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KEY PO INTS

� CD19 CAR T-cell ther-
apy is effective at
achieving durable
remission for relapsed/
refractory ALL across
cytogenetic risk
groups.

� CD19 CAR T-cell treat-
ment results for
patients with high-risk
cytogenetics including
Ph1, Ph-like, and
KMT2A-rearranged ALL
are encouraging.

Chimeric antigen receptor (CAR) T-cell therapy can induce durable remissions of relapsed/
refractory B-acute lymphoblastic leukemia (ALL). However, case reports suggested differ-
ential outcomes mediated by leukemia cytogenetics. We identified children and young
adults with relapsed/refractory CD191 ALL/lymphoblastic lymphoma treated on 5 CD19-
directed CAR T-cell (CTL019 or humanized CART19) clinical trials or with commercial tisa-
genlecleucel from April 2012 to April 2019. Patients were hierarchically categorized
according to leukemia cytogenetics: High-risk lesions were defined as KMT2A (MLL) rear-
rangements, Philadelphia chromosome (Ph1), Ph-like, hypodiploidy, or TCF3/HLF; favor-
able as hyperdiploidy or ETV6/RUNX1; and intermediate as iAMP21, IKZF1 deletion, or
TCF3/PBX1. Of 231 patients aged 1 to 29, 74 (32%) were categorized as high risk, 28
(12%) as intermediate, 43 (19%) as favorable, and 86 (37%) as uninformative. Overall com-
plete remission rate was 94%, with no difference between strata. There was no difference
in relapse-free survival (RFS; P 5 .8112), with 2-year RFS for the high-risk group of 63%
(95% confidence interval [CI], 52-77). There was similarly no difference seen in overall sur-
vival (OS) (P 5 .5488), with 2-year OS for the high-risk group of 70% (95% CI, 60-82). For

patients with KMT2A-rearranged infant ALL (n 5 13), 2-year RFS was 67% (95% CI, 45-99), and OS was 62% (95% CI,
40-95), with multivariable analysis demonstrating no increased risk of relapse (hazard ratio, 0.70; 95% CI, 0.21-2.90;
P 5 .7040) but a higher proportion of relapses associated with myeloid lineage switch and a 3.6-fold increased risk of
all-cause death (95% CI, 1.04-12.75; P 5 .0434). CTL019/huCART19/tisagenlecleucel are effective at achieving durable
remissions across cytogenetic categories. Relapsed/refractory patients with high-risk cytogenetics, including KMT2A-
rearranged infant ALL, demonstrated high RFS and OS probabilities at 2 years.

Introduction
Chimeric antigen receptor (CAR) T-cell therapy has radically
improved the outcomes for children and young adults with
relapsed/refractory B-acute lymphoblastic leukemia (ALL), with
1-year relapse-free survival (RFS) rates approaching 60%.1-5

Although leukemic genomic abnormalities are prognostic bio-
markers of outcome at initial diagnosis, with risk associations
preserved at relapse,6 their clinical implication in novel therapeu-
tic approaches such as CAR T-cell therapy are unknown. As spe-
cific genetic aberrations are known to influence overall response
to cytotoxic therapy and to specific chemotherapy agents,7 and
initial case series in CAR T-cell therapy suggested differential

results mediated by certain cytogenetic characteristics,8

although other preliminary data contradicted those findings,9,10

understanding the clinical outcomes of patients with common
cytogenetic and genomic aberrations treated with CAR T cells is
essential.

Cytogenetic and genomic abnormalities that are considered to
confer a poor prognosis include KMT2A (formerly MLL) rear-
rangements, the Philadelphia chromosome (Ph1), fusions and
mutations that confer a Philadelphia chromosome–like (Ph-like)
gene expression profile, hypodiploidy, and TCF3/HLF fusion
resulting from t(17;19)(q22;p13). Limited prospective clinical trial
data using CD19-directed CAR T-cell constructs suggests that
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there is no initial treatment response difference seen with Ph1

ALL11 or those with KMT2A rearrangements.8 However, CAR
T-cell escape variants, including myeloid lineage switch, have
been identified, most commonly with KMT2A rearrangement8

but also with TCF3-ZNF384 fusions12 and in those without
defined high-risk cytogenetic features.13,14

