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KEY PO INT S

� Single-cell multiomics
analysis reveals higher
plasticity and stem-cell-
like blasts in younger
KMT2A-r ALL patients
with worse prognosis.

� The most immature
leukemic cells exhibit
steroid resistance and
stem-cell–like cells
contribute to immune
evasion in younger
patients.

KMT2A-rearranged (KMT2A-r) infant acute lymphoblastic leukemia (ALL) is a devastating
malignancy with a dismal outcome, and younger age at diagnosis is associated with
increased risk of relapse. To discover age-specific differences and critical drivers that medi-
ate poor outcome in KMT2A-r ALL, we subjected KMT2A-r leukemias and normal hemato-
poietic cells from patients of different ages to single-cell multiomics analyses. We uncovered
the following critical new insights: leukemia cells from patients <6 months have significantly
increased lineage plasticity. Steroid response pathways are downregulated in the most
immature blasts from younger patients. We identify a hematopoietic stem and progenitor-
like (HSPC-like) population in the blood of younger patients that contains leukemic blasts
and form an immunosuppressive signaling circuit with cytotoxic lymphocytes. These observa-
tions offer a compelling explanation for the ability of leukemias in young patients to evade
chemotherapy and immune-mediated control. Our analysis also revealed preexisting lympho-
myeloid primed progenitors and myeloid blasts at initial diagnosis of B-ALL. Tracking of leu-
kemic clones in 2 patients whose leukemia underwent a lineage switch documented the

evolution of such clones into frank acute myeloid leukemia (AML). These findings provide critical insights into KMT2A-r
ALL and have clinical implications for molecularly targeted and immunotherapy approaches. Beyond infant ALL, our study
demonstrates the power of single-cell multiomics to detect tumor intrinsic and extrinsic factors affecting rare but critical
subpopulations within a malignant population that ultimately determines patient outcome.

Introduction
The mixed-lineage leukemia 1 (MLL1) gene (or lysine methyl-
transferase 2A, KMT2A) encodes a nuclear protein involved in
epigenetic and transcriptional regulation. Rearrangements of the
KMT2A gene (KMT2A-r) occur with over 130 different transloca-
tion partners1 and are found in multiple types of leukemias.
KMT2A-r leukemias account for approximately 70% of acute leu-
kemias in infants and 10% in all other age groups.2

Advances in risk-adapted chemotherapy and the introduction of
novel agents have increased the survival for children with ALL
.1 year to over 90%.3 In contrast, the event-free survival (EFS)
for KMT2A-r infant ALL is 36% and has not changed in deca-
des.4,5 The age at diagnosis is one of the strongest predictors of

outcome, regardless of therapeutic approach.4,6 EFS rates vary
dramatically between infants ,3 months of age (,20%) and
those .12 months of age (�65%). Several strategies have been
explored to improve the survival of children with KMT2A-r ALL.
However, neither the incorporation of intensive, myeloid-type
chemotherapy (Interfant-064), hematopoietic stem cell transplan-
tation (HSCT),4 nor targeted therapies such as FLT3 inhibition
have improved outcomes in multicenter trials.7

In this study, we leverage single-cell multiomic profiling to gain
insights into the cellular and molecular factors that drive the
unique features of KMT2A-r ALL. In particular, we focus on
understanding the developmental origin and heterogeneity of
leukemic cells, interactions between leukemic cells and immune
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cells, and plasticity of leukemic cells following chemotherapy
and/or immunotherapy.

Methods
Human biospecimens
Peripheral blood (PB) or bone marrow (BM) samples were from
patients with infant ALL enrolled in the Children’s Oncology
Group (COG) clinical trial AALL15P1, or they were collected
under the Children’s Hospital of Philadelphia (CHOP) Institu-
tional Review Board (IRB) Protocol 10-007767 (CHOP Center for
Childhood Cancer Research [CCCR] Biorepository), or under
CHOP IRB Protocol 94-000771. All samples were obtained with
parental informed consent according to the Declaration of
Helsinki with IRB approval from all participating centers. Patient
and healthy donor sample information is listed in supplemental
Table 1 available on the Blood Web site.

Single-cell RNA sequencing (scRNA-Seq)
Sorted cells were immediately processed using the 10x Geno-
mics Chromium controller and the Single Cell 39 Reagent Kits
V3 protocol. Libraries were sequenced on a Nova-Seq 6000
with 28:8:0:87 paired-end format.

Single-cell assay for transposase-accessible
chromatin using sequencing (scATAC-Seq)
Sorted cells were subjected to nuclei isolation protocol. Nuclei
were processed using 10x Genomics Chromium controller and
the Single Cell ATAC Reagent Kits V1 protocol. Libraries were
sequenced on a Nova-Seq 6000 with 49:8:16:49 paired-end
format.

See supplemental Data for additional description of methods
and materials.

