irradiated BALB/c mice transplanted with 53 106 T cell-depleted BM cells and 13 106 WT T cells (B6 1 B6 T
cells), WT BM with Gpr109a2/2 T cells (B6 BM 1 Gpr109a2/2 T), or Gpr109a2/2 BM with WT T cells (Gpr109a2/2 BM 1 B6 T). Controls were transplanted with T
cell-depleted BM only (B6 BM) or Gpr109a2/2 BM only (Gpr109a2/2 BM) in a major (B6 into BALB/c) MHC-mismatched model of GVHD. (C) Same as in B, in a minor
antigen mismatched, MHC-matched model of GVHD (B6 into 129S1). (D) BM chimeras, WT B6 Ly5.2 into Ly5.1 or Gpr109a2/2 Ly5.2 into Ly5.1 were used as donors.
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demonstrated that butyrate could mitigate GVHD in a GPR43-
independent manner by maintaining enterocyte homeostasis
and restoring IEC junction integrity after allo-HCT-induced
mucosal injury.16

The role of GPR109A, which is the primary butyrate receptor
and also binds the B vitamin niacin, has not yet been explored
in GVHD. Therefore, we hypothesized that GPR109A may play a
role in the pathophysiology of acute GVHD.

Materials and methods
Mice and bone marrow transplantation and
assessment of GVHD
Gpr109a2/2 mice, a gift from Klaus Pfeffer (University of Dussel-
dorf), were backcrossed onto the C57BL/6 (B6) (CD45.2 B6,
H-2b) background for $10 generations. Wild type (WT) mice
(GPR109a1/1) were generated by crossing Gpr109a1/2 to gen-
erate littermates. WT C57BL/6 (where indicated), BALB/c, and
129S1/SvImJ mice were obtained from Jackson Laboratory. All
mice used for experiments were 6 to 9 weeks old. Mouse allo-
HCT experiments were performed as previously described, and
in all transplants bone marrow (BM) was T-cell-depleted prior to
transplant.24,25 For the A20 tumor experiment, when mice died,
we performed an autopsy and analyzed the liver for the pres-
ence of tumors, weighed the spleen, and submitted for pathol-
ogy to confirm a tumor death. If no tumor was detected, the
cause of death was counted as due to GVHD. Mice were moni-
tored for survival and clinical GVHD symptoms26 or were killed
for blinded histopathologic and flow cytometric analysis, as
described.27 Experiments were conducted in compliance with
the institutional guidelines at MSKCC.

Flow cytometry and cell sorting
Cells were stained for surface markers with antibody mixtures for
20 minutes at 4�C, followed by intracellular staining with the fix-
ation/permeabilization kit (eBioscience) per the manufacturer’s
instructions. All flow cytometry was performed on a FACS Sym-
phony A5 (BD Biosciences) and analyzed with FlowJo (Tree Star
Software). Cell sorting was performed on an Aria II cytometer
(BD Biosciences), and cell populations were sorted to .95%
purity.

Statistical analyses
Data were processed in GraphPad Prism 5.0 software. Statistical
comparisons between 2 groups were performed with the non-
parametric unpaired Mann-Whitney U test. Survival data were
analyzed with the Mantel-Cox log-rank test. P values ,.05 were
considered statistically significant. All data shown in graphs rep-
resent the mean 6 standard deviation (SD) of each group.

More details on the methods used are presented in the supple-
mental Material.

Data sharing
16S rRNA sequencing data can be found at accession number:
PRJNA765037.

RNAseq data can be found at accession number GSE185903.

Results
GPR109A-deficient donor T cells induce less
GVHD morbidity and mortality
We have previously demonstrated that GPR43 signaling in non-
hematopoietic tissues of the host protects against intestinal
GVHD.23 In contrast to GPR43, which preferentially binds to pro-
pionate and acetate, GPR109A has specificity for binding to
butyrate. Luminal butyrate supports mucosal integrity after allo-
HCT16; therefore, we hypothesized that GRP109a signaling
would be involved in the pathogenesis of GVHD.