The presence of hyperdiploidy or ETV6/RUNX1 fusion at initial
diagnosis typically connotes a favorable prognosis,15-18 although
not all cases fare evenly,19,20 and there has not been explicit
examination of these features in the context of CAR T-cell ther-
apy. Similarly, there is no available data regarding intrachromo-
somal amplification of chromosome 21 (iAMP21) or TCF3/PBX1
fusion resulting from t(1;19)(q23;p13.3) in the setting of CAR T
cells, with both lesions classified as intermediate risk using inten-
sive chemotherapy in contemporary protocols.21-24 IKZF1 dele-
tions, often associated with Ph1 and Ph-like,25,26 carry a poor
prognosis both at diagnosis27 and at relapse,28 which is likely
impacted by multiple other factors29 and likewise have not been
explored in the context of CAR T-cell therapy.

To examine whether the efficacy of CD19-directed CAR T-cell
therapy for B-ALL differs based on sentinel cytogenetic lesions,
we conducted a retrospective outcomes analysis of children and
young adults treated with murine CTL019/tisagenlecleucel or
the related humanized CD19 CAR, huCART19,30 for relapsed/
refractory ALL or lymphoblastic lymphoma (LLy) categorized by
cytogenetic risk level.

Methods
Study population
Children and young adults aged 1 to 29 years with relapsed or
refractory CD191 ALL or LLy treated on 5 CD19-directed
CAR T-cell clinical trials (clinicaltrial.gov numbers NCT016-
26495, NCT02435849, NCT02374333, NCT02228096, and
NCT02906371)1,2,30-32 or with commercial tisagenlecleucel
(Kymriah, Novartis) at the Children’s Hospital of Philadelphia
from April 2012 to April 2019 were included (CONSORT dia-
gram, supplemental Figure 1). Most patients received CTL019/
tisagenlecleucel (n 5 195), an anti-CD19 CAR containing a
4-1BB costimulatory domain.33 Patients on trial NCT02374333
(n 5 41) received huCART19, in which the anti-CD19 scFv has
been humanized.30 Patients who were treated in the retreatment
cohort of NCT02374333 were not included in these analyses.
Patients who lacked cytogenetic analysis of their leukemia were
excluded (n 5 5). This retrospective study was approved by the
institutional review board of the Children’s Hospital of Philadel-
phia. Patients or their guardians provided written informed con-
sent for treatment in each respective clinical trial.

Prior to infusion, lymphodepleting (LD) chemotherapy was admin-
istered at the treating physician’s discretion. The recommended
agents were fludarabine (30 mg/m2 per day3 4 days) and cyclo-
phosphamide (500 mg/m2 per day3 2 days) (n5 213, alternative
regimens presented in supplemental Table 1). Patients underwent
staging bone marrow aspirate and biopsy with multiparameter
flow cytometry determination of minimal residual disease (MRD)
after lymphodepleting chemotherapy and prior to infusion, with
the exception of 23 patients who underwent staging disease eval-
uation at enrollment and received bridging chemotherapy prior to

infusion. Preinfusion disease burden was defined based on the
highest blast percentage of the 3 measurements: M1, ,5% lym-
phoblasts; M2, 5% to 25% lymphoblasts; and M3, .25%
lymphoblasts.

Cytogenetic risk group definitions
Cytogenetic information was abstracted from the medical
record, clinical trial database, and referral documentation.
Patients were classified according to their highest risk cytoge-
netic characteristic and stratified by cytogenetic risk category
accordingly. In the case of multiple cytogenetic reports, the
highest risk cytogenetic characteristic documented was used in
stratification, relying on known preservation of sentinel lesions in
relapse.6,34-36 High-risk lesions were defined as KMT2A (MLL)
rearrangements, Philadelphia chromosome (Ph1), Ph-like,37

hypodiploidy (,44 chromosomes), and TCF3/HLF fusion. Leuke-
mias classified as Ph-like were identified either by gene expres-
sion profiling, including low density array screen,38 or by
targeted sequencing or fluorescence in situ hybridization for
specific lesions. Intermediate risk lesions included iAMP21,
IKZF1 deletion, or TCF3/PBX1. Favorable cytogenetics were
defined as the presence of hyperdiploidy (.51 chromosomes)
or ETV6/RUNX1 fusion. If none of the preceding lesions were
identified, the leukemia was classified as having uninformative
cytogenetics. For patients with multiple coexisting lesions, the
highest-risk cytogenetic characteristic was used for risk classifica-
tion; for example, a patient with Ph1 leukemia that also exhib-
ited an IKZF1 deletion was categorized as high risk.