Results
Single-cell multiomics characterization of
KMT2A-r leukemia in children
To investigate the transcriptomic and epigenetic heterogeneity in
KMT2A-r leukemia, we performed scRNA-Seq and scATAC-Seq
on sorted leukemic blasts (CD191) and normal hematopoietic
cells (CD451CD192), as well as single-nucleus methylcytosine
sequencing (snmC-Seq2)8 on sorted leukemic blasts (CD191)
from 25 KMT2A-r ALL patients, including 18 infants diagnosed
,1 year (infant cohort), and 7 patients .1 year at diagnosis (pedi-
atric cohort) (Figure 1A-C; supplemental Table 1; supplemental
Methods). The frequency of KMT2A translocation partners in our
patient cohort is representative of the reported frequencies,1 with
AFF1, MLLT1, MLLT3, and MLLT10 being the most frequent

fusion partners (supplemental Figure 1A). We sequenced a total
of 200756, 154779, and 2006 high-quality cells using scRNA-
Seq, scATAC-Seq, and snmC-Seq2 protocols, respectively (sup-
plemental Figure 1; supplemental Methods). On average, 2008
genes were detected per cell in scRNA-Seq data, and 17828
unique chromatin accessible fragments were mapped per cell in
scATAC-Seq data (supplemental Figure 1C-D). For snmC-Seq2
data, we sequenced an average of 6.35 million reads per cell, giv-
ing an average of 5.97% genome coverage, 99.6% conversion
rate, 4.34 million CpG sites recovered, and 80.8% CpG methyla-
tion rate per cell (supplemental Figure 1E).

We identified 6 major groups of cell types (Figure 1D,H) in both
scRNA-Seq and scATAC-Seq data using marker genes (supple-
mental Table 2), including CD191 blasts, T and NK cells, mono-
cytes, mature B cells, CD341 hematopoietic stem and progenitor
cells (HSPCs), and plasmacytoid dendritic cells (pDCs). The cell
type compositions are highly concordant between scRNA-Seq
and scATAC-Seq data (Figure 1E).

Differential gene expression and transcription factor (TF) motif
chromatin accessibility analyses showed distinct transcriptional
and epigenetic programs between CD191 blasts and other cell
types. Expectedly, B-cell developmental genes such as VPREB1,
IGLL1, and CD24 were expressed significantly higher in CD191

blasts (Figure 1F). Similarly, motifs of early B-lineage TFs were
enriched at open chromatin regions specific to CD191 blasts,
including PAX5, EBF1, and TCF12 (Figure 1G). In contrast, key
lineage-specific TFs were enriched in other cell types, such as
GATA2 in hematopoietic progenitors, CEBPA and CEBPB in
monocytes,9 LEF1 in T cells, and POU2F2 and SPIB in mature B
cells.10,11

The blast population was defined as clusters of cells expressing
CD19, HOXA9, MEIS1, and MEF2C (CD191 blasts) (supplemen-
tal Table 2). To confirm that these cells are indeed leukemic
blasts, we developed the single-cell targeted long-read
sequencing (scTLR-Seq) protocol that directly sequences cDNA
of fusion transcripts from individual cells (supplemental Methods;
Figure 1I). scTLR-Seq data confirmed that blasts identified based
on marker gene expression indeed contain an above back-
ground fraction of fusion transcript reads, suggesting that these
cells are malignant cells (Figure 1J).

Increased developmental heterogeneity of
leukemic blasts in younger patients
Previous studies suggested that different B-ALL subtypes have
distinct developmental origins and are arrested at distinct
stages of B-cell differentiation.12,13 However, the landscape
of perturbed developmental stages remains unknown for pediat-
ric KMT2A-r leukemia. Therefore, we generated reference

Figure 1. Single-cell multiomics profiling of pediatric KMT2A-r leukemia. (A) Experimental design of multiomics profiling of KMT2A-r leukemia and healthy donor
samples. (B) Sorting strategy for capturing blasts and nonmalignant cells from B-ALL patients. (C) Number of assays/samples performed for each single-cell omics
protocol. (D) Overall UMAP of all scRNA-Seq cells (left panel) and all scATAC-Seq cells (right panel) of 18 infant ALL samples, colored by assigned cell populations.
Total numbers of sequenced cells are indicated. (E) Cell type compositions based on the scRNA-Seq and scATAC-Seq data in panel D. (F) Heatmap of differentially
expressed genes for each cell population compared with the rest of populations [abs(Log2[FC]) .0.5 and FDR ,0.05]. Values in the heatmap are row-wise Z-scores.
Color code for each cell population is the same as in panel D. (G) Heatmap of enriched TFs at ATAC-Seq peaks. Enrichment is represented by the normalized deviation
scores (z-score) calculated by chromVAR. (H) Genome browser tracks and gene expression violin plots for representative cell-type-specific marker genes. Left panels,
aggregated scATAC-Seq signals for each assigned cell type. Right panels, normalized scRNA-Seq expression values for the corresponding cell type. (I) Schematic of
scTLR-Seq for detecting fusion transcripts in single cells. (J) Fraction of cells with KMT2A fusion and wild-type reads for each cell population, including blasts, mature
B cells, monocytes, NK/T cells from patients, and hematopoietic cells from healthy donors, defined as the ratio of the number of cells with KMT2A reads vs the total
number of sequenced cells of a given population.
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Figure 2. Projection of KMT2A-r leukemia cells to normal hematopoietic trajectory reveals larger intratumor heterogeneity in younger patients. (A) UMAPs
based on scRNA-Seq (top panel) and scATAC-Seq data from healthy pediatric donors (bottom panel). scATAC-Seq includes the dataset generated in this study and
previously published datasets.49 Cell type annotation for scATAC-Seq data were transferred from scRNA-Seq data using Seurat. Total numbers of sequenced cells are
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scRNA-Seq and scATAC-Seq data using BM samples from 5
healthy pediatric donors (Figure 1A,C; supplemental Figure 1B;
supplemental Table 1). In total, we sequenced 33824 and
21573 high-quality cells, respectively (supplemental Figure
1C-D). We then generated reference trajectories based on the
scRNA-Seq and scATAC-Seq data separately and annotated
cell populations using manually curated marker genes that
cover the entire hematopoietic trajectory (Figure 2A-B;
supplemental Table 2; supplemental Methods). Both RNA- and
chromatin-based trajectories identified all major hematopoietic
cell types and are highly concordant (Figure 2A; supplemental
Figure 2A-B).

