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KEY PO INT S

� Genetic knockout of
PRDM1 in antitumor
T cells enhances
persistence and
therapeutic response in
multiple adoptive
immunotherapy
models.

� PRDM1-knockout
T cells acquire gene
expression profiles of
early memory T cells
through genome-wide
epigenetic changes.

Adoptive cancer immunotherapy can induce objective clinical efficacy in patients with
advanced cancer; however, a sustained response is achieved in a minority of cases. The
persistence of infused T cells is an essential determinant of a durable therapeutic
response. Antitumor T cells undergo a genome-wide remodeling of the epigenetic archi-
tecture upon repeated antigen encounters, which inevitably induces progressive T-cell dif-
ferentiation and the loss of longevity. In this study, we identified PR domain zinc finger
protein 1 (PRDM1) ie, Blimp-1, as a key epigenetic gene associated with terminal T-cell dif-
ferentiation. The genetic knockout of PRDM1 by clustered regularly interspaced short pal-
indromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) supported the maintenance
of an early memory phenotype and polyfunctional cytokine secretion in repeatedly stimu-
lated chimeric antigen receptor (CAR)-engineered T cells. PRDM1 disruption promoted the
expansion of less differentiated memory CAR-T cells in vivo, which enhanced T-cell persis-
tence and improved therapeutic efficacy in multiple tumor models. Mechanistically,
PRDM1-ablated T cells displayed enhanced chromatin accessibility of the genes that regu-
late memory formation, thereby leading to the acquisition of gene expression profiles rep-

resentative of early memory T cells. PRDM1 knockout also facilitated maintaining an early memory phenotype and
cytokine polyfunctionality in T-cell receptor-engineered T cells as well as tumor-infiltrating lymphocytes. In other
words, targeting PRDM1 enabled the generation of superior antitumor T cells, which is potentially applicable to a
wide range of adoptive cancer immunotherapies.

Introduction
The adoptive transfer of T cells that recognize tumor antigens is
a potentially curative therapeutic approach for advanced cancer,
as exemplified by the marked clinical efficacy of CD19-targeting
chimeric antigen receptor (CAR)-T cell therapy against B-cell
malignancies. However, a substantial number of patients treated
with the CD19 CAR-T cells experience relapse even after com-
plete remission.1-5 Moreover, durable therapeutic response has
rarely been achieved in CAR-T cell therapies targeting solid
tumors.6-8 The loss of tumor antigen expression,1,8-10 inefficient
trafficking of infused T cells into the tumor site,11,12 and immu-
nosuppressive tumor microenvironments13,14 are the major
obstacles that result in treatment failure. Furthermore, the long-
term persistence of infused tumor-specific T cells, including
CAR-T cells, T-cell receptor (TCR)-T cells, and tumor-infiltrating
lymphocytes (TIL), is essential for sustained clinical
response.4,15,16 Antitumor T cells prepared in vitro acquire a
phenotype of memory T cells with long-term survival potential.17

Accumulating evidence suggests that the transient modulation
of specific signaling pathways enables the suppression of exces-
sive T-cell differentiation and the loss of a memory phenotype
during in vitro expansion.18-23 However, T cells rapidly undergo
differentiation and exhaustion upon repeated antigen exposure
in vivo, which hinders durable antitumor response.24,25

Terminally differentiated T cells possess distinct epigenetic and
transcriptional landscapes compared with naïve and memory T
cells, which likely underlie dysfunctional T cell properties such as
poor survival and impaired cytokine secretion.26-30 Immune
checkpoint blockade transiently reactivates the effector functions
of terminally differentiated and exhausted T cells; however, it
does not fundamentally affect their epigenetic architecture. In
this study, we hypothesized that the genetic modulation of key
regulators orchestrating the epigenetic profiles in terminally
differentiated T cells may halt or suppress progressive T-cell
differentiation, thereby enhancing the survival of adoptively
transferred T cells. We demonstrated that PRDM1 (Blimp-1) is an
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essential epigenetic factor related to terminal T-cell differentia-
tion, and its genetic ablation in antitumor T cells augments dura-
ble antitumor responses in multiple adoptive immunotherapy
models.