We first examined the role of GPR109A in allo-HCT recipient
tissues by transplanting WT grafts into Gpr109a2/2 knockout
(KO) or WT recipient mice following a period of cohousing to
equalize the composition of the intestinal microbiota (supple-
mental Figure S1A). In a major histocompatibility complex
(MHC)-matched, minor histocompatibility antigen mismatched
model of GVHD, lethally irradiated WT or KO recipients, both
bred on a C57BL/6 [B6] inbred mouse strain background, were
transplanted with either LP/J BM only (BM; for non-GVHD con-
trols) or BM with purified splenic T cells (BM 1 T; for GVHD
induction). No difference in survival or clinical GVHD scores
was observed between WT and KO recipient mice (Figure 1A).

We next explored the role of GPR109A in donor allo-HCT grafts
by transplanting grafts from either WT B6 or KO donor mice
into both MHC-disparate (B6/KO to BALB/c) or MHC-matched
(B6/KO to 129S1) recipients to induce acute GVHD. Recipients
of WT BM with KO T cells exhibited significantly reduced GVHD
compared with recipients of WT BM with WT T cells or KO BM
with WT T cells (Figure 1B-C). In these experiments, we used
KO mice bred at our institution and WT mice purchased from
Jackson Laboratories, which raises the possibility of a mouse
batch effect due to genetic or animal housing differences. To
exclude this confounder, we repeated these experiments with
donor T cells from WT and KO littermates and observed again
the significant difference in GVHD-related mortality in recipients
receiving KO vs WT T cells (supplemental Figure 1B). When
transplanting mice with both KO BM and KO T cells, we still
observed significantly improved survival in KO cell recipients
compared with mice transplanted with WT BM and T cells (sup-
plemental Figure 1C). We conclude that donor T cells deficient
for GPR109A exhibit less alloreactivity in GVHD models.

To exclude the possibility that the GPR109A-deficient environ-
ment during T cell development was inducing changes in the

Figure 1 (continued) Survival and clinical GVHD scores of lethally irradiated BALB/c mice transplanted with 53 106 WT T cell-depleted BM cells and 13 106 WT T cells
([B6 ! Ly5.1] BM 1 [B6 ! Ly5.1] T) or WT T cell-depleted BM with Gpr109a2/2 T cells ([B6 ! Ly5.1] BM 1 [Gpr109a2/2 ! Ly5.1] T). Controls were transplanted with
WT ([B6 ! Ly5.1] BM) or Gpr109a2/2 T cell-depleted BM ([Gpr109a2/2 ! Ly5.1]) only. (E) Lethally irradiated BALB/c mice transplanted with 53 106 WT T cell-depleted
BM cells, 13 106 A20 tumor cells, and 0.53 106 WT (B6 BM 1 B6 T 1 A20) or Gpr109a2/2 T cells (B6 BM 1 Gpr109a2/2 T 1 A20). Controls were transplanted with
WT T cell-depleted BM and A20 tumor cells (B6 BM 1 A20) only. Cause of death is plotted in the table to the right. Comparisons of groups for survival curves in (A) to (E)
were performed by Mantel-Cox log rank test for survival. For GVHD scores, data represent the mean 6 standard error, comparison of groups performed by two-way
ANOVA. All results from two to three independent experiments.
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Figure 2. No difference in numbers and percentages of wild type and GPR109A2/2 splenic T cells. (A) Immunofluorescence of magnetically sorted WT B6
macrophages, WT and KO T cells showing GPR109A (green) and DAPI (blue). Bar 5 100 mm. (B) Magnetically sorted WT CD41 and CD81 T cells were stimulated with
anti-CD3/CD28 beads for 72 hours and RNA was extracted to measure expression of GPR109A mRNA by qRT-PCR. Positive control (PC) was magnetically sorted
F4-801 cells. (C) FACS-sorted WT CD41 and CD81 T cells isolated from BALB/c irradiated mice transplanted with TCD BM and 10 3 106 WT T cells at 24-, 48-, and
72-hours post allo-HCT. RNA was extracted to measure expression of GPR109A mRNA by qRT-PCR and expression is shown as fold change compared with expression
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KO donor T cells, we generated BM chimera mice to be used as
donors. Specifically, we transplanted BM cells from WT Ly5.2 or
GPR109a2/2 Ly5.2 mice into lethally irradiated WT Ly5.1 mice
and allowed them to reconstitute to achieve 75% to 90% chime-
rism (supplemental Figure 1D). We used these chimeric mice as
donors in the MHC-disparate GVHD model (B6 to BALB/c). We
found that KO T cells that differentiated in a WT chimera before
transplantation induced less GVHD compared with mice that
received WT BM with WT T cells (Figure 1D). These results sug-
gested that the ability of GPR109A to affect alloreactivity is
intrinsic to the donor T cells. Of note, we did not observe a simi-
lar effect when transplanting WT BM with T cells from Gpr432/2

mice (supplemental Figure 1E) into BALB/c recipients.