Next, we devised a method to project leukemic blasts to the
normal hematopoietic trajectory (supplemental Methods). For
example, Figure 2C shows that blasts in patient KMT2A-r 1154
were mostly arrested after the pre-pro-B stage, with a minor
fraction of blasts arrested at the earlier multipotent progenitor
stage. The projections based on the transcriptome and chroma-
tin accessibility data are highly concordant (supplemental Figure
2C). Additional analyses further confirm the robustness of the
projection (supplemental Methods; supplemental Figure 2D-F).

Overall, .95% blasts projected onto the B-cell developmental
trajectory across the 18 patients (Figure 2D). However, within
this trajectory, there was a wide spectrum of developmental
stages at which blasts from the same patient were arrested
(Figure 2E). We quantified this intratumor developmental hetero-
geneity using Shannon’s entropy. We found that blasts from
younger patients (,6 months old) exhibited significantly higher
developmental heterogeneity that manifested at both the tran-
scriptomic (P 5 .007) and chromatin accessibility (P 5 .07) levels
(Figure 2G; supplemental Figure 2G). We next integrated our
snmC-Seq2 data with scATAC-Seq data (Figure 2F; supplemen-
tal Methods). We again observed higher developmental hetero-
geneity in blasts of younger patients (P 5 .02) (Figure 2G). In
addition, we found a significantly higher proportion of cells
aberrantly coexpressed B and myeloid lineage genes in younger
infants, indicating higher lineage plasticity in this age group
(Figure 2H).

Distinct transcriptomic and epigenomic signatures
of blasts in younger patients reveal intrinsic
steroid resistance
We next sought to identify transcriptomic and epigenomic fea-
tures underlying the higher heterogeneity among blasts in youn-
ger patients. We identified 495 differentially expressed genes
[DEGs, FDR ,0.05, and abs(log2FC) .0.5] in blasts from at least
1 B-cell developmental stage between younger and older
patients. These DEGs were clustered into 5 clusters (Figure 3A;
supplemental Table 5). Genes in cluster 1 were expressed

higher in younger patients across the entire B-cell developmen-
tal trajectory. The top enriched pathways include B cell develop-
ment genes, response to viral infection, and AP-1 pathway
(Figure 3B). Genes in cluster 4 were expressed higher in younger
patients and predominantly at immature B stage. The top
enriched pathways include ribosome biogenesis, metabolism,
and translation (supplemental Figure 3A). Genes in clusters 5
and 2 were expressed lower in younger patients in progenitor
and pre-pro-B stages and pre-B and immature-B stages, respec-
tively. Remarkably, the top enriched pathway in cluster 5, blasts
at the most immature developmental stage, is response to corti-
costeroid (Figure 3B). This includes the steroid receptor gene
NR3C1 (Figure 3A).

TF motif accessibility analysis revealed 45 TFs that had genome-
wide chromatin accessibility difference (Wilcoxon test FDR
,0.05) in blasts between younger and older patients in .1
B-cell developmental stage (Figure 3C; supplemental Table 6).
Consistent with their expression levels, the motif chromatin
accessibility for the AP-1 factors was higher in younger patients.
In contrast, chromatin accessibility of the steroid response
related NR3C1 and KLF9 TFs were lower in younger patients.

Besides chromatin accessibility, we identified an average of
22432 differentially methylated regions (DMRs) for each B-cell
developmental stage between patients of the 2 age groups
(supplemental Table 7). The DNA methylation change in gene
promoter was consistent with the change in gene expression.
For instance, promoters of upregulated genes IL7R, IGLL1, and
TCF4 (Figure 3A), were hypomethylated in younger patients at
multiple B-cell developmental stages (supplemental Figure 3B).
In contrast, promoters of downregulated genes NR3C1, KLF9,
and RUNX2 (Figure 3A,C) were hypermethylated in younger
patients at early stages of B-cell development (supplemental
Figure 3B-C).

Steroids are one of the most important agents for the treatment
of KMT2A-r ALL patients,6 and steroid resistance contributes to
the poor prognosis of infant KMT2A-r ALL, especially among
younger patients.14-17 What mediates the poor steroid response
in infants is not known. NR3C1 encodes the glucocorticoid
receptor, and previous studies have reported that NR3C1 is
important for glucocorticoid treatment response in other acute
leukemias.18,19 KLF9 has been reported as a gene that responds
to glucocorticoid signaling.20,21 Lower NR3C1/KLF9 gene
expression and motif accessibility in younger patients provide a
potential mechanistic explanation for inferior treatment response
and therapy resistance in younger patients. We functionally
validated NR3C1 and KLF9 in 3 KMT2A-r ALL cell lines,
SEMK2, KOPN8, and RS4;11 (supplemental Figure 3D). We
observed strong resistance to prednisone and dexamethasone
after CRISPR-mediated knockout of NR3C1 in all 3 cell lines