Outcomes
Complete remission (CR) was defined as bone marrow with trili-
neage hematopoiesis and ,5% lymphoblasts and no evidence
of extramedullary leukemia. Event-free survival (EFS) was defined
as time from CAR T-cell infusion until evidence of nonresponse,
morphologic relapse, or death. RFS was defined as the time
from first disease assessment post–CAR T-cell infusion until mor-
phologic relapse or death for those patients who achieved CR
following infusion. No death occurred before relapse in these
patients. Patients were censored at the time of alternate cancer-
directed therapy (including tyrosine kinase inhibitor and hemato-
poietic stem cell transplantation [HSCT]) or at last contact,
whichever was earlier for both RFS and EFS analyses. Patients
were not censored for CAR T-cell reinfusion. A secondary RFS
analysis, using flow MRD .0.01% as the relapse endpoint, was
also performed for individual high-risk lesions vs all others. Over-
all survival (OS) was defined as time to all-cause death, with
patients censored at the last known contact. In addition to
clinically-indicated testing, clinical trial participants had routine
disease assessments, including lumbar puncture, bone marrow
aspirate, and biopsy at months 3, 6, 9, and 12, and patients
who received commercial tisagenlecleucel had the same assess-
ments performed at month 3 following CAR T-cell infusion.

Covariates
Patient demographics and baseline characteristics were
obtained from the clinical trial databases for trial patients and
from the medical record for patients receiving commercial tisa-
genlecleucel. Patient clinical history, including prior treatment,
and disease status at referral were manually abstracted from the
medical record.
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Statistical analysis
Data used in these analyses were current as of 31 December
2019. Baseline patient and disease characteristics were summa-
rized and compared by cytogenetic risk group using Fisher’s
exact tests for categorical variables and Wilcoxon test for contin-
uous variables. Kaplan-Meier curves of RFS and OS were plotted
by cytogenetic risk group and compared using log-rank tests.
Cumulative incidence function of relapse was also estimated
considering alternate cancer-directed therapy as a competing
risk (nonrelapse death was not considered as a competing risk
because no death occurred before relapse in this study). Cumu-
lative incidence function of relapse was plotted by cytogenetic
risk group and compared using Gray’s test. Univariate and multi-
variate Cox regressions were used to estimate the unadjusted
and adjusted hazard ratios (HRs) of RFS and OS for cytogenetic
groups, with proportional hazard assumptions assessed by log-
log plots. All the baseline characteristics were screened as
potential confounders by evaluating each covariate’s bivariate
association with the exposure (cytogenetic group) and the out-
come (RFS or OS). The covariates that demonstrated some evi-
dence of association (P , .2) with both the exposure and the
outcome were then included in the multivariate regression
model to control for confounders. Analyses were performed
using SAS 9.4 (SAS Institute, Cary, NC) statistical software.

