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KEY PO INTS

� Higher c-20S protea-
some and lower IGF-1
levels are associated
with hemoglobin drops
in children with P falcip-
arum infections.

� Known activities of
c-20S proteasome and
IGF-1 levels suggest
roles in hemolysis and
insufficient
erythropoiesis.

Anemia is common among young children infected with Plasmodium falciparum and severe
malarial anemia (SMA) is a major cause of their mortality. Two major mechanisms cause
malarial anemia: hemolysis of uninfected as well as infected erythrocytes and insufficient
erythropoiesis. In a longitudinal birth cohort in Mali, we commonly observed marked
hemoglobin reductions during P falciparum infections with a small proportion that pro-
gressed to SMA. We sought biomarkers of these processes using quantitative proteomic
analysis on plasma samples from 9 P falciparum-infected children, comparing those with
reduced hemoglobin (with or without SMA) vs those with stable hemoglobin. We identi-
fied higher plasma levels of circulating 20S proteasome and lower insulin-like growth
factor-1 (IGF-1) levels in children with reduced hemoglobin. We confirmed these findings
in independent enzyme-linked immunosorbent assay-based validation studies of subsets of
children from the same cohort (20S proteasome, N 5 71; IGF-1, N 5 78). We speculate
that circulating 20S proteasome plays a role in digesting erythrocyte membrane proteins

modified by oxidative stress, resulting in hemolysis, whereas decreased IGF-1, a critical factor for erythroid matura-
tion, might contribute to insufficient erythropoiesis. Quantitative plasma proteomics identified soluble mediators that
may contribute to the major mechanisms underlying malarial anemia. This study was registered at www.clinicaltrials.
gov as #NCT01168271.

Introduction
Anemia in young children is a major global health problem,
especially in low- and middle-income countries, that impairs
their health and development.1,2 Although severe malarial ane-
mia (SMA) is an important cause of mortality, moderate anemia
is more common in young children from high malaria transmis-
sion areas.3 Multiple factors contribute to anemia risk, including
red blood cell abnormalities, nutritional deficiencies, helminthia-
sis, and malaria infections.1,3 Interventional trials of antimalarial
chemoprevention or insecticide-treated bed nets showed
malaria prevention reduces the risk of anemia.3,4 We previously
reported that anemia including SMA episodes typically appear
as an abrupt drop in hemoglobin during Plasmodium falciparum
infection.5

Two major mechanisms contribute to SMA: (1) hemolysis of
infected and uninfected erythrocytes and (2) insufficient erythro-
poiesis.6,7 Merozoite egress from infected red blood cells results
in hemolysis, but the loss of red cells during malaria is typically

out of proportion to the degree of parasitemia.8,9 Several studies
proposed that hemolysis of uninfected red blood cells (URBCs)
results from membrane protein and lipid modifications, including
reduced CD55 and complement receptor 1 levels.6,10-15 Insuffi-
cient erythropoiesis has been associated with immune responses
to malaria infection in some but not all studies.16-18 Bone marrow
studies in patients with malaria anemia have revealed dysery-
thropoiesis.19,20 The proportion of hemozoin-containing macro-
phages in peripheral blood negatively correlated with
hemoglobin levels in malaria-infected children, and free plasma
hemozoin inhibited erythropoiesis in vitro.21

Here, we aimed to identify novel factors associated with acute
hemoglobin loss during malaria infection using quantitative pro-
teomics analysis of plasma samples. This approach is designed
to profile global levels of plasma proteins and thereby identify
pathways and proteins that associate with and thus might medi-
ate hemolysis or insufficient erythropoiesis during malaria
infection.
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Methods
Study cohort and plasma sample selection
Samples were collected from children in a longitudinal birth
cohort conducted in Ou�eless�ebougou, Mali. The protocol and
study procedures were approved by the National Institute of
Allergy and Infectious Diseases Institutional Review Board at the
US National Institutes of Health, and the Faculty of Medicine,
Pharmacy and Dentistry Ethics Committee at the University of
Bamako, Mali. Parents/guardians provided written informed con-
sent for participation of the children in the study.