Figure 2. (continued) indicated on top. (B) Violin plots of marker gene expression used for defining the hematopoietic cell populations. (C) Projection of patient cells
onto normal hematopoietic trajectories. Left panel, representative projection of patient 1154 scRNA-Seq data. Right panel, representative projection of patient 1154
scATAC-Seq data. Gray dots, cells from healthy donors; colored dots, patient cells. (D) Composition of CD191 leukemic blasts in different hematopoietic lineages
based on projected scRNA-Seq data (left bar) and scATAC-Seq data (right bar). M-lineage, myeloid lineage. (E) Frequency of B-lineage blasts from 18 infant KMT2A-r
patients stratified along the normal hematopoietic trajectory (pseudotime). B-lineage pseudotime from HSC/MPPs to mature B cells is ordered into 20 bins. Upper
heatmap shows the frequency of each bin from all 18 infant KMT2A-r patients. Lower line plot shows the frequency of each developmental stage along the pseudotime
trajectory using healthy donor data. (F) UMAP shows coembedded snmC-Seq2 and scATAC-Seq data. Total numbers of sequenced cells of each modality are
indicated. (G) Blasts from younger patients (,6 months old) show higher developmental heterogeneity based on scRNA-Seq, scATAC-Seq, and snmC-Seq2 data,
respectively. Heterogeneity was quantified using Shannon’s entropy. P values are based on Student t test. (H) Fractions of cells aberrantly coexpressing B (VPREB1, IGLL1,
CD79A, and CD19) and myeloid (MPO, CEBPA, and CD33) lineage antigens in younger and older infant patients. P value was computed using a one-sided binomial test.
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Figure 3. Transcriptomic and epigenomic signatures of blasts in younger patients. (A) Heatmap for differentially expressed genes [abs(log2[FC]) .0.5 and FDR
,0.05] of blasts arrested at various B-cell developmental stages between younger (,6 months old) and older (.6 months old) patients. DEGs were pooled and clustered
by k-means clustering (k 5 5) based on their log2FC. Number of genes in each cluster is indicated in the parenthesis. Nonsignificant genes are colored gray. (B) Pathway
enrichment analysis results for DEGs in clusters 1 (top panel) and cluster 5 (bottom panel). (C) Heatmap for differential TF motif accessibility of blasts arrested at various
B-cell developmental stages between younger and older patients. For each TF in each cell, the motif accessibility at scATAC-Seq peaks was computed as the
normalized deviation score using chromVAR. Color in the heatmap indicates the difference in normalized chromVAR deviation scores averaged across all cells in younger
vs older patients. TFs with differential accessibility between younger and older patients were identified by Wilcoxon test of the normalized deviation scores between the
2 groups with an FDR cutoff ,0.05. Nonsignificant TFs were colored in gray. (D-E) Viability of wild type and NR3C1/KLF9 KO KOPN8 (D) and SEMK2 (E) cell lines after
dexamethasone treatment with different doses. Error bar, standard deviation of 2 biological replicates. P values by Student t-test for KO vs control are shown: *P , .05;
**P , .01; ***P , .001. n.s., not significant.
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(P , 1e-5) (Figure 3D-E; supplemental Figure 3E). KLF9 knock-
out induced resistance in KOPN8 and RS4;11 (P , 1e-5 and
P , .01, respectively) (supplemental Figure 3E). The less pro-
nounced steroid resistance of KLF9 KO cells compared with
NR3C1 KO cells may be due to lower KLF9 baseline expression
according to the CCLE database (supplemental Figure 3F).

A rare HSPC-like population predominantly in
younger patients
We found a small population of cells in the PB of infant patients
that resemble HSPCs (1.27% and 1.47% of total cells by scRNA-
Seq and scATAC-Seq, respectively) (Figure 4A). These cells are
CD341CD192 (Figure 1H), express several canonical HSPC TFs
such as GATA2 and HMGA2, and are negative for B-cell devel-
opmental genes such as EBF1, PAX5, VPREB1, and DNTT (Fig-
ure 4B; supplemental Figure 4A). Furthermore, key HSPC TFs
were enriched, and early B-cell TFs depleted at open chromatin
regions in this population compared with CD191 blasts (Figure
4B). By scTLR-Seq, we detected KMT2A fusion transcripts above
background in this population (Figures 1J and 4C). For further
confirmation, we performed KMT2A DNA FISH on sorted HSPC-
like cells from 2 patients (supplemental Figure 4B); 14.4% (180/
1248) of the HSPC-like cells in patient 3315 and 6.6% (21/316)
in patient PAYLNH demonstrated a split KMT2A signal, indica-
tive of a KMT2A rearrangement (Figure 4D). To functionally test
the HSPC-like cells, we transplanted sorted HSPC-like cells (sup-
plemental Figure 4B) and CD191 blasts from initial diagnostic
sample of patient PAYUZJ into NSG mice. We found both
HSPC-like cells and CD191 blasts can generate leukemia (Figure
4E). However, leukemia derived from HSPC-like cells has lower
CD191 and higher CD341CD631 immunophenotype compared
with the CD191-derived leukemia (supplemental Figure 4C).
These data indicate that HSPC-like cells are indeed malignant
with different immunophenotype.