Results
Study population
From April 2012 to April 2019, 236 patients (median age 12
years, range 1-29) with relapsed or refractory CD191 ALL or LLy
were treated on 5 CD19-directed CAR T-cell clinical trials, or
received tisagenlecleucel, of which 231 patients had documen-
tation of the cytogenetic characteristics of their disease (supple-
mental Figure 1). Of the 231, 74 (32%) met criteria to be
included in the high-risk cytogenetic strata: 25 (34%) patients
with KMT2A rearrangements (fusion partners in supplemental
Table 2), 18 (24%) Ph1, 19 (26%) Ph-like, 8 (11%) hypodiploid,
and 4 (5.4%) with TCF3/HLF. Twenty-eight (12%) patients met
criteria for intermediate risk: 10 (36%) patients with iAMP21, 10
(36%) with IKZF1 deletions, and 8 (29%) with TCF3/PBX1. Forty-
three patients (19%) had favorable risk cytogenetics, with 30
(70%) demonstrating hyperdiploidy and 13 (30%) with ETV6/
RUNX1. Eighty-six patients (37%) did not have any of the pre-
ceding lesions and were therefore categorized in the uninforma-
tive risk stratum. Demographic differences in patient sex and
age were seen across the strata (P 5 .029 and P 5 .047, respec-
tively), whereas distributions of clinical characteristics, such as
prior HSCT, number of prior relapses at referral, and bone mar-
row disease burden at infusion, were comparable (Table 1; sup-
plemental Table 3). Fifteen patients (6.5%) were initially
diagnosed at ,1 year of age, of whom 13 had KMT2A rear-
rangements (referred to subsequently as KMT2A-rearranged
infant ALL). Ten percent of the cohort received prior treatment
with blinatumomab, more commonly in the high-risk and
intermediate-risk strata than in the favorable-risk or uninforma-
tive categories (P 5 .040, Table 1).

Outcomes
Disease response and relapse Overall CR rate was 94%, with
no statistically significant difference in CR rate seen between the

strata, with 93% (69/74) of high-risk stratum, 86% (24/28) of
intermediate risk, 98% (42/43) of favorable risk, and 97% (83/86)
of patients with uninformative cytogenetics in CR at day 28 after
infusion (P 5 .23, Table 2).

Median length of follow-up was 27 months and comparable
across strata (P . .9, Table 2), with no difference in EFS
(P 5 .7755; 2-year EFS: 59% [95% CI, 48-73] high risk, 50%
[95% CI, 33-76] intermediate, 61% [95% CI, 45-83] favorable,
and 56% [95% CI, 45-70] uninformative; supplemental Figure 2).
RFS also did not differ between the 4 strata (P 5 .8112; 2-year
RFS: 63% [95% CI, 52-77] high risk, 59% [95% CI ,40-86] inter-
mediate, 63% [95% CI, 47-84] favorable, and 55% [95% CI,
43-70] uninformative; Figure 1A). Likewise, cumulative incidence
of relapse did not differ across strata, with a 2-year estimate of
33% [95% CI, 22-44] for high-risk lesions, 35% [95% CI, 16-55]
for intermediate, 29% [95% CI, 16-45] for favorable, and 37%
[95% CI, 26-48] for uninformative (P 5 .8112, supplemental
Figure 3).

In a separate analysis of patients with the highest frequency high-
risk lesions, there was no difference in RFS for KMT2A rearrange-
ments (P5 .1326, Figure 1B) or Ph-like disease (P5 .4037, Figure
1D), with 2-year RFS of 46% (95% CI, 29-73) for those with KMT2A
rearrangements compared with 62% (95% CI, 54-71) for all others
and 92% (95%CI, 79-100) for those with Ph-like disease compared
with 58% (95% CI, 51-67) for all others. RFS was improved for
those with Ph1ALL (P5 .0211, Figure 1C), with 2-year RFS of 88%
(95%CI, 74-100) comparedwith 57% (95%CI, 49-66) for all others.
A subgroup analysis for patients with favorable lesions demon-
strated no difference in RFS for hyperdiploid (P5 .0769) or ETV6/
RUNX1 (P 5 .1899, supplemental Figure 4), although the former
trended toward statistical significance. Two-year RFS for hyperdi-
ploid was 64% (95% CI, 42-96) compared with 59% (95% CI, 51-
67) for all others, and 2-year RFS for ETV6/RUNX1 was 53% (95%
CI, 33-89) compared with 60% (95% CI, 53-69) for all others. Simi-
larly, no difference was seen in the frequency of CD19 positivity at
relapse between the strata, with approximately half (42/78, 54%)
of relapses being CD192 (P5 .89). In multivariate analysis, adjust-
ing for age, sex, blinatumomab exposure, and bone marrow dis-
ease burden at infusion, no risk category emerged as associated
with a higher hazard of relapse (Table 3). Multivariable analyses
examining individual genomic lesions (KMT2A-rearrangment,
Ph1, Ph-like, hyperdiploid, ETV6/RUNX1) compared with all
others, adjusted for age, sex, blinatumomab exposure, and bone
marrow disease at infusion, found no significant risk associations
with relapse, although there was a nonsignificant trend toward
increased risk forKMT2A rearrangement and similar nonsignificant
trend toward decreased risk for hyperdiploid (KMT2A: adjusted
HR, 1.94 [95% CI, 0.90-4.18], P 5 .0892; Ph1: adjusted HR, 0.30
[95% CI, 0.07-1.27], P5 .1021; Ph-like: adjusted HR, 0.69 [95% CI,
0.21-2.27], P 5 .5366; hyperdiploid: adjusted HR, 0.45 [95% CI,
0.18-1.12], P 5 .0855; ETV6/RUNX1: adjusted HR, 1.5 [95% CI,
0.71-3.29], P5 .2797; Table 4).