To examine whether KO T cells are still capable of eliciting an
antitumor response, we used a graft vs tumor (GVT) model in
which B6 BM and T cells were transplanted into BALB/c recipi-
ents that also received A20 B cell lymphoma cells (Figure 1E).
Recipients of KO T cells showed attenuated GVHD and no
increase in deaths due to lymphoma (Figure 1E table inset). We
conclude that the absence of GPR109A in donor T cells does
not impair GVT activity against A20.

We further compared the ability of WT vs KO T cells to respond
to a mouse cytomegalovirus (MCMV) infection by generating
mixed BM chimeras with WT and KO BM, then subsequently
infected these mice with MCMV (supplemental Figure 2A-B).
We observed minimal differences in frequency of CD41 and
CD81 T cells postinfection (supplemental Figure 2C-I). These
results suggest that KO T cells retain the ability to mount antivi-
ral responses despite a marked reduction in capacity to induce
lethal acute GVHD.

Activated T cells express GPR109A, and the
absence of GPR109A does not alter the
T-cell phenotype
Having identified a T cell-intrinsic role for GPR109A in conferring
GVHD activity, we sought to confirm that GPR109A expression
could be detected in T cells. GPR109A is primarily expressed on
the colonic epithelium, adipose tissue, and immune cells such as
dendritic cells and macrophages.28-30 Splenic T cells, B cells, and
NK cells have been reported to express low or undetectable lev-
els of Gpr109a transcripts at steady state.31,32 We found that
unstimulated, naïve CD41 and CD81 T cells express Gpr109a
transcripts at low levels compared with positive control (F4-801

macrophages), but the expression of Gpr109a transcripts, as well
as GPR109A protein expression in T cells, was significantly
increased upon 72 hours of in vitro T-cell receptor activation with
anti-CD3/CD28 (Figure 2A-B). To determine at what point the
expression of GPR109A is highest after in vivo allo-activation, we

transplanted WT BM and WT T cells into BALB/c recipient mice
and FACS-sorted CD41 and CD81 T cells 24-, 48- and 72-hours
post allo-HCT. We then analyzed the expression of Gpr109a by
qRT-PCR and compared it with unstimulated CD41 and CD81 T
cells from naïve mice (Figure 2C). Expression of Gpr109a was
highest at 24 hours and 48 hours post allo-activation.

To assess whether GPR109A deficiency had an impact on T cell
development, we characterized splenic T cells from WT and KO
littermates at baseline by flow cytometry (Figure 2D-I). We
observed no differences in frequency or absolute counts
of CD41 and CD81 T cells (Figure 2D), effector memory
(Figure 2E,F), central memory (Figure 2G), and naïve (Figure 2H)
T cells. There was no difference in frequency or absolute counts
of regulatory T cells (Tregs) at baseline (Figure 2I). WT and KO T
cells proliferated at similar rates (Figure 2J), and KO T cells exhib-
ited a comparable capacity to produce IFNg after PMA-
ionomycin stimulation in vitro (Figure 2K). We also differentiated
naïve CD4 T cells in vitro into T cell subsets, Th1, Th2, Th17, and
Tregs, and observed similar frequencies for WT and KO T cells in
all conditions tested (supplemental Figure 3A-D). Additionally, in
an in vitro Treg suppression assay, WT and KO Tregs suppressed
responder T cells to the same extent (supplemental Figure 3E).

To examine if there were transcriptional differences between WT
and KO CD41 T cells, we FACS-sorted unstimulated or in vitro
stimulated (for 72 hours with anti-CD3/CD28) T cells and submit-
ted replicates for RNA sequencing analysis. There were few tran-
scriptional differences between unstimulated and stimulated WT
and KO CD41 T cells observed by principal component analysis
(PCA) (supplemental Figure 4A) and differential expression analy-
sis (supplemental Figure 4B-C). Taken together, the absence of
GPR109A on T cells does not alter the transcriptional profile,
baseline frequency, number of splenic T cells, or their capacity
to differentiate, proliferate, polarize, or produce IFNg.