Intriguingly, we found that �80% of HSPC-like cells came from
patients ,6 months (Figure 4F). To further characterize this pop-
ulation, we computed gene signature scores related to HSPC
biology, including quiescence score, apoptosis score,22 and
ribosome biogenesis score.23 We found that HSPC-like cells
resemble a cellular state between normal HSC/MPP and CD191

blasts (Figure 4G). More than 98% of HSPC-like cells were

projected to HSC/MPP, LMPP, and committed progenitors (sup-
plemental Figure 4D). Among them, �70% were projected to
HSC/MPPs, which we term as HSC/MPP-like cells. We identified
165 DEGs between HSC/MPP-like cells and normal HSC/MPPs
(supplemental Figure 4E; supplemental Table 8). Pathway analy-
sis revealed that type II interferon response and MHC class I
genes were upregulated in the HSC/MPP-like population (Figure
4H; supplemental Figure 4F). Consistently, scATAC-Seq data
showed enrichment for motifs of interferon effector TFs in the
HSC/MPP-like population compared with normal HSC/MPPs,
including STAT, IRF, and NFKB (Figure 4I).

Next, we constructed a transcriptional regulatory network (TRN)
by integrating our scRNA-Seq and scATAC-Seq data (supple-
mental Methods). For clarity, we only present the subnetwork
involving interferon effector TFs, including AP-1, NFKB, STAT,
and IRF factors in Figure 4J. The full TRN is provided in supple-
mental Table 9. Our TRN model suggests that interferon effec-
tor TFs act in a highly combinatorial fashion to regulate the
MHC class I genes and other target genes in HSC/MPP-like
cells. For instance, we identified binding sites of multiple inter-
feron effector TFs in enhancers of the HLA-A, HLA-C, and B2M
genes (Figure 4K).

An immunosuppressive circuit between HSPC-like
cells and cytotoxic lymphocytes
We found that all 5 projected populations of HSPC-like cells
were enriched for upregulated genes involved in interferon
response (supplemental Table 8; supplemental Figure 4F).
Therefore, we turned our attention to normal immune cells (Fig-
ure 5A; supplemental Figure 5A) to identify the source of inter-
feron that HSPC-like cells respond to. We found that NK T cells
(and to a lesser extent, NK cells) were the major source of IFNG
in our patient cohort (Figure 5B). Interestingly, we found a
higher fraction of NK T cells in younger patients (supplemental
Figure 5B) and a higher fraction of NK T cells expressing IFNG
in younger patients (P 5 7e-5) (Figure 5C). The HSPC-like popu-
lation also expressed a higher level of IFNGR2 compared with
normal HSC/MPPs (P 5 9e-3) (Figure 5C). Moreover, the fraction
of NK T cells expressing IFNG in each patient is positively corre-
lated with the fraction of HSPC-like cells expressing IFNGR2
(supplemental Figure 5C). These results suggest an aberrantly

Figure 4. A leukemia cell containing HSPC-like population exists in younger patients. (A) UMAPs of single-cell data from the PB of 18 infant patients highlighting
the hematopoietic stem and progenitor-like population in the PB of the patients (HSPC-like cells, purple). Gray, other cell types. Left panel, UMAP based on scRNA-Seq
data, showing 128 588 total cells, 1136 of which are HSPC-like cells. Right panel, UMAP based on scATAC-Seq data, showing 98 887 total cells, 1020 of which are
HSPC-like. (B) Gene expression and regulator activity signatures for normal HSPCs, HSPC-like cells, and CD191 blasts. Left panel, violin plots of marker gene expression
in the 3 cell types. Right panel, activity of cell-type-specific transcriptional factors in the 3 cell types. Activity was measured as the mean TF motif chromatin accessibility
score in each cell type. (C) Representative result of fusion reads identified in HSPC-like cells from patient 1154 using scTLR-Seq. Fusion reads from multiple HSPC-like
blasts (with different cell barcodes) are shown. (D) Representative DNA FISH images of HSPC-like cells. Blue, DAPI; red dots, 59 of KMT2A gene; green dots, 39 of
KMT2A gene. White arrows indicate KMT2A translocation. (E) Barplot shows leukemia burdens (percentage of hCD45) in the end-of-study BM in 2 groups. Blue, PDX
cells from HSPC-like engrafted mice (n 5 8); red, PDX cells from CD191 blasts engraft mice (n 5 8). (F) Percentages of total HSPC-like cells contributed by each patient,
based on scRNA-Seq and scATAC-Seq data. (G) Quiescence, apoptosis, and ribosome biogenesis signature gene scores for BM HSC/MPPs from normal donors,
HSPC-like cells, and CD191 blasts. Scores were calculated as the sum of z-scores (across all cells) of all genes of a signature. P values were computed using the
Wilcoxon test. (H) Pathways enriched comparing HSC/MPP-like cells and BM HSC/MPPs from normal donors. Enriched pathways were identified using the AUCell
method. Heatmap shows the top 20 enriched pathways for HSC/MPP-like cells and normal HSC/MPPs, respectively. Barplot on the left shows the adjusted P value for
enrichment. (I) Heatmap of differential TF motif accessibility in HSC/MPP-like cells compared with normal BM HSC/MPPs. Values are z-score normalized deviation scores
calculated using chromVAR. TFs with differential accessibility between HSC/MPP-like cells and normal HSC/MPPs were identified using Wilcoxon test of the normalized
deviation scores between the 2 groups with an FDR cutoff ,0.05. (J) Transcriptional regulation network distinguishing HSC/MPP-like cells from normal HSC/MPPs. For
clarity, only the part of the TRN involving AP-1, NFKB, STAT, and IRF factors is shown. Nodes represent either enriched TFs or differentially expressed genes in the
HSC/MPP-like blasts vs normal HSC/MPPs. Node color is proportional to the 2log10(FDR) of differential expression, with red being upregulation and green being
downregulation. Edge line thickness is proportional to the 2log10(FDR) of the linear regression coefficient for the predicted enhancer-promoter interaction. (K) Example
MHC class I genes upregulated in HSC/MPP-like cells. Left panels, aggregated scATAC-Seq signals in normal HSC/MPPs, HSC/MPP-like cells, and CD191 blasts.
Putative enhancers for each gene are highlighted in yellow. Motifs of STAT or NFKB or IRF transcription factors overlapping the enhancers are indicated at the top.
Right panels, violin plots for normalized expression of the selected genes in the 3 cell types. *Adjusted P value ,1e-10.
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elevated IFNG signaling between HSPC-like cells and NK T cells
in infants ,6 months.

