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Chronic lymphocytic leukemia (CLL) is characterized by a clonal
expansion of mature CD191CD51 B cells, which are highly
dependent on microenvironmental cues for their survival.1 This
common adult leukemia is preceded by a precursor phase
termed monoclonal B-cell lymphocytosis (MBL),2,3 which has
been characterized as indistinguishable from CLL at the genetic,
transcriptomic, and epigenomic level.4-6 However, how leukemia
cells coevolve with immune cells in their circulating microenvi-
ronment during the onset of MBL and upon progression to CLL
remains incompletely characterized.7

Recently, single-cell transcriptome sequencing (scRNA-seq) ap-
proaches have transformed our ability to gain a comprehensive
evaluation of the spectrum of immune cells within the tumor
microenvironment and of their potential cross talk with cancer
cells.8-14 In our study, we applied scRNA-seq to broadly charac-
terize circulating immune cells coexisting with leukemic cells dur-
ing natural CLL progression. Although we acknowledge the
critical role of the bone marrow and lymph node microenviron-
ments on CLL cells, the lack of feasibility for procuring serial
specimens from these tissue compartments led us to focus our
study on circulating immune cells. We therefore collected serial
peripheral blood mononuclear cell (PBMC) samples from 3 indi-
viduals with high-count MBL who did not progress to CLL after
a median follow-up of 7.0 years and 7 patients with CLL, whose
genetic characterization of CD191CD51 cells over time by
whole-exome sequencing, has been reported15 (Figure 1A). We
processed paired samples from all patients: the first samples
were collected at time point 1 (T1), at a median of 4.96 years
(range, 2.44-5.46) after MBL diagnosis or 2.54 years (range, 0.5-
4.2) after CLL diagnosis; whereas the second group were col-
lected at T2, a median of 2.97 years (range, 2.01-2.99) after T1
for the MBL patients and 4.75 years (range, 1.3-10.6) for the
CLL patients. T2 samples for CLL patients were collected at a
median of 0.2 years (range, 0-5.9) before the first treatment
(supplemental Table 1, available on the Blood Web site).

Non-CD191CD51 cells were isolated by fluorescence-activated
cell sorting, and samples from each patient were processed on
the same day to minimize the batch effect. Cell suspensions
were loaded on a GemCode Single-Cell Instrument (103 Geno-
mics), and libraries were prepared as previously described16

(supplemental Methods). Analysis was conducted using Seurat
V4.0.0 selecting cells with gene count between 500 and 3000
and less than 10% mitochondrial reads. Using the trimmed data
set, we isolated the nontumor population and assigned
immune cell types by performing multimodal reference map-
ping, using a CITE-seq (cellular indexing of transcriptomes and
epitope–sequencing) reference of 162000 PBMCs measured
with 228 antibodies.17 B cells were excluded because of poten-
tial CLL contamination. After quality control, we obtained 67333
single-cell transcriptomes (median number of cells per sample,
3711; range, 491-6633; Figure 1B; supplemental Table 1). For
each sample, we evaluated the potential for processing and
batch artifacts between samples and cohorts, and we selected
cohorts with similar “cold-shock signature”18 for comparison
(supplemental Figure 1A). In total, we identified 16 clusters
across 3 distinct lineages: T cells, natural killer cells, and myeloid
cells (Figure 1B; top, UMAP [uniform manifold approximation
and projection]). The distribution of immune cell types from
MBL and CLL samples and across patients appeared to be bal-
anced across the cell clusters (Figure 1B; bottom, UMAP; sup-
plemental Figure 1B). Analysis of the proportions of immune cell
types, including various T-cell subsets, between MBL and CLL
samples revealed no differences, even across time points (T1 vs
T2; Figure 1C-D; supplemental Table 2A).

To confirm the absence of major differences in immune cell pro-
portions between MBL and CLL, we performed scRNA-seq on
PBMCs collected from a separate cohort of 4 patients with high-
count MBL that progressed to CLL (MBL-CLL1-4); the median
time from MBL (T1) to CLL diagnosis was 2.68 years (range, 0.7-
4.6) and from CLL diagnosis to T2 was 0.6 years (range, 0-1.8).
We also evaluated 2 age-matched healthy donors (HDs, median
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number of cells per sample, 4400; range, 2630-7596 cells) using
the same approach described above (Figure 2A-B). Again, we
observed an absence of major compositional or phenotypic
changes in immune cell populations in the transition from MBL
to CLL, whereas marked differences in the composition in
immune cell types were evident in patients with CLL compared
with HDs. In particular, the proportion of CD81 T cells was
higher in patients with CLL than in HDs (33% vs 8%, P 5 .037),
with a corresponding decrease in CD41 T cells (Figure 2C, left;
supplemental Table 2B). The CD41 and CD81 T-cell subtypes
that contributed to these differences were naive, central memory
CD41 and terminal effector memory CD81 cells (Figure 2C;
right). A higher number of differentially expressed genes
(adjusted P , .05 and javg_log2 FCj .0.6) was observed
between HDs and patients with MBL/CLL than between MBL
and CLL at the time of progression (patients MBL-CLL-1 and -2;