GPR109A-deficient T cells induce less GVHD
organ pathology and inflammation
To further understand the differences in GVHD morbidity and
mortality in allo-HCT recipients of GPR109A-deficient donor T
cells, we analyzed GVHD target-organ pathology in the MHC-
disparate model (B6 to BALB/c). Histological examination of
GVHD target organs (skin, liver, small intestine, and colon)
revealed significantly lower total GVHD scores on a validated
scale27 in recipients of KO T cells at day 7 and day 14 post allo-
HCT (Figure 3B and supplemental Figure 5A). Allo-HCT recipi-
ents of KO T cells had significantly lower GVHD histopathology
scores in the liver and skin on day 7 (supplemental Figure 5A)
and in all target organs at day 14 (representative histopathologi-
cal micrographs shown in Figure 3A-B).

Figure 2 (continued) in naïve FACS-sorted CD41 and CD81 WT T cells, respectively. Expression levels were assessed as biological triplicates. Positive control (PC) was
FACS sorted CD11b1 cells from a naïve BALB/c mouse spleen; expression of PC as fold change to naïve FACS-sorted CD41 WT T cells. (D) Percentage and numbers of
splenic CD41 and CD81 T cells from GPR109a1/1 (WT) and GPR109a2/2 (KO) littermate mice at baseline. (E) Gating strategy for effector memory (CD441CD62L2),
central memory (CD441CD62L1), and naïve (CD442CD62L1) T cell populations. (F-H) Percent and numbers of effector memory (F), central memory (G), and naïve T cells
(H), previously gated on live, CD451, CD31, and/or CD41 and CD81. (I) Representative flow cytometric analysis of percent and number of regulatory T cells
(CD251Foxp31), previously gated on live, CD451, CD31, and CD41. (J-K) Magnetically sorted WT and KO CD41 and CD81 T cells were labeled with CFSE and
stimulated with anti-CD3/CD28 for 72 hours. Representative concatenated CFSE line graphs and quantification showing percentages of CFSEmedium/low WT and KO T
cells. (K) CD41 and CD81 T cells were stimulated with PMA/ionomycin for 4 hours and mean fluorescence intensity (MFI) of intracellular IFNg measured. Comparisons in
(B) and (C) were performed by two-tailed unpaired Mann-Whitney Test versus unstimulated or naïve cells. *P , .05, **P , .01, ***P , .001. For (C) significance was
calculated by comparing to naïve CD41 or CD81 T cells using a one-sample T-test. Differences in pairs in (D) to (K) are not significant, measured by two-tailed unpaired
Mann-Whitney test, n 5 6-10 mice per group. All values are means 6 standard deviation. All results from three independent experiments.
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Figure 3. GPR109A2/2 T cell recipients have reduced pathology and inflammation. Lethally irradiated BALB/c recipients received B6 WT TCD BM and 0.53 106 WT
or KO T cells. (A) Representative H&E images of GVHD target organs small intestine (SI), large intestine, liver and skin on day 14 after transplant. Arrows indicate high
density of infiltrating lymphocytes. (B) Organs were scored for histopathalogic damage at day 14. (C-D) Serum cytokines were measured at 7 days post allo-HCT (C)
and 14 days post allo-HCT (D). (E-G) mRNA was extracted from colonic tissue at day 7 post allo-HCT to measure expression of specific intestinal genes. (H-I) Bacterial
DNA was extracted from day 7 stool and 16S gene amplicon sequencing to measure alpha diversity (H) and linear discriminate analysis of effect size (LEfSe) analysis
comparing bacterial differences between WT and KO T cell recipients (I). Controls are stool collected from WT BALB/c mice. (J) SCFAs from day 7 cecal contents
was measured by GC-MS. All comparisons in (B) to (J) were performed by two-tailed unpaired Mann-Whitney Test. Values are means 6 standard deviation. *P , .05,
**P , .01, ***P , .0001, n 5 5-10 mice per group. All results from two independent experiments.
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Figure 4. Recipients of GPR109A2/2 T cells have fewer donor T cells post allo-HCT compared to WT. Lethally irradiated BALB/c recipients received B6 WT TCD
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Figure 5. GPR109A2/2 T cells undergo increased apoptosis. Lethally irradiated BALB/c recipients received B6 WT TCD BM and 5 3 106 WT or KO T cells. (A) Donor
CD41 and CD81 T cell numbers were analyzed from spleen on day 3 post allo-HCT. (B) Donor regulatory T cells from spleen on day 3 post allo-HCT.
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To analyze differences in the development of GVHD between
recipients of WT T cells vs KO T cells, we measured serum
concentrations of inflammatory cytokines IFNg, TNFa, IL-2, IL-6,
IL-10, CXCL1, macrophage inflammatory protein 2 (MIP-2), IL-17,
and IL-12p70 (Figure 3C-D; supplemental Figure 5B-C), which
have been implicated in the pathophysiology of acute
GVHD.33,34 We observed significantly increased serum concentra-
tions of IL-10, decreased IFNg at day 7 (Figure 3C), and TNFa,
IL-2, and CXCL1 at day 14 (Figure 3D) in KO T-cell recipients.