IFNG signaling in tumor cells affects 2 important classes of
genes relevant to lymphocytes. Induction of the MHC class I
genes in tumor cells can function as suppressive signals for NK
cell cytotoxicity, whereas induction of cell adhesion genes such
as ICAM1 function as activating signals for NK cell cytotoxic-
ity.24,25 We, therefore, computed an NK cell cytotoxicity score
induced by IFNG signaling in the CD191 blast and HSPC-like
population based on the expression levels of the 2 classes of
genes. We found that signaling to cytotoxic lymphocytes by
HSPC-like cells has an overall immunosuppressive effect toward
NK cells compared with CD191 blasts and normal HSPCs (P ,

1e-10) (Figure 5D). To functionally validate this observation, we
sorted HSPC-like cells and CD191 blasts from 3 infant ALL sam-
ples (supplemental Table 1) and performed NK cell coculture
assays (Figure 5E). Cells in the HSPC-like population indeed
were killed much less efficiently, reflecting their immunosuppres-
sive effect toward NK cells (P 5 8.6e-4) (Figure 5F; supplemental
Figure 5D).

To further understand signaling between leukemia blasts and
cytotoxic lymphocytes, we conducted a systematic search of
active ligand-receptor (L-R) pairs mediating signal transduction
between CD81 T/NK cells and CD191 blasts/HSPC-like cells
(Figure 5G; supplemental Table 10; supplemental Methods).
Strikingly, the majority of L-R pairs between HSPC-like cells and
CD81 T/NK cells are known to exert a suppressive effect on cy-
totoxic lymphocytes.26-29 Example L-R pairs include killer Ig-like
receptors (KIRs) and MHC class I proteins,30-32 transforming
growth factor b (TGFB) and receptor (TGFBR).33-35 We next
computed an overall lymphocyte cytotoxicity score by summing
the normalized expression levels of all predicted L-R pairs
between blasts and lymphocytes. We found that the cytotoxic
scores are lower for all 3 types of lymphocytes (CD81 T, CD161

NK, and CD561 NK) when considering interactions with HSPC-
like cells compared with interactions with CD191 blasts (Figure
5H). These results suggest that HSPC-like cells exert an overall
immunosuppressive effect on cytotoxic lymphocytes they inter-
act with, which may facilitate the immune escape of leukemic
cells contained within this population.

Preexisting lymphomyeloid primed progenitor
and myeloid primed blasts in treatment-naive
B-ALL predict lineage switch
Lineage switch from a lymphoid to a myeloid fate at relapse is
usually associated with poor outcome. Previous studies have
shown that lineage switch predominantly occurs in KMT2A-r leu-
kemia and in younger patients.36,37 Among our cohort of 18

treatment-naive KMT2A-r patients who were clinically diagnosed
as B-cell precursor ALL, several had substantial blast subpopula-
tions that mapped to myeloid fates by RNA-Seq and ATAC-Seq
at diagnosis (Figure 6A-B).

Myeloid-like blasts differentially expressed 231 genes, including
key myeloid lineage-specific genes such as MPO, CEBPA, and
CD33 (Figure 6C-D). scATAC-Seq analysis further confirmed
activity of lineage-specific TFs in the myeloid-like blasts (eg,
C/EBP factors and BACH1 and 2) and B-lineage blasts (eg, EBF1
and PAX5), respectively (Figure 6E; supplemental Figure 6A).
Collectively, these data document preexisting blasts with mye-
loid potential in patients at initial diagnosis of B-ALL. To further
test the myeloid potential of this population, we analyzed longi-
tudinal samples from 2 BCP-ALL KMT2A-r patients whose dis-
ease underwent a lineage switch. Patient 1 developed a lineage
switch to AML after treatment with CART-19 for relapsed B-ALL
(supplemental Figure 6B). Patient 2 was treated with CART-19
for relapsed KMT2A-r ALL, relapsed with CD19-negative ALL,
and received inotuzumab (anti-CD22 monoclonal antibody) fol-
lowed by CART-22 therapy for CD221 persistent disease (sup-
plemental Figure 6C). The patient subsequently relapsed with
AML. In both patients, we identified a preexisting blast popula-
tion with myeloid potential before lineage switch in our scRNA-
Seq and scATAC-Seq data, which expanded under the pressure
of immunotherapy (Figure 6F-I; supplemental Figure 6D-G). At
all time points, the myeloid potential by scATAC-Seq exceeded
the expression of myeloid signature genes, underscoring the
much greater power of single-cell epigenomic profiling to
detect lineage potential compared with transcriptomic analysis.
To investigate the potential of myeloid-biased blasts, we trans-
planted mice with 3 subpopulations sorted from the initial diag-
nostic sample of patient #1979 (supplemental Figure 6C):
immature (CD191CD341CD382), lymphoid (CD191CD332),
and lymphoid with coexpression of myeloid markers
(CD191CD331). Once mice developed leukemia, we deter-
mined the immunophenotype of engrafted hCD451 leukemic
cells. We found that lymphoid subpopulation only gave rise to
CD191 lymphoid leukemia, while the CD191/CD331 and
CD191/CD341 subpopulations gave rise to a bulk CD191