In a secondary analysis using evidence of MRD as a relapse end-
point, there was no difference in RFS for patients with KMT2A
rearrangements compared with all others (P 5 .3797, supple-
mental Figure 5A), with a 2-year MRD-RFS of 46% [95% CI,
29-73] for those with KMT2A rearrangements and 56% [95% CI,
49-66] for all others. Similarly, there was no difference in
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MRD-RFS for those with Ph1 B-ALL compared with all others
(P 5 .2216; 2-year RFS: 71% [95% CI, 53-96] Ph1 and 53% [95%
CI, 46-62] all others; supplemental Figure 5B) or for those with
Ph-like ALL compared with all others (P 5 .4759; 2-year RFS:
84% [95% CI, 66-100] Ph-like and 54% [95% CI, 46-62] all
others, supplemental Figure 5C). Similar findings were noted in
patients with the favorable lesions hyperdiploidy and ETV6/
RUNX1 (supplemental Figure 5D-E). In patients with KMT2A
rearrangements, there were no MRD relapses. In Ph1 patients,
there were 4 MRD relapses, all of whom went on to receive tyro-
sine kinase inhibitor or cytotoxic treatment within the month,
and 3 remain in long-term remissions, and in Ph-like patients,
there was 1 MRD relapse who subsequently received alternate
therapy and remains in long-term remission.

Thirteen patients with KMT2A-rearranged B-ALL were diag-
nosed prior to 1 year of age, therefore meeting criteria for infant
B-ALL. Two-year RFS for these patients was 67% (95% CI, 45-99,
Figure 1E) and OS was 62% (95% CI, 40-95, Figure 2E), with 1
patient who was inevaluable for response due to toxicity-
associated death prior to day 28. In a multivariable analysis
comparing these patients to all others, adjusting for age, sex,
blinatumomab exposure, and bone marrow disease at infusion,
there was no increase in risk of relapse (adjusted HR, 0.70; 95%
CI, 0.21-2.90; P 5 .7040; Table 4).

Six patients exhibited myeloid lineage switch following infusion:
5 patients with morphologic relapse and 1 patient who did not

respond to initial infusion, and lineage switch was noted on the
first postinfusion disease assessment. Five of the patients had
KMT2A rearrangements, including the patient with no response,
and 3 of those with morphologic relapse had infant ALL. The
sixth patient did not have informative cytogenetics. Relapse
generally occurred within 6 months, with the exception of the 1
patient with uninformative cytogenetics who remained in remis-
sion for 21 months following infusion. All patients who experi-
enced lineage switch died of their disease.

OS
Overall survival was not significantly different between the strata
(P 5 .5488; 2-year OS: 70% [95% CI, 60-82] high risk, 66% [95%
CI, 50-87] intermediate, 78% [95% CI, 66-93] favorable, and 79%
[95% CI, 70-88] uninformative, Figure 2A). However, the proba-
bility of survival for patients with KMT2A rearrangement was sta-
tistically lower compared with all others (P 5 .0475; 2-year OS:
59% [95% CI, 42-82] KMT2A-rearrangment vs 76% [95% CI, 70-
83] all others; Figure 2B). There was a trend toward significance
for improved overall survival in patients with Ph1 B-ALL (P 5