As the gut is a major target organ for GVHD, we further ana-
lyzed gut mucosal changes and overall gut health in more detail
by measuring transcript abundance of several genes by qRT-
PCR in colonic tissue on day 7 post allo-HCT (Figure 3E-G;
supplemental Figure 5D-K). In recipients of KO T cells, we mea-
sured significantly higher transcript abundance of Gpr43 and
Il-18 in colonic tissues (Figure 3E). Recipients of KO T cells also
had increased relative expression of the goblet-cell-derived
gene resistin-like molecule b (Retnlb) (Figure 3F), which is impor-
tant for the regulation of intestinal colitis.35,36 The Paneth cell
protein regenerating islet-derived 3g (Reg3g) can counteract
GI-GVHD in mice,37 and expression of the genes encoding both
antimicrobial peptides (AMPs) Reg3b and Reg3g were increased
in KO T-cell recipient colonic tissue (Figure 3G). The higher
expression of AMP transcripts led us to hypothesize that the
microbiota perturbations induced by GVHD might be attenu-
ated in recipients of KO T cells.37,38 Microbiota profiling by 16S
rRNA gene sequencing revealed less microbial community dis-
ruption post allo-HCT in recipients of KO T cells, indicated by
increased overall a diversity measured by the Simpson recipro-
cal index (Figure 3H). We further assessed the taxa that best
explained the differences between the 2 groups using linear dis-
criminate analysis of effect size (LEfSe) (Figure 3I). Gram-positive
bacteria, including Lactobacillus and Enterococcus, which are
targets for both Reg3b and Reg3g AMPs, were increased in WT
T-cell recipients. Enterococcus has been associated with
increased GVHD in both patients and mouse models,27,39 and
we have previously demonstrated an increase in Lactobacillus in
mice with GVHD.20 Conversely, KO T-cell recipients exhibited
an increased abundance of the taxa Clostridium and Blautia,

which are associated with reduced GVHD-related mortality.40

Furthermore, recipients of KO T cells had higher cecal concen-
trations of the SCFAs acetate, propionate, and butyrate (Figure
3J). These results demonstrate that compared with recipients of
WT T cells, KO T-cell recipients display significantly less target-
organ GVHD, lower circulating concentrations of inflammatory
cytokines, less intestinal damage, and less GVHD-associated
perturbations of host-microbiome homeostasis.20,37,41

Allo-HCT recipients with GVHD have fewer
GPR109A-deficient T cells
To study the mechanism by which GPR109A contributes to allor-
eactivity of T cells, we characterized immune cell populations in
the spleen and lamina propria (LP) of small intestine (SI) and
colon tissues in allo-HCT recipients. We observed significantly
lower numbers of donor CD41 T cells in all 3 tissues at day 7
and day 14 in recipients of KO T cells (Figure 4A) compared
with recipients of WT T cells. Specifically, we found significant
decreases in CD41 effector memory T cells in the indicated tis-
sues at both time points (Figure 4B). We also observed
decreased numbers of donor CD81 T cells in SI and colon LP at
day 7, and decreased numbers of CD81 T cells in spleen and SI
LP at day 14 (Figure 4C), as well as decreased CD81 effector
memory T cells in all 3 tissues, particularly at day 14 (Figure 4D).
We found an increase in the percentage of Tregs at days 7 and
14, along with an increase in the ratio of Tregs to conventional
CD41 T cells in recipients of KO T cells (Figure 4E-F). Differenti-
ation to Th1 or Th17 was equivalent between KO and WT T
cells with the exception of small but statistically significant
decreases in CD41T-bet1 cells in the spleen and CD41Rorgt1 T
cells in the spleen and SI (Figure 4G-H).

