
Brief Report

PLATELETS AND THROMBOPOIESIS

Cerebral vasculature exhibits dose-dependent sensitivity
to thrombocytopenia that is limited to fetal/neonatal life
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KEY PO INTS

� Severity of ICH is
linked to the severity
of in utero
thrombocytopenia.

� Resilience of the
cerebral vasculature
to thrombocytopenia
occurs within the first
2 weeks of birth.

Whether increasing platelet counts in fetal and neonatal alloimmune thrombocytopenia
(FNAIT) is effective at preventing intracerebral hemorrhage (ICH) has been a subject
of debate. The crux of the matter has been whether thrombocytopenia is the major
driver of ICH in diseases such as FNAIT. We recently demonstrated in mice that severe
thrombocytopenia was sufficient to drive ICH in utero and in early neonatal life. It
remains unclear what degree of thrombocytopenia is required to drive ICH and for
how long after birth thrombocytopenia can cause ICH. By inducing a thrombocytopenic
range, we demonstrate that there is a large buffer zone of mild thrombocytopenia
that does not result in ICH, that ICH becomes probabilistic at 40% of the normal
platelet number, and that ICH becomes fully penetrant below 10% of the normal
platelet number. We also demonstrate that although the neonatal mouse is susceptible

to thrombocytopenia-induced ICH, this sensitivity is rapidly lost between postnatal days 7 and 14. These findings
provide important insights into the risk of in utero ICH with varying degrees of thrombocytopenia and into
defining the developmental high-risk period for thrombocytopenia-driven ICH in a mouse model of FNAIT.

Introduction
Mouse models have demonstrated that, although platelets are
essential for hemostasis, the absence of platelets alone does not
cause hemorrhage in the adult.1 By using a model of fetal and
neonatal alloimmune thrombocytopenia (FNAIT), which involves
injecting an anti-GP1Ba antibody that specifically targets plate-
lets for clearance2 into pregnant or neonatal mice,3 we were
able to demonstrate that severe thrombocytopenia in utero or
in the neonate is sufficient to cause hemorrhage, including intra-
cerebral hemorrhage (ICH).4

Two important questions in the field of FNAIT are: what level
of thrombocytopenia places patients at risk of ICH?5; and,
what is the platelet count required to prevent or minimize
ICH-associated mortality?5-10 Answers to these questions are
critical to understanding what degree of thrombocytopenia
should trigger treatment.5,7,11-14 Thus, it is important that
we understand what thrombocytopenic threshold results
in ICH and the duration of neonatal susceptibility to
thrombocytopenia-induced ICH.

By tuning platelet counts in utero, we were able to define 3 lev-
els of thrombocytopenia that have a differential risk of develop-
ing into ICH. In addition, we demonstrated that by the second
week after birth, the cerebral vasculature has developed resil-
ience to severe thrombocytopenia.

Study design
All mice had a C57BL/6 background. The Walter and Eliza Hall
Institute (WEHI) Animal Ethics Committee approved procedures.
Theiler’s criteria were used for embryonic staging. Timed mat-
ings were set up overnight, and the morning of a positive plug
was designated embryonic day 0.5 (E0.5). Immunoglobulin G
(IgG [R301]) and anti-GP1Ba (R300) antibodies were purchased
from EMFRET Analytics. Antibodies were delivered by intrave-
nous (facial vein) injection at postnatal day 1 (P1) or intraperito-
neal injection at E13.5, P7, and P14. Mice were analyzed after
48 hours. Delivery route did not affect experimental outcome
(supplemental Figure 1). Flow cytometry was performed as pre-
viously described.4 Data were analyzed using FlowJo, and Prism
software was used for statistical analysis and graphs.

Results and discussion
It has previously been shown that platelet counts in adult mice
can be altered by varying the concentration of the injected anti-
GP1Ba antibody.2,15 Importantly, the platelets that remain after
treatment are functionally normal.2,15 To determine how effec-
tively platelet counts could be tuned in utero, 0.5 to 5 mg/g
body weight anti-GP1Ba or 5 mg/g IgG control antibody was
injected into pregnant mice at E13.5 (a stage of active neuro-
genesis and structural patterning equivalent to 6 to 20 weeks
in human development16). Fetuses were analyzed 48 hours
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Figure 1. Defining the thrombocytopenic threshold for in utero ICH. (A) Experimental plan. E13.5 pregnant mice were injected with anti-GP1Ba antibody at a series of
concentrations and analyzed 48 hours after injection for platelet numbers and hemorrhage phenotype. IgG antibody at 5 mg/g was used as a control. (B) Frequency of
circulating platelets in the peripheral blood in E13.5 1 48 hours (E15.5) fetuses. No injection control: n 5 7; IgG: 5 mg/g, n 5 16; anti-GP1Ba: 0.5 mg/g, n 5 15; 1.0 mg/g, n 5 6;
1.5 mg/g, n 5 14; 1.75 mg/g, n 5 14; 2.0 mg/g, n 5 18; 2.5 mg/g, n 5 15; 5.0 mg/g, n 5 15. ****P , .0001. (C) ICH frequency at 48 hours after no injection control: n 5 7; IgG:
5 mg/g, n 5 16; anti-GP1Ba: 0.5 mg/g, n 5 15; 1.0 mg/g, n 5 6; 1.5 mg/g, n 5 14; 1.75 mg/g, n 5 14; 2.0 mg/g, n 5 18; 2.5 mg/g, n 5 15; 5.0 mg/g, n 5 15. **P 5 .002; ****P 5