Study participants attended routine clinic visits monthly during
the malaria transmission season and every 2 months during the
dry season, as well as unscheduled visits anytime the child was
sick. SMA was defined as parasitemia detected by blood smear
microscopy and hemoglobin below 6 g/dL. Severe malaria (SM)
syndromes other than SMA were defined as parasitemia
detected by blood smear microscopy and 1 or more World
Health Organization-defined criteria: $2 convulsions in the past
24 hours; prostration (inability to sit unaided or, in younger
infants, inability to move/feed); respiratory distress (hyperventila-
tion with deep breathing, intercostal recessions, and/or irregular
breathing); coma (Blantyre score #3). Hemoglobin loss without
SMA was defined as a reduction of .1.5 g/dL in hemoglobin
compared with their previous measurement within 8 weeks. This
represents a hemoglobin change greater than the 90th percen-
tile (equal to d of 1.4 g/dL) between 2 hemoglobin measure-
ments among uninfected children. Stable hemoglobin among
infected children was defined as a change of #1 g/dL in hemo-
globin compared with the previous measurement within
8 weeks.

For the quantitative proteomic studies, 3 samples were ran-
domly selected from children with a hemoglobin drop of .1.5
g/dL with SMA (hereafter called HDSMA) and 3 from those with a
drop of .1.5 g/dL without SMA (HDNSMA), and these were
matched for age and parasite density with an equal number of
infected children with stable hemoglobin.

Quantitative proteomic analysis
A detailed description of sample preparation for proteomic anal-
ysis including Tandem Mass Tag (TMT) labeling, sample fraction-
ation, liquid chromatography tandem mass spectometry and
bioinformatic analysis is described in the supplemental Methods
on the Blood Web site. Briefly, plasma samples depleted of 14
abundant proteins were reduced and alkylated followed by tryp-
sin digestion. Peptides of each sample were then labeled with
TMT reagents using TMT10plex Mass Tag Labeling Kit (Thermo
Scientific). Equal amounts of labeled peptide samples were
combined and fractionated on a C18 column. Peptide fractions
were separated by nanoRP-HPLC (Ultimate 3000) connected to
the Orbitrap Fusion Lumos Tribid mass spectrometer using a
gradient of 5% to 30% of solvent B (0.1% formic acid, acetoni-
trile) for 75 minutes, and then to 85% solvent B for an additional
30 minutes. Acquired spectra analysis and protein quantification
were performed using PEAKS Studio 8.5 and PEAKS Q module
(Bioinformatics Solutions, Inc.).

Proteasome activity
Peptidase activity levels (caspase, trypsin, and chymotrypsin) in
plasma were measured by continuous monitoring of production

of 7-amino-4 methyl coumarin from fluorogenic peptides. The
methods were based on Ma et al.22 Detailed assay information
is described in the supplemental Methods.

ELISA validation studies
Circulating 20S proteasome, extracellular nicotinamide phos-
phoribosyltransferase (NAMPT), interleukin 18 (IL-18), a-1-anti-
trypsin, and insulin-like growth factor-1 (IGF-1) levels were
measured in selected children’s plasma samples by the sand-
wich enzyme-linked immunosorbent assay (ELISA) method,
according to manufacturers’ instructions. The following ELISA
kits were used: 20S proteasome (Enzo Life Sciences, Farming-
dale, NY); extracellular NAMPT (eNAMPT), DuoSet ELISA,
human PBEF/Visfatin, IL-18, DuoSet ELISA, human total IL-18,
IGF-1, quantikine ELISA (R&D Systems Minneapolis, MN); and
A1AT (Aviva Systems Biology, San Diego, CA). Limit of detec-
tion for the different analytes were as follows: 20S proteasome,
0.05 mg/mL; eNAMPT, 4 ng/mL; IL-18, 23.4 pg/mL; A1AT, 1.09
ng/mL; IGF-1, 0.01 ng/mL.