Figure 2D; supplemental Table 3). More differences in gene
expression were seen in those paired CLL samples obtained at a
time more distant from transition to CLL (patients MBL-CLL-3
and -4), suggesting further evolution of the immune response
over time with CLL progression. Effector memory CD81 T cells
and CD56dim natural killer cells consistently showed more differ-
entially expressed genes in patients with MBL and CLL than in
HDs (Figure 2D, right), which we also observed in a pseudobulk
reanalysis of the same data (supplemental Figure 2). Compara-
ble shifts in immune cell expression profiles were observed
in the evaluation of independent MBL (MBL1-3, T1) vs CLL
(CLL1-7, T2), but only minimal differences were observed in non-
progressing MBL (Figure 2E). We acknowledge that the low
number of replicates (n 5 2) did not provide sufficient power to
detect the biological variability among HDs and that individual-
specific variations may have confounded the observed
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Figure 1. scRNA-seq analysis of immune cells from nonprogressive MBL patients and CLL patients. (A) PBMCs from 2 serial samples were collected for 3 patients
with MBL and 7 with CLL. (B) Non-CD191CD51 cells were isolated by fluorescence-activated cell sorting. UMAP visualization of all immune cells colored by immune cell
type (top) and CLL or MBL assignment (bottom). (C) Proportion of immune cell types per time point in patients with MBL or CLL. (D) Proportion of T-cell types per time
point in patients with MBL or CLL. Cell percentages were calculated after the number of cell from all samples. CTL, cytotoxic T lymphocyte; DC, dendritic cell; gdT, g-d
T (cells); ILC, innate lymphoid cell; MAIT, mucosa-associated invariant T (cells); Mono, monocyte; NK, natural killer (cell); pDC, plasmacytoid dendritic cell; T, T cell;
TCM, central memory T (cell); TEM, effector memory T (cell); Treg, regulatory T (cells).
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differences between HD and MBL/CLL samples, but we mini-
mized that risk by selecting age-matched HDs and applied uni-
form processing to all samples.

To investigate which dysfunctional immune mechanisms may
impact CLL biology, we interrogated major molecular interac-
tions between immune and normal B or CLL-B cells in HDs or
patients, respectively, using CellPhoneDB v2.1.7, which predicts
potential interactions between ligand-receptor pairs based on
elevated expression in the corresponding cell types.19 In so
doing, we observed an increased total number of potential
interactions in subjects with MBL compared with those in HDs.
This increase remained stable with progression to CLL and was
evident across diverse immune cell types but was most distinctly
observed in monocytes (Figure 2F, left heat map). To examine
the effects of B-cell receptor signaling inhibition with ibrutinib
on the cellular interactions between immune and leukemia cells,
we reanalyzed 4 additional scRNA-seq samples previously gen-
erated from PBMCs before and during ibrutinib treatment (cells
collected 30-240 days after treatment) from 2 patients with
CLL.20,21 We again observed that the number of cellular interac-
tions in pretreatment CLL samples was higher across immune
cell types, especially in monocytes in both patients. Consistently,
the number of interactions decreased after ibrutinib treatment
to levels similarly observed in HDs (Figure 2F, right heat maps).
Most of the interactions upregulated in patients with MBL/CLL
involved inhibitory signals of immune cell function proceeding
from CLL cells across to various immune cell types, such as
BTLA/MIF-TNFRSF14 (HVEM, observed in MBL-CLL1, -3, and
-4), CTLA4-CD86 (observed in MBL-CLL-4), and LGALS9-
HAVCR2 (TIM3, observed in MBL-CLL1-4; Figure 2G, left; sup-
plemental Figure 3). Notably, only a proportion of cancer cells
express these inhibitory signals: BTLA (17.4%), MIF (41.6%),
LGALS9 (18.2%), and CTLA4 (10.4%) (supplemental Figure 4).
We observed that all these interactions were downregulated
after ibrutinib treatment (Figure 2G, right).

Altogether, we observed that the composition and state of
immune cells was markedly different between HDs and patients
with MBL, whereas no major additional transcriptional changes
manifested during natural progression from MBL to CLL. These
observations suggest that the key drivers of transcriptional
immune dysfunction in CLL may be present early during the
course of the disease and are in keeping with the early transcrip-
tomic, genomic, and epigenetic changes already present in
MBL, as well as the known increased risk of infections, even at
the earliest stages of the disease.22 Among the features that dis-
tinguished immune and leukemia cells interactions in patients
with CLL were an increased number of cellular interactions com-
pared with HDs, especially within myeloid cells, that

predominantly involved multiple inhibitory immune signals and
that were no longer detected after ibrutinib treatment. Thus,
although T-cell deficits in CLL have been well investigated,23,24

the contribution of myeloid cells to inhibitory signals has been
far less well characterized and warrants further assessment.
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