.000007. (D) Representative images of E13.5 1 48 hours (E15.5) fetuses and dissected brains after treatment with IgG control or anti-GP1Ba antibody. Fetuses were classified
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later by measuring platelet frequency by flow cytometry
and scoring hemorrhage (Figure 1A). We found that in utero
platelet numbers could be reduced in a dose-dependent
manner (Figure 1B).

To understand the relationship between platelet count and
severity of hemorrhage, we determined ICH frequency after
injecting various concentrations of anti-GP1Ba, and we found
that the incidence of ICH significantly increased with the concen-
tration of anti-GP1Ba (Figure 1C). It became apparent that the
important variable was not the dose of antibody injected but
the severity of thrombocytopenia induced. We classified
embryos according to platelet count and quantified the fre-
quency of hemorrhage in the dermal layer of the skin (which
includes lymphatic vessels) and the frequency and severity of
ICH (Figure 1D). We found that a platelet count that was 60% of
normal was sufficient to fully protect against hemorrhage (Figure
1E-G). At a platelet count that was 30% of normal, �60% of
mice exhibited ICH. This was not a sex-related difference (sup-
plemental Figure 2). When platelet counts dropped below 10%,
all mice had ICH (Figure 1E). Analysis of the severity of hemor-
rhage (supplemental Figure 3) in mice with platelet counts rang-
ing from 0% to 60% of normal revealed that, although the
severity of ICH significantly increased when platelet counts
dropped below 40%, the most severe ICH occurred when plate-
lets dropped below 10% (Figure 1F). As we previously noted,4

ICH in the E13.5 1 48 hours (E15.5) fetus occurred within
the ventricles and cerebral cortex. Damage to these regions
has been associated with significant neurologic damage in
children.17-21

Platelets have a well-established developmental role in preserv-
ing the separation of the blood and lymphatic circulatory sys-
tems.22 As with ICH, the severity of hemorrhage into the
lymphatics significantly increased with decreasing platelet counts
(Figure 1G).

We recently showed that the spatial pattern of ICH is driven by
the timing of severe thrombocytopenia; this evolves from the
ganglionic eminence in the E12.5 embryo, the cerebral cortex
by E16.5, and the cerebellum by P1.4 In the adult, severe throm-
bocytopenia only drives hemorrhage (including ICH) in an
inflammatory context.1 Thus, between birth and adulthood, the
cerebral vasculature becomes resilient against thrombocytope-
nia. To understand when this occurs, severe thrombocytopenia
(,5% normal platelets) was induced at P1 (equivalent to 23-32
weeks in human development23), P7, and P14 (equivalent to
36-40 weeks in human development23) (Figure 2A-B), and we
scored the frequency of ICH and skin hemorrhage after 48
hours. To ensure that ICH detection had adequate sensitivity,

thick sections were cut from dissected brains at all time points.
By using this approach, no bleeds were observed in any of the
P1 to P14 mice that received IgG control injections. Injection of
anti-GP1Ba into P1 mice resulted in fully penetrant ICH involving
both the cerebral cortex and cerebellum (Figure 2C,G). When
severe thrombocytopenia was induced at P7, cortical hemor-
rhage was detected in 10% of mice, and cerebellar hemorrhage
was detected in 40% (Figure 2D,G). Induction of severe throm-
bocytopenia at P14 did not result in ICH (Figure 2E,G); thus, the
cerebral vasculature had developed an adult-like resilience to
thrombocytopenia.

No hemorrhage into the lymphatics was observed when IgG
control antibody was injected at P1, P7, or P14, but hemorrhage
was detected at all time points after injection of anti-GP1Ba
(Figure 2F,H). Of note, hemorrhage seemed more severe at P1.