Statistical analyses
Differences between groups in protein abundance (quantitative
proteomics) were analyzed by a 2-sample t test of the log2 trans-
formation of the abundance values. Proteins with a log2 fold
change ,20.3 or .0.3, P , .05, and all proteins with a log2

fold change of #-1.0 or $1.0, were defined as differentially
expressed proteins. Differences between groups in soluble
mediator levels measured by ELISA and in proteasome activities
were analyzed by the Wilcoxon method using JMP version 14
(SAS Institute, Cary, NC). P values were corrected for multiple
comparisons by the Holm method, using R function p.adjust.
Adjusted P values ,.05 were considered significant.

Results
Study population
Study participants were selected from among participants in a
longitudinal birth cohort conducted in Ou�eless�ebougou, Mali.23

In the overall cohort, 10.7% and 7.6% of children had hemoglo-
bin type AC and AS, respectively23; only children with hemoglo-
bin type AA were included in the current study.

We speculated that processes associated with acute hemoglo-
bin drop during P falciparum infections are shared between chil-
dren that develop moderate and severe anemia. Therefore, for
quantitative proteomics analysis, 3 samples from each of the fol-
lowing P falciparum-infected groups were included: (1) stable
hemoglobin (,1.0 g/dL change in hemoglobin); (2) hemoglobin
drop (.1.5 g/dL change in hemoglobin) without SMA (HDNSMA);
and (3) hemoglobin drop with SMA (hemoglobin ,6 g/dL)
(HDSMA).

Age and parasite densities had been matched and were similar
between children in the 3 groups (Table 1). By including P falcip-
arum-infected children with stable hemoglobin as a comparator
group, we sought to identify changes specifically related to
reduction in hemoglobin, rather than changes associated with
malaria infection per se.

The validation study included plasma samples corresponding to
the 3 groups of children included in quantitative proteomic
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analysis (stable hemoglobin, HDSMA, and HDNSMA) as well as
samples from uninfected children and children with severe
malaria syndromes other than SMA, indicated as SM (supple-
mental Table 1). Hemoglobin drop does not occur in every
infection; thus, samples were selected from infected children
including SM cases with stable hemoglobin, and uninfected chil-
dren with stable hemoglobin, and these were matched for age
and parasite density to those from HDSMA and HDNSMA children.
All malaria-infected children presented with clinical symptoms
and were treated with antimalarial drugs. Mild anemia is com-
mon among children in Africa.1 A total of 41.7%, 70.3%, 52.3%,
and 57.1% of malaria-infected with stable hemoglobin, HDSMA,
HDNSMA, and SM children had mild anemia in the prior visit.

Because of limitations in some sample volumes, 56% of samples
had sufficient volume for testing in all assays; hence, the descrip-
tion of the study population is shown separately for the different
analytes (supplemental Table 1).

Quantitative plasma proteome analysis of
differentially expressed proteins associated with
hemoglobin drop
We employed tandem mass spectrometry and TMT on sam-
ples collected at the time of infection to quantify the
plasma proteome and associate variations with hemoglobin
loss.

Table 1. Characteristics of children included in quantitative proteomic study

Sample
number Group Age (mo)

Parasite count/
300 WBC

Hemoglobin
(g/dL)

Change in
hemoglobin

(g/dL)

1 Stable hemoglobin 34.8 3051 12.8 20.4

2 Stable hemoglobin 12.5 2213 11.7 20.8

3 Stable hemoglobin 20.1 8049 10.1 20.4

4 Hemoglobin drop
with SMA

35.4 3726 5.3 2.7

5 Hemoglobin drop
with SMA

9.6 1129 4.7 3.6

6 Hemoglobin drop
with SMA

32.8 4231 5.6 3.3

7 Hemoglobin drop
without SMA

37.1 4879 7.5 5.7

8 Hemoglobin drop
without SMA

14.3 324 7.1 2.3

9 Hemoglobin drop
without SMA

19.8 7609 6.7 3.2

WBC, white blood cell.