We examined the role of CD81 T cells by investigating cytotoxic
markers in recipients of WT or KO T cells (supplemental Figure
6). At day 7 post allo-HCT, there were minor differences in the
number of WT vs KO CD81 Granzyme B1 T cells (supplemental
Figure 6A). On day 14, we observed an increased frequency
and number of KO CD81 Granzyme B1 T cells as well as
increased numbers of CD81CD1071 KO T cells (supplemental
Figure 6B). In addition, we observed in an in vitro CTL assay
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that both WT and KO T cells induced similar levels of cell lysis
(supplemental Figure 6C).

Alloreactive Gpr109a2/2 T cells undergo
increased apoptosis
To understand why there were fewer T cells in recipients of KO
grafts at day 7 and day 14, we studied the early kinetics of T-cell
activation and proliferation, focusing on the spleen and mesen-
teric lymph nodes (mLNs). Lower numbers of donor T cells in
recipients of KO T cells were already apparent at day 3 post
allo-HCT in the spleen (Figure 5A) and mLNs (supplemental
Figure 7A), as well as an increased percentage of donor Tregs in
spleens of KO T-cell recipients (Figure 5B).

We speculated that the reduced numbers of KO T cells at this
early time point could be due to less trafficking from the sys-
temic circulation to the gut via the mLNs. LPAM-1 is a critical
homing integrin necessary for the development of intestinal
GVHD.42 We found a significant decrease in the frequency of

splenic (Figure 5C) and mLN (supplemental Figure 7B) LPAM-11

T cells in KO T-cell recipients. We did not detect any difference
in proliferation of WT vs KO T cells after in vitro anti-CD3/CD28
stimulation (Figure 2I). However, we found that T cells in KO
T-cell recipients proliferated less in vivo compared with WT
(Figure 5D).

To determine if there was an initial early expansion of KO T cells
followed by a contraction, representing recipient DC-mediated
activation-induced cell death (AICD), we measured numbers of
CD41 and CD81 T cells at 1, 2, and 3 days following allo-HCT
(Figure 5E-H; supplemental Figure 7C-D). CD41 KO T cells were
present in similar numbers to WT on day 1 and day 2, with
decreased numbers by day 3 post allo-HCT in both spleen and
mLNs. There were reduced frequency of LPAM-11 T cells in KO
T-cell recipients on day 3 post allo-HCT in the spleen (Figure 5F)
and mLNs (supplemental Figure 7D). We also measured the fre-
quency of activated T cells using activation markers CD25 and
PD-1 in the spleen (Figure 5G-H) and mLNs (supplemental
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OCR of in vitro activated WT (black) or KO (red) T cells, as measured under basal conditions and in response to oligomycin, FCCP, and Rot 1 Ant and spare respiratory
capacity of WT and KO T cells. (C) Representative flow cytometric analysis of green vs. red JC-1 aggregates of in vitro activated WT and KO purified T cells without
(blue) and with (green) N-acetylcysteine (NAC) in the drinking water, or WT BM with KO T cells without (red) and with (orange) NAC in the drinking water. Controls
were transplanted with T cell-depleted BM only without (light blue) and with NAC (purple) in the drinking water. Comparisons in (H) were performed by Mantel-Cox
log rank test for survival. All comparisons in (A) to (C) were performed by two-tailed unpaired Mann-Whitney Test. Values are means 6 standard deviation. *P , .05,
****P , .0001, n 5 4-9 mice per group, or as indicated. All results from two independent experiments.
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Figure 7E-F). We observed significant differences in frequencies
of both CD251 and PD-11 KO T cells in the spleens of allo-HCT
recipients on day 3, indicating reduced activation of KO T cells.
To further analyze activation of WT and KO T cells, we noted
reduced expression of pp-Erk1/2 in KO T-cell recipient T cells at
day 3 post allo-HCT, as measured by mean fluorescence inten-
sity (MFI) (supplemental Figure 7G) as well as reduced expres-
sion of phosphorylated Akt (pAkt) and pp-ERK1/2 at day 7 post
allo-HCT (supplemental Figure 7H). In summary, KO T cells
become less activated compared with WT post allogeneic
stimulation.