CD332 population and a substantial CD191CD331 subclone,
recapitulating the original leukemia (supplemental Figure 6H).
This data supports the coexistence of subclones with different
degrees of myeloid potential and plasticity and suggests the
eventual evolution to a full myeloid switch under pressure of
B-cell–directed therapy.

Besides preexisting myeloid-biased blasts, we also identified a
small fraction of lymphomyeloid-primed progenitors-like (LMPP-
like) blasts in multiple patients of our infant cohort (supplemental

Figure 5. An immunosuppressive circuit between HSPC-like cells and cytotoxic lymphocytes in younger patients. (A) UMAP of scRNA-Seq data for normal immune
cells in 18 KMT2A-r patients. Number of sequenced cells is indicated. (B) NK T cells are the major source of IFNG in patients. Shown are violin plots of IFNG expression
in various immune cell populations in both KMT2A-r patients and healthy donors. HD, healthy donor; PT, patient. (C) Upregulated IFNG signaling in the HSPC-like
population in younger patients. Left, barplot showing younger patients have a higher fraction of NK T cells expressing IFNG. Right, barplot showing IFGN receptor 2
gene (IFNGR2) was expressed higher in HPSC-like cells in the PB of younger infants with ALL compared with normal BM HSC/MPPs. (D) Activating and suppressive
signaling pathways for NK cell cytotoxicity induced by IFNG signaling in blasts. Y-axis, potential for inducing NK cell cytotoxicity based on combined normalized
expression of genes in activating and suppressive pathways in HSPC-like cells, CD191 blasts, and normal HSC/MPPs. (E) Schematic overview of blast and NK cell
coculture experiment. (F) Percentage of HSPC-like cells and CD191 blasts killed by NK cells. Dots represent different patient samples. P values were computed using
Student t-test. (G) Predicted L-R interactions between the leukemia cell containing HSPC-like population (left panel) or CD191 blasts (right panel) and 2 major classes of
cytotoxic lymphocytes, CD81 T cells and NK cells. Red, blue, and gray arcs, suppressive, activating, and unknown interactions, respectively. (H) Cytotoxicity scores of
NK and CD81 T cells based on combined activating and suppressive signaling between the cytotoxic lymphocyte and the HSPC-like/blast populations via L-R pairs (see
supplemental Methods for details). L-R pairs were based on those in panel E.
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Figure 7A-B). These LMPP-like blasts were also present both pre
and postswitch in our pediatric longitudinal samples (Figure 6H;
supplemental Figure 7D). Interestingly, the fractions of LMPP-
like blasts and myeloid-like blasts were significantly correlated
across our patient cohort (Spearman correlation 5 0.61 and
0.68; P value 5 .004 and .001) (supplemental Figure 7C). To test
the hypothesis of an altered differentiation program in LMPP-
like blasts, we performed differential expression analysis and
identified 483 and 752 DEGs between normal LMPPs and
LMPP-like blasts from pre and postlineage switch samples,
respectively. Strikingly, the top enriched pathway among the
DEGs in both comparisons was myeloid leukocyte mediated
immunity (Figure 6J; supplemental Figure 7D). Interestingly, our
transplantation experiment shows that immature subpopulation
(CD191CD341CD382) was able to generate both CD19 only
and CD191CD331 leukemias, with a trend toward higher CD33
expression in NSGS recipients (P 5 .064 in BM) (supplemental
Figure 6H), which were previously shown to support myeloid
skewing of MLL-AF4 transduced human CD341 cord blood
cells.38 In summary, these data suggest that altered differentia-
tion of LMPP with a myeloid-lineage bias contributes to lineage
switch under therapeutic pressure.

Discussion
Infant KMT2A-r ALL (iALL) is known to have vastly different out-
comes depending on the age of presentation.5 Both cell-
intrinsic and extrinsic factors have been suggested to contribute
to more aggressive disease originating in utero.39-44 So far,
murine models have failed to address the key problem in iALL:
the extreme therapy refractory nature of iALL, specifically in
young infants. In our study, we were able to determine the fol-
lowing 4 tangible reasons that explain upfront resistance in a
subset of cells and that show a clear correlation with age at
presentation.