Hemoglobin drop without SMA

109

Hemoglobin drop with SMA

log2 fold:
<–0.3 or >0.3,

p<0.05

log2 fold:
<–1.0 or >1.0

log2 fold:
<–0.3 or >0.3,

p<0.05

log2 fold:
<–1.0 or >1.0

4631 6327

856 proteins quantified with ≥ 2 peptides

Differentially expressed proteins

Figure 1. Quantitative proteomic of children’s plasma with hemoglobin drop. Venn diagram indicating the number of differentially expressed proteins in children
with hemoglobin drop with and without SMA.
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In the quantitative proteomics analysis of 9 samples, a total of
1205 human proteins were quantified with ,1% false discovery
rate, of which 856 proteins were identified and quantified with
at least 2 unique peptides in all samples. The relative abun-
dance of the 856 quantified proteins in children with hemoglo-
bin drop were then calculated as log2 fold change relative to
samples from children with stable hemoglobin (supplemental
Table 2). Because quantitative proteomics was used as a discov-
ery phase, 2 cutoffs were used to identify candidate proteins
associated with acute hemoglobin drop in malaria-infected chil-
dren: log2 fold change ,20.3 or .0.3 (P , .05), and log2 fold
change #21.0 or $1.0 (any P value). The number and details of
proteins that met these criteria are shown in Figure 1, Table 2,
and supplemental Table 2.

Pathway analysis of differentially
expressed proteins
To infer functional associations between plasma protein abun-
dance and hemoglobin drop, the data set of differentially
expressed proteins (Table 2; supplemental Table 2) was used to
identify protein interaction networks using Ingenuity Pathway
Analysis. The networks inferred from the subset of proteins that
met the cutoff for log2 fold change ,20.3 or .0.3, P , .05,
included 2 interconnected subnetworks. In both HDSMA and
HDNSMA children, 1 subnetwork comprised multiple 20S protea-
some subunits that were significantly more abundant compared
with malaria-infected children with stable hemoglobin (Figure
2A,C). The other subnetwork in both HDSMA and HDNSMA com-
prised protein families associated with the response to infection
(acute phase response proteins, cytokine activity), blood coagu-
lation, and lipid metabolism (Figure 2A,C). Proteins associated
with complement activity and those associated with heme bind-
ing (hemopexin and a-1-microglobulin) were lower in both
HDSMA and HDNSMA compared with malaria-infected children
with stable hemoglobin; however, these differences in abun-
dance only achieved statistical significance for complement-
associated proteins in HDSMA and for heme binding proteins in
HDNSMA (Table 2).

The networks inferred from the subset of proteins that met the
cutoff for log2 fold change ,21.0 or .1.0 (Figure 2B,D)
included acute phase response proteins and growth factor-
associated proteins in both HDSMA and HDNSMA groups. In the
HDSMA group, the network also included complement compo-
nents, whereas in the HDNSMA group, the network included 20S
proteasome subunits.

Differentially expressed proteins selected for
validation studies
Based on Ingenuity Pathway Analysis network analysis, we
selected 20S proteasome, NAMPT, phospholipid transfer
protein (PLTP), glutamate-cysteine ligase (GCLC), a-1-anti-
trypsin (SERPINA1, A1AT), IL-18, and IGF-1 for validation
studies in an independent subset of children from the same
cohort.