We hypothesized that the reduction in cell numbers and
decreased activation of KO T cells could be due to exhaustion
or cell death. However, KO T cells did not show signs of T-cell
exhaustion in any of the tissues examined after allo-HCT
(supplemental Figure 8A-B). We further analyzed cell death and
observed an increased percentage of Annexin V1 splenic CD41

T cells in KO T-cell recipients (Figure 5I). Two other proapoptotic
markers, Bim and cleaved Caspase-3, were also increased in
CD41 and CD81 KO T cells (Figure 5J) and CD41 KO T cells in
mLNs (supplemental Figure 7I) after transplant. However, the
expression of FAS, a protein typically triggered in AICD,43 was
not different between WT and KO CD41 or CD81 T cells
(Figure 5K), which may suggest mitochondria-induced apopto-
sis.44 In an in vitro time-course experiment to measure the per-
centage of T cells expressing apoptotic markers 24, 48, and 72
hours after stimulation with anti-CD3/CD28, we found that by
48 hours, there was a significantly increased frequency of KO T
cells expressing the apoptotic markers Annexin-V and cleaved
Caspase-3 compared with WT (Figure 5L). By 72 hours, there
was a higher frequency of Bim1 KO T cells compared with WT
(Figure 5M), and there was no difference in expression of FAS at
any time point post in vitro stimulation (Figure 5N).

Alloreactive KO T cells become metabolically
dysregulated
To understand whether butyrate differentially affects WT vs KO
T cell after immune stimulation, we stimulated CD41 and CD81

T cells in vitro with anti-CD3/CD28 and increasing doses of buty-
rate (10 mM, 100 mM, and 1000 mM) that are equivalent to in vivo
plasma or tissue levels16,45 (supplemental Figure 9A-B). Butyrate
significantly inhibited proliferation at higher doses, most likely
due to toxic effects of the SCFA as reported32,46 (supplemental
Figure 9C-D), and this effect was independent of the genotype.
In an in vitro MLR assay with WT or KO T cells plus/minus 100
mM butyrate (supplemental Figure 9E-J), we saw a significant
decrease in numbers of KO CD41 T cells compared with WT T
cells, but this was again independent of butyrate (supplemental
Figure 9E). There was minimal difference in divided CD41 KO T
cells (supplemental Figure 9F), and the percentage of apoptotic
Bim1 KO CD41 T cells was increased, but butyrate did not
affect the responses (supplemental Figure 9G). Similar pheno-
types, again independent of butyrate, were observed for WT
and KO CD81 T cells (supplemental Figure 9H-J).

Production of reactive oxygen species (ROS) is critical for the
metabolic programming of T cells, but high concentrations of
ROS in T cells can trigger programmed cell death.47 We
observed an increased level of intracellular ROS in KO T cells on
day 3 post allo-HCT (Figure 6A). To further investigate our

hypothesis that apoptosis of KO T cells occurs due to activation
of mitochondrial apoptosis pathways and may be due to dysre-
gulation of intracellular metabolic pathways, we measured mito-
chondrial respiratory function of unstimulated and stimulated T
cells from WT and KO littermates. We observed no difference in
basal oxygen consumption rate (OCR) at baseline between
unstimulated T cells (supplemental Figure 9K-L). However, after
72 hours of in vitro stimulation with anti-CD3/CD28, KO T cells
had significantly decreased basal OCR and spare respiratory
capacity compared with WT T cells (Figure 6B). We also exam-
ined mitochondrial membrane potential of in vitro stimulated,
purified WT and KO T cells using the cationic JC-1 dye.48 Acti-
vated KO T cells had a decreased red/green fluorescence ratio,
reflecting increased mitochondrial depolarization and reduced
metabolic activity (Figure 6C). We hypothesized that the meta-
bolic dysfunction of KO T cells could potentially be reversed by
adding the antioxidant N-acetyl cysteine (NAC) because treat-
ment of T cells with NAC can reduce apoptosis, induce prolifera-
tion, and enhance antitumor immunity.49,50 We returned to
in vivo GVHD experiments in which the drinking water of BALB/
c recipients of WT or KO donor T cells were supplemented or
not with NAC. While NAC treatment had no effect on GVHD
survival in recipients of WT T cells, strikingly, this treatment res-
cued the alloreactivity of KO T cells (Figure 6D). This indicates
that improving the metabolic health of KO T cells restored their
alloreactive potential and GVHD activity.