.07954; 2-year OS: 88% [95% CI, 75-100] Ph1 vs 73% [95% CI,
67-80] all others; Figure 2C) and no difference between Ph-like
and all others (P 5 .4880; 78% [95% CI, 61-100] Ph-like vs 74%
[95% CI, 68-80] all others; Figure 2C). In multivariate analysis,
adjusting for age, sex, blinatumomab exposure, and bone mar-
row disease at infusion, no cytogenetic risk category emerged as
associated with OS (Table 3). Multivariable analyses examining
individual genomic lesions compared with all others, adjusting

Table 1. Baseline patient and disease characteristics

All patients
(n 5 231)

High risk
(n 5 74)

Intermediate
risk

(n 5 28)

Favorable
risk

(n 5 43)
Uninformative

(n 5 86) P

Age (y), median (range) 12 (1-29) 11 (1-29) 9 (2-22) 12 (4-29) 13 (2-27) .047

Age categories, n (%)

,3 y 12 (5.2%) 8 (11%) 2 (7.1%) 0 (0%) 2 (2.3%) .015

3-9.99 y 81 (35%) 23 (31%) 15 (54%) 14 (33%) 29 (34%)

10-17.99 y 100 (43%) 29 (39%) 10 (36%) 25 (58%) 36 (42%)

$18 y 38 (16%) 14 (19%) 1 (3.6%) 4 (9.3%) 19 (22%)

Male n (%) 134 (58%) 49 (66%) 10 (36%) 28 (65%) 47 (55%) .029

Prior HSCT 100 (43%) 38 (51%) 12 (43%) 14 (33%) 36 (42%) .26

Prior blinatumomab 24 (10%) 9 (12%) 7 (25%) 2 (4.7%) 6 (7.0%) .040

Refractory at referral 91 (39%) 30 (41%) 10 (36%) 17 (40%) 34 (40%) .98

Disease status at referral

Primary refractory 39 (17%) 18 (24%) 2 (7.1%) 3 (7.0%) 16 (19%) .077

1st relapse 69 (36%) 20 (27%) 12 (43%) 10 (23%) 27 (31%)

2nd or greater relapse 123 (64%) 36 (49%) 14 (50%) 30 (70%) 43 (50%)

Marrow status preinfusion

,0.01% 87 (38%) 34 (46%) 7 (25%) 17 (40%) 29 (34%) .18

0.01-4.99% 46 (20%) 16 (22%) 3 (11%) 6 (14%) 21 (24%)

5-24.99% 21 (9.1%) 4 (5.4%) 3 (11%) 6 (14%) 8 (9.3%)

$25% 77 (33%) 20 (27%) 15 (54%) 14 (33%) 28 (33%)
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for the same variables, found a significant increased risk for
KMT2A rearrangement (P 5 .0212; adjusted HR, 2.59 [95% CI,
1.15-5.81]; Table 4). Neither Ph1 nor Ph-like demonstrated statis-
tically significant associations with OS (Ph1 adjusted HR, 0.41

[95% CI, 0.10-1.71], P 5 .2211; Ph-like adjusted HR, 0.78 [95%
CI, 0.27-2.20], P 5 .6351; Table 4). In patients with KMT2A-rear-
ranged infant leukemia (n 5 13), there was a 3.6-fold increase in
risk of all-cause death (95% CI, 1.04-12.75; P 5 .0434; Table 4).
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Figure 1. RFS by cytogenetic risk category and individual high-risk lesion. (A) RFS by cytogenetic risk category, defined as the time from onset of remission to
relapse in the patients who achieved a complete response. Data were censored for allogeneic HSCT or other alternative therapy during remission (HSCT: n 5 7 [high],
3 [intermediate], 4 [favorable], 9 [uninformative]; alternative therapy: n 5 5 [high], 1 [intermediate], 7 [favorable], 9 [uninformative]). (B) RFS for KMT2A-rearrangment
compared with all others (HSCT: n 5 0 [KMT2A rearrangement], 22 [all others]; alternative therapy: n 5 0 [KMT2A rearrangement], 23 [all others]). (C) RFS for Ph1