Circulating 20S proteasome Several components of 20S pro-
teasome were associated with hemoglobin loss in the quantita-
tive proteomics analyses, represented by 7 and 9 subunits
overexpressed in HDSMA and HDNSMA groups, respectively. This
is the first report describing an increase in 20S proteasome inTa
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Figure 2. Networks of differentially expressed plasma proteins in children with reduced hemoglobin. Comparison of differentially expressed plasma proteins in chil-
dren with hemoglobin drop (A,B) with SMA and (C,D) without SMA to control malaria-infected children by Ingenuity Pathway Analysis. Analyses in panels A and C
included differentially expressed proteins defined as log2 fold change ,20.3 or .0.3, P , .05, and analyses displayed in panels B and D included differentially
expressed proteins defined as log2 fold change #-1.0 or $1.0. Green and red symbols represent proteins that were down- and upregulated, and gray symbols repre-
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malarial anemia. Increased circulating 20S proteasome (c-20S
proteasome) levels in plasma have been previously observed
with other acute and chronic diseases.24 In both groups of chil-
dren with a substantial hemoglobin drop studied here, protea-
some subunits represented more than 1/3 of the differentially
expressed plasma proteins included in the primary network.
As was seen in the quantitative proteomics analysis, c-20S pro-
teasome concentrations measured by ELISA also significantly dif-
fered between groups (P , .0001). Pairwise comparisons to
identify the group driving the difference showed that children
with HDSMA or HDNSMA had similar c-20S proteasome levels
(Figure 3A) that were higher than uninfected control children
(P 5 .0004 and P 5 .001, respectively) and those with stable
hemoglobin (P 5 .006 and P 5 .04, respectively). Children with
SM (who had stable hemoglobin) had similar c-20S proteasome

as uninfected controls and infected children with stable hemo-
globin. c-20S proteasome levels negatively correlated with the
hemoglobin levels, r 5 -0.54, P 5 .0001.

We further measured proteasomal proteolytic activities (caspase-
like, chymotrypsin-like, and trypsin-like) in the plasma samples
using fluorogenic peptides. Caspase-like activity levels were sig-
nificantly higher in children with HDNSMA and those with SM
compared with uninfected children (P 5 .03, and P 5 .03,
respectively; Figure 3B, supplemental Table 3). Plasma
chymotrypsin-like activity levels were significantly higher in chil-
dren with HDSMA or HDNSMA compared with uninfected children
(P 5 .04 and P 5 .006, respectively; Figure 3C, supplemental
Table 3) but not malaria-infected children with stable hemoglo-
bin, whereas activity was similar between malaria-infected
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Figure 3. Comparison of c-20S proteasome concentrations and activity between plasma samples of malaria-infected and uninfected children. (A) C-20S protea-
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children with stable hemoglobin with and without SM and unin-
fected children (supplemental Table 3). Plasma trypsin-like activ-
ity levels were similar between groups (P 5 .4; Figure 3D). Of
the 3 proteinase activities, only chymotrypsin-like activity
correlated with c-20S proteasome concentration (r 5 0.55,
P 5 .0001).

Response to infection and oxidative stress eNAMPT, pre-
viously named pre-B enhancing factor, is an adipocytokine
that plays a role in promoting pre-B-cell colony formation
and in macrophage activation.25 eNAMPT is secreted by
various cell types via nonclassical secretion pathways.26,27

In the quantitative plasma proteome analysis, eNAMPT was
significantly higher in samples from children with HDSMA vs
stable hemoglobin (log2 fold change 0.567, P 5 .046), but

not in children with HDNSMA vs stable hemoglobin (log2 fold
change 1.09, P 5 .1). By ELISA, eNAMPT levels were higher
in children with HDNSMA vs children with stable hemoglobin
and uninfected children, but the differences did not achieve
significance after correcting for multiple comparisons
(Figure 4A; supplemental Table 3).

a-1-antitrypsin is a pleiotropic protein that plays a role as a pro-
tease inhibitor and also controls inflammatory responses inde-
pendent of protease inhibition.28,29 By ELISA, levels were
significantly higher in HDSMA compared with infected children
with stable hemoglobin and uninfected children, and higher in
HDNSMA compared with uninfected children (Figure 4B; supple-
mental Table 3). a-1-antitrypsin levels negatively correlated with
hemoglobin, and positively with IL-18 and c-20S proteasomes
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levels (r 5 -0.49, P 5 .02; r 5 0.46, P 5 .03; and r 5 0.43,
P 5 .08, respectively).