First, leukemia cells from younger infants arrest across a broader
range of developmental stages, including a subset of cells that
map to highly immature HSPCs. While the existence of a true
“leukemia stem cell” in ALL is controversial,12 the presence of
more stem cell–like transcriptional signatures has been linked to
chemotherapy resistance and poor outcome in multiple hemato-
poietic malignancies.12,13

Second, in the most immature leukemic subpopulation, steroid
response signatures are significantly lower in younger infants
compared with older infants. Steroid response has long been
recognized as strongly predictive of outcome,15,45 but

differential steroid response signatures were not evident when
analyzing bulk leukemic populations. However, in the most
immature compartments, decreased steroid response became
the top differentially regulated pathway. We functionally
validated the importance of the steroid receptor NR3C1 in
KMT2A-r ALL cells. Critically, we previously found that the
NR3C1 TF motif was highly enriched in open chromatin of
mouse fetal HSCs compared with adult HSCs.46 Our data thus
support a model whereby an earlier cell of origin may result in
decreased steroid responsiveness of a subset of iALL cells, which
survive the heavily steroid-reliant induction chemotherapy and
represent a reservoir for eventual relapse.

Third, in addition to increased “linear” developmental plasticity
along the B-cell developmental axis, leukemic cells in younger
infants display decreased lineage fidelity compared with older
patients. KMT2A-r leukemias have long been suspected to origi-
nate from an uncommitted precursor.47 Our data strongly sup-
ports this notion and documents a previously unrecognized
degree of lineage infidelity as well as a surprising degree of
myeloid potential in a subset of patients. This aspect of our data
lends support to the “MPAL”-like approach suggested by the
recent report on the Interfant-06 clinical trial, where infants who
failed to achieve a satisfactory response to B-ALL induction ther-
apy appeared to benefit from switching to an “AML-like” con-
solidation.48 We also document the potential of myeloid-primed
subpopulations at diagnosis to serve as a reservoir for lineage
switch under the pressure of B-cell–directed immunotherapy.

Fourth, one of the most interesting and unanticipated aspects of
our study was the detection of leukemic cells within a
CD341CD192 HSPC-like population in younger patients that
can evade cytotoxic T and NK cells. Here, we reported an
immunosuppressive signaling circuit specifically in younger
infants. This circuit includes increased IFNG produced by NK T
cells, evidence of response to IFNG signaling in the HSPC-like
cells, and suppressive signaling from HSPC-like cells back to
cytotoxic NK and T cells. Furthermore, the characterization of
immunosuppressive ligands on the surface of the most immature
subpopulation within the leukemic population explains the fail-
ure of HSCT to change the outcome of iALL and supports
exploring the modulation of interferon signaling and/or immune
synapses as potentially promising immunotherapy approaches.

In summary, our data support a model where features of fetal
progenitors, the likely cell of origin of iALL, mediate develop-
mental plasticity, lineage infidelity, and intrinsic therapy resis-
tance of an immature subset of blasts. Our findings thus support

Figure 6. Preexisting lymphomyeloid primed progenitor and myeloid blasts in treatment-naive patients as indicators of lineage switch. (A) Frequencies of
CD191 blasts that were projected to the myeloid lineage (GMPs, monocytes, and dendritic cells) in all 18 infant KMT2A-r patients based on scRNA-Seq and
scATAC-Seq data. (B) Projection of patient PAYZLC data onto normal hematopoietic trajectory. Top panel, projection of scRNA-Seq data. Bottom panel, projection of
scATAC-Seq data. Gray dots, cells from healthy donors; colored dots, patient cells. (C) Volcano plot for differentially expressed genes between M-lineage blasts and
B-lineage blasts. Analysis was based on projected blasts from all 18 patients. DEGs were identified with the cutoff of abs(log2FC) .0.5 and FDR ,0.01. Those with
abs(log2FC) .1 are highlighted in blue. (D) Violin plots for representative signature genes in M-lineage blasts and B-lineage blasts. (E) Heatmap of differential TF motif
accessibility in B-lineage and myeloid-lineage blasts. Analysis was based on projected blasts from 18 patients. Values are z-score normalized deviation scores calculated
using chromVAR. TFs with differential accessibility between B-lineage and myeloid-lineage blasts were identified using Wilcoxon test of the normalized deviation scores
between the 2 groups with an FDR cutoff ,0.05. (F-G) UMAP of scRNA-Seq (F) and scATAC-Seq (G) data for a pediatric KMT2A-r patient with paired samples before
and after lineage switch. Left panel, UMAP of paired samples, colored by assigned cell populations. Total numbers of sequenced cells are indicated. Right panel,
projection of patient cells to the normal hematopoietic trajectory. Gray dots, cells from healthy donors; colored dots, patient cells. (H) Fraction of B-, myeloid-lineage,
and LMPP blasts before and after lineage switch. Top panel, fraction based on scRNA-Seq data; bottom panel, fraction based on scATAC-Seq data. (I) Violin plots of
gene expression of B-lineage and myeloid-lineage marker genes before and after lineage switch. (J) Enriched pathways among differentially expressed genes between
normal LMPP from healthy donors and LMPP-like blasts in patient samples before lineage switch.
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approaches geared toward understanding and modulating fetal
developmental features, targeted inhibitors, or immunotherapy
approaches rather than optimization of conventional stem cell-
sparing chemotherapy or lineage-restricted immunotherapy,
both of which fail to address the key underlying biological fea-
tures of iALL.
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