stratum compared with all others (HSCT: n 5 0 [Ph1], 22 [all others]; alternative therapy: n 5 4 [Ph1], 19 [all others]). (D) RFS for Ph-like stratum compared with all
others (HSCT: n 5 6 [Ph-like], 17 [all others]; alternative therapy: n 5 1 [Ph-like], 21 [all others]). (E) RFS for infant leukemia with KMT2A rearrangement compared with
all others (HSCT: n 5 0 [KMT2A rearrangement], 22 [all others]; alternative therapy: n 5 0 [KMT2A rearrangement], 23 [all others]). Tick marks indicate the time of
censoring.
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Discussion
This analysis of children and young adults with relapsed/refrac-
tory ALL treated with the CD19-directed CAR T-cell products
CTL019, huCART19, and tisagenlecleucel is the first large study
to demonstrate similar outcomes across cytogenetic risk catego-
ries and extends the findings of smaller studies that suggested
similar findings for individual lesions but had few subjects.8,11,39

Patients with high-risk cytogenetic and genomic lesions, includ-
ing KMT2A-rearrangment, Ph1, Ph-like, hypodiploid, and TCF3/
HLF, a group that comprised approximately one-third of the
cohort, demonstrated similar rates of CR, RFS, and OS to
patients categorized as having intermediate, favorable, or unin-
formative genetic characteristics. Further, multivariable analysis
of RFS, controlling for age, sex, blinatumomab exposure,10,40-42

and bone marrow disease at infusion, did not demonstrate a sig-
nificant increase in risk of relapse or death for the high-risk cyto-
genetics group. Perhaps revealingly, there was similarly no
difference in baseline disease characteristics across cytogenetic
risk groups, with a majority in second or greater relapse (49%
high risk, 55% others), 41% with refractory disease (39% others),
and half with a history of HSCT (51% high risk, 39% others).

Total relapse rate for the entire cohort was 34%, with no differ-
ence between cytogenetic groups, and CD191 and CD192

relapse rates occurred with similar frequencies in the different
groups, although myeloid lineage switch occurred primarily in
patients with KMT2A rearrangements. Six cases of myeloid line-
age switch following CAR T-cell infusion were seen, 5 in KMT2A-
rearranged cases and 1 with uninformative cytogenetics, all of
whom subsequently succumbed to their disease. This finding is
consistent with prior observations that lineage switch is a rare
phenomenon associated with poor prognosis43 and thought to
occur most commonly with specific genetic subtypes that have

greater plasticity, such as KMT2A-rearrangement, although not
exclusively.12,13 CD19-directed CAR T-cell immune pressure
inducing lineage switch as a mechanism of CAR resistance has
been demonstrated in murine models44 as well as in prior clinical
trials.8 Our data, with a 21% incidence of lineage switch among
KMT2A-rearranged leukemia relapses, agrees with that of prior
work8 and suggests that relapse occurs rapidly in the context of
KMT2A-mediated lineage switch, conferring a dismal prognosis.
This finding, however, is balanced against the encouraging out-
comes demonstrated overall in KMT2A-rearranged B-ALL and
those seen in KMT2A-associated infant B-ALL, and future work
should focus on determining if there are baseline or modifiable
features that can predict or avoid lineage switch in this
population.

KMT2A translocations are known to be associated with
chemo-refractory disease that has a higher likelihood of relapse,
resulting in poor outcomes in children and young adults and
conferring a dismal prognosis for infants.45 Despite advance-
ments in overall cure rates for childhood leukemia, there has
been only modest improvement for patients with KMT2A-rear-
ranged ALL with EFS and OS clustering around 50%, relapses
rates between 50% to 60%, and salvage following relapse very
challenging.46-48 The RFS observed with CAR T-cell therapy in
this study, a 2-year RFS of 46%, is encouraging for patients with
relapsed/refractory B-ALL with KMT2A rearrangements, as is the
lack of statistically significant difference in RFS compared with
other B-ALL subtypes; however, it may be difficult to detect a
difference in this relatively small subset. There was a
non–statistically significant trend toward increased risk for
relapse in multivariable analysis, a finding that warrants confir-
mation with a larger sample size and suggests that factors for
which multivariable analyses adjust may contribute to these
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Figure 1. (continued)
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outcomes. We note that a large proportion (56%) of patients
with KMT2A-rearranged ALL were in an MRD2 remission at the
time of infusion, either because relapse presented in an isolated
extramedullary site or due to bridging chemotherapy, suggest-
ing chemo-sensitive disease. As has been found in other
KMT2A-driven disease subtypes, relapses tended to occur
within the first year.49 Additionally, patients who relapse after
CAR T-cell therapy, unfortunately, largely go on to die of their
disease, with a 2-year OS of 59% compared with 76% for all
others, with multivariable analysis showing a 2.6-fold increase in
risk of all-cause death. Nevertheless, these outcomes for
KMT2A-rearranged B-ALL treated with CAR T cells are promis-
ing, particularly in light of the fact that 68% of these patients
had 2 or more prior relapses.