In quantitative proteomic analysis, IL-18 was more abundant in
samples from children with reduced hemoglobin, but it was
identified with 1 peptide and therefore excluded from the net-
work analysis (supplemental Table 2). Cytokines like IL-12, IL-18,
IL-23, and interferon-g levels are known to be elevated during
SMA.30-32 Cytokine detection by mass spectrometry is challeng-
ing because of the generally low concentrations, large dynamic
range of plasma protein levels, and low molecular weight.33

Even after depleting the most abundant proteins such as albu-
min and IgG, cytokine levels in the picogram range are poorly
detected vs plasma proteins expressed at the nanogram to
microgram range.34 Low-molecular-weight proteins produce
fewer peptides and are more difficult to detect and quantify
than larger proteins.33 Because IL-18 was previously reported to
play a role in the development of SMA,31 we included it in the
validation study. By ELISA (Figure 4D), IL-18 levels were higher
in children with HDNSMA or HDSMA, compared with stable hemo-
globin and uninfected children. IL-18 levels negatively correlated
with hemoglobin levels (r 5 -0.59, P 5 .0001) and positively
with c-20S proteasome concentration (r 5 0.6, P , .0001).

GCLC is a critical enzyme in the synthesis of the antioxidant glu-
tathione. GCLC was more abundant by quantitative proteomics
in HDNSMA but not HDSMA compared with stable hemoglobin. In
validation ELISA assays, GCLC levels were similar between
groups (supplemental Figure 1A).

Lipid metabolism PLTP is a lipid transfer protein, and its activ-
ity increases during inflammatory responses.35 In recent years, it
has been proposed that PLTP also plays a role in shifting the bal-
ance between proinflammatory and anti-inflammatory immune
responses toward a proinflammatory response.36 Although in
quantitative proteomics, PLTP was more abundant in HDSMA

and HDNSMA compared with malaria-infected children with sta-
ble hemoglobin, ELISA studies showed levels were similar
between groups (supplemental Figure 1B).

Growth factor: IGF-1 By quantitative proteomics, IGF-1 levels
were lower in HDSMA and HDNSMA compared with malaria-
infected children with stable hemoglobin (Figure 1B,D). IGF-1 is
part of the growth hormone axis that also plays a role in ery-
throid maturation.37 Inflammatory immune responses during
chronic and acute infections are associated with reduced levels
of IGF-1.38 In ELISA studies of the validation cohort, IGF-1 levels
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dren with SMA, which results in red blood cell membrane modification. In this model, we propose that modified membrane proteins are then subjected to degradation
by c-20S proteasome, leading to hemolysis and decreased hemoglobin. In parallel, levels of IGF-1, one of the growth factors required for erythroid proliferation, are
significantly reduced, which may be due to increased IL-18 levels, to increased chymotrypsin-like activity, or to both. The reduction in erythroid proliferation results in
reduced hemoglobin levels, in addition to that caused by hemolysis. Factors associated with hemoglobin drops in the study are in green (increased) or red (decreased);
dashed lines indicate associations described here and solid lines indicate previously described relationships.
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were significantly lower in HDSMA and HDNSMA compared with
uninfected children. IGF-1 levels were lower in HDSMA and
HDNSMA compared with infected children with stable hemoglo-
bin; after correcting for multiple comparisons, differences
remained significant for the comparison with HDSMA (Figure 4C;
supplemental Table 3). IGF-1 levels positively correlated with
hemoglobin levels (r 5 0.63, P 5 .0002) and negatively with
IL-18 (r 5 -0.54, P 5 .004).

Based on pathway analysis, chymotrypsin acts on IGF-1.39 We
therefore examined the correlation between IGF-1, c-20S pro-
teasome levels, and enzymatic activity. IGF-1 levels negatively
correlated with c-20S proteasome levels (r 5 -0.57, P 5 .002)
and chymotrypsin activity level (r 5 -0.50, P 5 .02).