Discussion
In the current study, we describe a novel role for the butyrate
receptor GPR109A in alloreactive T cells in GVHD. At steady
state, naïve, memory, and Tregs compartments are present in
equal numbers and frequency in Gpr109a KO vs WT mice; they
showed similar proliferative capacity and ability to produce
IFNg. This finding aligns with a previous report that WT and KO
splenic CD41 T cells produced equivalent amounts of IL-17 and
IL-10 at steady state.31 In the setting of mouse GVHD, the
absence of GPR109A in recipient tissues had no significant
effect on survival. This could be due to compensatory function
by another SCFA receptor, such as GPR43 or the butyrate trans-
porter SLC5a8. However, GPR109A was required by T cells in
the transplant graft to induce GVHD morbidity and mortality, as
well as target organ pathology. This finding was accompanied
by an attenuation of GVHD-induced changes to the intestinal
microbiome. In KO T-cell recipient spleens, CD81 T cells had
increased expression of granzyme B and the degranulation
marker CD107, in spite of less GVHD. However, there was a sig-
nificantly decreased overall number of CD81 T cells present in
the KO T-cell recipient spleens, and this model of GVHD is pri-
marily driven by CD41 T cells.51 Therefore, we hypothesize that
despite the increased activation of CD81 KO T cells, this was
likely not enough to cause a difference in GVHD. Overall, KO
donor T cells were less activated, exhibited decreased expres-
sion of a gut-homing molecule, LPAM-1, and displayed
increased apoptosis. Nevertheless, the apoptosis observed
appeared to be mitochondrially-induced as evidenced by the
lack of expansion and contraction, as well as increased expres-
sion of proapoptotic markers Bim and Caspase-3, with no differ-
ence in FAS upregulation. These findings are in line with
previous studies showing that GPR109A plays a role in the meta-
bolic regulation of cells in which it is expressed; however, this is
the first time it has been described in T cells.52-54
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GPCRs can regulate several cellular processes in T cells, includ-
ing homeostatic proliferation, cell size, and metabolism, either
through direct downstream signaling or by guiding T-cell migra-
tion toward specific signals.55 It is possible that GPR109A meta-
bolically stabilizes T cells, allowing them to receive necessary
signals such as LPAM-1 to migrate to the gut. Our data are con-
sistent with a model in which T cells become metabolically
unstable in the absence of GPR109A, leading to increased apo-
ptosis and, therefore, less allo-activation. On the other hand,
KO T cells were still capable of responding to the same extent
as WT T cells in a viral infection and to allogeneic lymphoma
cells in the models tested here.

The role of GPR109A signaling in T cells has not previously
been well studied. At high concentrations (.1 mM), butyrate
induces cell death of T cells independent of GPR109A (data not
shown), which has been described for T cells and other immune
cell types.32,46 Depending on the concentration, butyrate can
induce FAS-mediated apoptosis or Th1-associated factors IFNg

and T-bet, independent of GPRs.56 Butyrate was also shown to
promote memory potential of activated CD81 T cells through
effects on cellular metabolism,57 highlighting the many roles of
butyrate in T cell function and regulation. In the setting of
GVHD, butyrate is a survival factor for enterocytes16 and pro-
tects from GVHD on nonhematopoietic target tissues of the
host in a dose-dependent manner via GPR43.23

For the first time, we provide evidence that GPR109A in allo-
activated T cells plays an important role in the pathogenesis of
GVHD. The observed decrease in GVHD is likely a secondary
effect of fewer Gpr109a2/2 T cells, leading to decreased epithelial
cell damage in the gut, increased production of antimicrobial pep-
tides, and increased abundance of SCFA-producing bacteria.
Notably, Gpr109a2/2 T cells induce less GVHD in the host but still
retain antitumor as well as antiviral activity in a nonallogeneic set-
ting. Our findings on GPR109A on T cells call for further evaluation
in pharmacological and clinical translational studies in the allo-HCT
setting. Prior to transplant, T cells could be modified to no longer
express GPR109A either through the use of short-hairpin RNA
(sh-RNA), or a neutralizing antibody targeting GPR109A could be
used. Furthermore, transplant donors and recipients could be
tested for gene variations at the GPR109A coding regions prior to
transplant and followed up for GVHD outcomes.
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