The outcome for infants with KMT2A-rearranged ALL treated with
current frontline intensive regimens are even worse than those of
older children, with 5-year EFS rates of about 35% and OS rates
of about 45% reported in 4 major studies,48,50-52 without a clear
benefit to HSCT. Relapse unfortunately portends a dismal prog-
nosis, with a 3-year OS rate of 24% on Interfant-99.53 RFS after
CAR T-cell therapy was 67% at 2 years for 13 patients with infant
B-ALL with KMT2A rearrangement included in the current study,
8 of them in second or greater relapse (62%), and 8 who had
relapsed after HSCT (62%). Although limited by small sample
size, these data are encouraging and suggest that patients with
KMT2A-rearranged infant B-ALL treated with CD19 CAR T cells
are not at higher risk of relapse than others. However, they are at
a more than threefold increased risk of all-cause death, perhaps
related to the challenge of salvaging these relapses.

In an unadjusted analysis, Ph1 ALL appears to be associated
with improved RFS, although this effect is dampened when
using MRD-level disease to define relapse, possibly related to
the ability to detect relapse earlier with BCR-ABL1 polymerase
chain reaction. Moreover, in multivariate analysis, there was no
statistically significant difference in relapse risk when adjusted
for disease burden, potentially related to the higher proportion
(56%) of patients with ,0.01% MRD preinfusion. Interestingly,
neither the KMT2A-rearranged nor Ph-like RFS analyses
changed with the use of MRD-level disease as a relapse end-
point, despite the fact that disease monitoring intervals are the
same. Differences in disease kinetics or the sensitivity and specif-
icity of disease monitoring by lesion-specific polymerase chain
reaction may account for this effect.

It should be noted that this study used a clinically pragmatic
approach to collecting and categorizing cytogenetic data, relying
on disease assessments that had been performed at diagnosis
and relapse, and retrospectively abstracting genetic information
from the resultant reports. This presents 2 challenges: First, that
not all patients may have had the full complement of leukemia
genetic testing, although KMT2A rearrangements, ETV6/RUNX1
fusion, BCR/ABL1 fusion, and hypo/hyperdiploidy are routinely
screened for, and further, that the determination of specific
lesions and their other partners are dependent on the sensitivity
of specific tests. Second, the available cytogenetic analysis does
not necessarily reflect the disease at the time of CAR T-cell
infusion, although data suggests that sentinel lesions are largely
preserved in relapse,6,34-36 and the acquisition of many of the
high-risk sentinel lesions is rare.54,55 The selection of cytogenetic
lesions for this study was based on the genetic aberrations thatTa
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are most routinely screened for in clinical practice, with the aim of
limiting missing data and maximizing clinical applicability of the
results. However, the authors acknowledge that the interplay of
genetic features is complex, and there is a need to understand
these features with more granularity. Further investigation is
required to examine the role of newly described sentinel cytoge-
netic lesions and the more widespread use of sequencing to

identify genomic mutations such as TP53 alterations, NR3C1/
BTG1 deletions, and RAS mutations,6 as well as those nondriver
lesions thought to act in concert with others.28

In conclusion, this study demonstrates that CTL019/huCART19
therapy produces durable remissions of relapsed/refractory ALL
with similar CR, RFS, and OS rates across cytogenetic risk
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Figure 2. OS by cytogenetic risk category and individual high-risk lesion. (A) OS by cytogenetic risk category, defined as the time from infusion to date of death
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groups. Prediction models for relapse after CAR T-cell therapy
and therapies to reduce the risk of relapse remain important
avenues for future research to improve outcomes.
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