Discussion
Young children are most susceptible to severe malaria, with
SMA being the most common presentation in areas with high
malaria transmission. During acute malaria infection, children
often experience abrupt reductions in hemoglobin levels result-
ing in varying degrees of anemia, including SMA in a small pro-
portion of episodes.3 We used quantitative proteomics to study
9 malaria-infected children and identify networks of differentially
expressed plasma proteins associated with substantial drops in
hemoglobin in children with or without SMA, compared with
children with stable hemoglobin levels. We identified significant
increases in c-20S proteasome concentrations in both groups of
children with hemoglobin drops compared with children with
stable hemoglobin levels. We then validated these differences
by ELISA measurements in an expanded set of samples.

Increased c-20S proteasome concentrations have been ob-
served in both acute and chronic diseases24 and under oxidative
stress conditions.40 Recently, a comparative plasma proteome
analysis described similar levels of circulating c-20S proteasome
or the subunit PSMB9 in plasma samples from children who sur-
vived or died of cerebral malaria.41 Among children with cere-
bral malaria, however, PSMB9 levels correlated with the number
of convulsions.41

Whether c-20S proteasome in plasma plays a role in protein
degradation (as does intracellular proteasome) is unknown. Puri-
fied plasma c-20S proteasome has catalytic activity that is
blocked by proteasome-specific inhibitors.42 Similarly, c-20S pro-
teasome in bronchoalveolar lavage has catalytic activity (indi-
cated by extensive degradation of albumin) that is specifically
blocked by proteasome inhibitors.43 Because levels of circulating
c-20S proteasome increase under stress conditions, others have
proposed it may act to clear damaged proteins in the extracellu-
lar space, similar to the role of intracellular proteasome, but this
remains to be determined.40 A recent in vitro study44 described
that P falciparum-derived extracellular vesicles (EVs) play a role
in modifying URBC membrane for merozoite invasion. Specifi-
cally, URBC cytoskeleton proteins are phosphorylated by
EV-derived kinases that are then subjected to degradation by
EV-derived 20S proteasome.44 Separately, malaria infection is
associated with increased plasma EVs, and EV counts increase
with disease severity.45

Here, c-20S proteasome levels were significantly higher in sam-
ples of children with acute hemoglobin drop compared with lev-
els in uninfected children and infected children with stable
hemoglobin. Similarly, chymotrypsin-like activity was significantly
higher in plasma of children with acute hemoglobin drop com-
pared with uninfected children. It is possible that children with
an acute drop in hemoglobin may have excessive secretion of
infected red blood cells-EVs, leading to an increase in modified
URBC that could result in hemolysis and acute hemoglobin
drop. Separately, malaria infection is associated with oxidative
stress especially in severe anemia cases,18 and increased EVs
derived from different cell types46 could be a source for c-20S
proteasome.47 In addition to URBC changes associated with
P falciparum-EV, it is also possible that URBC membrane pro-
teins modified under oxidative stress might be subjected to
degradation by c-20S proteasome elevated during proinflamma-
tory conditions, resulting in hemolysis (Figure 5). To validate the
model, additional studies are needed relating oxidative stress
biomarkers with c-20S proteasome and its activity on plasma
proteins and URBC membrane proteins.

IL-18 is secreted by macrophages and acts synergistically with
IL-12 to induce production of interferon-g and other proinflamma-
tory cytokine by immune cells.48,49 Previous studies reported
increased IL-18 levels in patients with uncomplicated malaria and
severe malaria (excluding cerebral malaria) compared with unin-
fected individuals.50,51 Among malaria patients, those with severe
malaria including SMA have higher levels of IL-18 compared with
uncomplicated malaria cases.50,51 Further, increased IL-18 gene
expression was associated with a reduced hemoglobin levels
among Kenyan children.31 Consistent with these results, IL-18 lev-
els were significantly higher in children with HDSMA or HDNSMA,
compared with infected children with stable hemoglobin or other
severe malaria syndromes, and with uninfected children (Figure
4D; supplemental Table 3). C-20S proteasome levels correlated
with IL-18 levels (r 5 0.6, P , .0001), which could potentially result
from increased EVs under proinflammatory conditions. a-1-anti-
trypsin levels were higher in children with HDSMA or HDNSMA. The
increase in inflammatory markers is consistent with a recent find-
ing that severe anemia is associated with increased levels of
C-reactive protein and ferritin.52 Conversely, increasing immunity
acquired as children age may limit inflammation and oxidative
stress during infection and thus limit the change in soluble factors
like 20S proteasome and IGF-1 that contribute to anemia. a-1-
antitrypsin is an acute phase protein that inhibits elastase and
reduces proinflammatory responses independent of protease inhi-
bition.29,53 Although hemopexin is the major heme scavenger in
plasma, under hemolytic conditions when hemopexin becomes
saturated, other plasma proteins like albumin, a-1-antitrypsin, and
a-1-microglobulin bind heme.54,55 The increased a-1-antitrypsin
seen in infected children with hemoglobin drops may play 2 roles:
(1) to counterbalance proinflammatory responses and (2) to clear
free heme as hemopexin levels were lower in HDSMA and HDNSMA.