In summary, we demonstrated that there are at least 3 opera-
tional levels of in utero thrombocytopenia: (1) mild thrombocyto-
penia (41%-60% of normal platelet counts) representing an
asymptomatic buffer zone; (2) moderate thrombocytopenia
(11%-40% of normal platelet counts) in a group that has a high
risk of mild to moderate ICH; and (3) severe thrombocytopenia
(,10% of normal platelet counts), which is associated with a
high chance of severe ICH (Figure 2Ii). In combination with our
previous findings,4 we have also shown that resilience to
thrombocytopenia-induced ICH develops within the first 2
weeks after birth (Figure 2Iii). Development of thrombocytopenic
resilience coincides with the plateau in growth of brain vol-
ume.24 It is possible that platelets prevent bleeding associated
with vascular remodeling, similar to that which occurs during
mesenteric development.25 Alternatively, platelets might play an
as yet unidentified role in cerebral vascular health unrelated to
hemostasis.

Although caution should be used when extrapolating specific
values from our mouse study to human patients, there are 2
potential clinical implications of our findings. The first is under-
standing when the human cerebral vasculature develops resil-
ience to thrombocytopenia, which will help avoid the potential
negative consequences associated with unnecessary platelet
transfusions.5,9 The second is noting that ICH can occur in indi-
viduals with even moderate thrombocytopenia. Assuming a nor-
mal human neonatal platelet count of 150 3 109/L to 400 3

109/L,8,9,14 a count of ,50 3 109/L (which is defined as severe
thrombocytopenia) would fit the low end of moderate thrombo-
cytopenia. This would explain why fetuses and neonates with
FNAIT have a variable risk of developing ICH. We now need to
identify the covariables that drive ICH in this group.

Figure 1 (continued) according to the percentage of normal platelet count. Images shown represent the most frequent severity of hemorrhage observed in each group
(scale bars represent 1 mm). (E) Frequency of ICH at platelet counts: 0% to 10%, n 5 13; 11% to 20%, n 5 17; 21% to 30%, n 5 12; 31% to 60%, n 5 8; 100%, n 5 14;
IgG control: n 5 14. **P 5 .004; ****P , .00001. (F) ICH severity scores at platelet counts: 5% to 10%, n 5 10; 11% to 15%, n 5 6; 16% to 20%, n 5 5; 21% to 25%,
n 5 5; 31% to 40%, n 5 3; 41% to 60%, n 5 8; 100% IgG: n 5 8. Arbitrary values were used to define 3 as severe ICH (intraventricular involvement and/or the presence
of large cortical hemorrhage), 2 as moderate ICH (large focal hemorrhage), 1 as mild ICH (small focal hemorrhage), and 0 as no ICH. *P 5 .05; **P , .001; ***P 5 .0006.
(G) Lymphatic bleed severity scores: 0% to 5%, n 5 8; platelet counts: 6% to 10%, n 5 11; 11% to 15%, n 5 6; 16% to 20%, n 5 5; 21% to 25%, n 5 4; 31% to 40%,
n 5 2; 41% to 60%, n 5 8; 100% IgG: n 5 8. Arbitrary values were used to define 3 as severe hemorrhage (edema, dermal hemorrhage, and extensive blood-filled
lymphatics), 2 as moderate hemorrhage (extensive blood-filled lymphatics), 1 as mild hemorrhage (blood-filled lymphatics or focal dermal hemorrhage), and 0 as no
hemorrhage. *P , .05; **P 5 .005. Data were analyzed with one-way analysis of variance (ANOVA) using the �S�ıd�ak multiple comparisons test (B), or by using contingency
table analysis with Fisher’s exact test (C,E-G). P values were adjusted for multiple testing using the Holm-�S�ıd�ak method (C,E-G). ns, not statistically significant; Plts,
platelets.
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Figure 2. Sensitivity of the cerebral vasculature to induced thrombocytopenia ends within the first weeks after birth. (A) Representative flow cytometry plots of
platelets in the peripheral blood of P7 mice 48 hours after treatment with IgG or anti-GP1Ba antibody. (B) Quantification of circulating platelets 48 hours after treatment
with IgG or anti-GP1Ba antibody on P1, P7, or P14. P1: IgG control, n 5 7; anti-GP1Ba, n 5 6. P7: IgG control, n 5 3; anti-GP1Ba, n 5 11. P14: IgG control, n 5 5;
anti-GP1Ba, n 5 9. Error bars represent mean 6 standard deviation. ****P , .0001. (C-E) Representative images of brain and horizontal sections of the cerebellum 48
hours after injection at (C) P1, (D) P7, and (E) P14. P1: IgG control, n 5 8; anti-GP1Ba, n 5 8. P7: IgG control, n 5 6; anti-GP1Ba, n 5 14. P14: IgG control, n 5 6;
anti-GP1Ba, n 5 15. Arrows indicate sites of ICH. Scale bars represent 1 mm. (F) Representative images of the dermal skin layer showing hemorrhage (arrows) 48 hours
after injection at P1 (IgG, n 5 7; anti-GP1Ba, n 5 10), P7 (IgG, n 5 4; anti-GP1Ba, n 5 4), and P14 (IgG, n 5 3; anti-GP1Ba, n 5 7). (G) Frequency of hemorrhage in the
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