IGF-1 levels were significantly lower in children with reduced
hemoglobin. IGF-1 plays a role in erythropoiesis, and malarial
anemia is associated with insufficient erythropoiesis. Proinflam-
matory cytokines like tumor necrosis factor a (TNF-a) and IL-1b
impair IGF-1 activity.56 In children with acute infections including
febrile malaria, IGF-1 levels were significantly reduced compared
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with healthy children.57-59 IGF-1 and erythropoietin are essential
for the complete development of erythroid progenitors.37,60,61

Several studies reported increased levels of erythropoietin in
children with SMA8,62,63 and in a nonhuman primate model of
SMA.64 These observations suggest that SMA is not caused by
low erythropoietin but rather by a depressed bone marrow
response to erythropoietin.

Based on the data described here, we propose that the lower
IGF-1 level in children with hemoglobin drop has hindered the
proliferation of erythroid progenitors, thereby contributing to
anemia (Figure 5). The reduction in IGF-1 levels may be related
to increased c-20S proteasome levels and increased
chymotrypsin-like activity; an in vitro study demonstrated that
IGF-1 is degraded by chymotrypsin and trypsin, with a much
shorter half-life in the presence of chymotrypsin.39,65 Here, IGF-
1 levels negatively correlated with c-20S proteasome and
chymotrypsin-like activity. Further studies are needed to exam-
ine whether IGF-1 is a substrate of c-20S proteasome, especially
under oxidative stress conditions. Alternatively, IGF-1 levels may
have been lower in children with HDSMA and HDNSMA because
of increased inflammation. Studies in animal models reported
negative associations between IGF-1 expression and proinflam-
matory cytokines including IL-1b, TNF-a, and IL-18.66,67 Here,
IGF-1 levels negatively correlated with IL-18.

Overall, the pattern observed in HDSMA and HDNSMA was similar:
both groups had higher levels of c-20S proteasome compared
with uninfected and malaria-infected children with stable hemo-
globin. Similarly, IGF-1 levels were lower in both groups with
hemoglobin loss compared with uninfected children or to
malaria-infected children with stable hemoglobin, albeit the dif-
ference between HDNSMA and infected children with stable
hemoglobin lost significance after correcting for multiple com-
parisons. These results suggest that similar mechanisms are
associated with moderate and severe malarial anemia.

Limitations include analyzing samples collected during infection
only. Future studies should also analyze samples collected
before the event and estimate parasite biomass before and dur-
ing the infection.

In summary, quantitative proteomics of plasma samples from chil-
dren with an acute hemoglobin drop (with and without severe
anemia) identified changes in multiple soluble mediators. Taken
together, the increased c-20S proteasome and chymotrypsin-like
activity observed here, along with a recent study describing the
role of c-20S proteasome in modifying URBC for merozoite inva-
sion in vitro44 as well as the known increase in EVs related to
increased inflammation and oxidative stress during infection, sup-
port the hypothesis that the confluence of these factors contrib-
utes to URBC hemolysis and malarial anemia. The results also

suggest a new mechanism for insufficient erythropoiesis during
malaria, whereby reduced IGF-1 levels result in a reduction in the
proliferation of erythroid progenitors.
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