Methods
In vitro culture of human T cells
Healthy donor-derived peripheral blood mononuclear cells
(PBMCs) were stimulated with mitomycin C-treated K562 cells
expressing anti-CD3 mAb (clone OKT3)-derived single-chain
variable fragment (scFV) on the cell surface as well as CD80
(K562-OKT3/CD80) at an effector to target (E:T) ratio of 7:1. We
cultured the stimulated T cells in the presence of recombinant
IL-2 (100 IU/mL; PeproTech). Retroviral transduction of the T cells
was performed 2 days following their stimulation using Retro-
Nectin (Takara Bio). We restimulated the CD19-targeting CAR-T
cells by K562 cells transduced with CD19 or NALM6 at an E:T
ratio of 5:1 or 1:1, respectively. Mesothelin-targeting CAR-T cells
were restimulated by K562 cells expressing mesothelin at an E:T
ratio of 5:1. The DMF5 TCR-transduced T cells were stimulated
by coculture with irradiated T2 cells, loaded with 1 mg/mL of
MART127-35 peptide at an E:T ratio of 5:1.

CRISPR/Cas9-mediated knockout of
epigenetic genes
Clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated gene
knockout was performed by the electroporation of a ribonucleo-
protein (RNP) complex composed of Cas9 protein and guide
RNA using the NEPA 21 electroporator (Nepa Gene). Detailed
protocols are described in the supplemental Methods, available
on the Blood Web site. Genomic DNA was extracted 48 hours
after electroporation by using NucleoSpin DNA Rapid Lyse
(Macherey Nagel), and the regions surrounding the target
sequences were amplified by PCR and submitted to Sanger
Sequencing. The knockout efficiency was estimated based on
the sequencing data using the Inference of CRISPR Edits (ICE)
analysis.31

Flow cytometry analysis
Flow cytometry analysis was performed with a BD LSRFortessa
(BD Biosciences) using the antibodies listed in supplemental
Table 1. For cytokine production analysis, we cocultured the T
cells with target cells for 6 hours. Brefeldin A (BioLegend) was
added to the cultures 2 hours after stimulation. Subsequently,
the cells were fixed and permeabilized using a Cyto-Fast Fix/
Perm kit (BioLegend), followed by intracellular staining. For a
flow cytometry analysis of TCF7 expression, we fixed the T cells
with 4% paraformaldehyde and permeabilized them with ice-
cold methanol. Data analysis was performed using FlowJo soft-
ware (version 10.7.1; BD Biosciences).

Mice
We used 4- to 10-week-old male NSG mice (Charles River Labo-
ratories) to analyze human T-cell functions in vivo. In each exper-
iment, mice were monitored for their overall health status and
body weight at least thrice a week and sacrificed upon exhibit-
ing 1 of the following symptoms: .20% loss of initial body
weight, pronounced lethargy, severe diarrhea, hunched posture,
and severe dermatitis. In the NALM6 leukemia model, we

analyzed the tumor burden using IVIS Lumina II (Perkin Elmer).
For analyzing leukemia-related survival, mice were censored
upon meeting the above-mentioned criteria owing to an expan-
sion of the infused T cells. The cause of death was determined
based on spleen analysis by flow cytometry, IVIS, and PB analy-
sis data. In the A375 model, progression-free survival was
defined as the time to tumor regrowth exceeding 20 mm3 at 2
consecutive time points after tumor rechallenge. Detailed
experimental protocols are described in the supplemental
Methods.

In vitro cytotoxicity assay
To evaluate the cytotoxic activity of CAR-T cells, we cocultured
1 3 105 CAR-T cells with the indicated ratio of EGFP1 target
cells. The absolute counts of viable target cells were determined
by flow cytometry. The frequency of surviving tumor cells was
calculated as the ratio of the cell counts incubated without CAR-
T cells. Moreover, dead cells were discriminated using the LIVE/
DEAD Fixable Near-IR Dead Cell Stain Kit (Thermo Fisher
Scientific).

RNA-sequencing and ATAC-sequencing analysis
The CD19 CAR-T cells derived from 3 different donors were
electroporated with Cas9/sgRNAs targeting PRDM1 and stimu-
lated thrice with NALM-6 every 3 to 4 days. The CD81 CAR-T
cells were isolated by flow cytometry and subjected to RNA
sequencing (Takara Bio) and assay for transposase-accessible
chromatin with high-throughput (ATAC)-sequencing analysis
(GENEWIZ) (please refer to the supplemental Methods for the
detailed analysis pipeline).

Immunoblotting
The following antibodies were used for the immunoblot analysis:
anti-Blimp1 (#9115; Cell Signaling Technology), anti-TOX/TOX2
(#36778; Cell Signaling Technology), anti-phospho-STAT1
(Tyr701) (#9167; Cell Signaling Technology), anti-STAT1 (#9172;
Cell Signaling Technology), anti-b-actin (sc-47778; Santa Cruz
Biotechnology), HRP-conjugated goat anti-mouse IgG (H1 L)
(#4021; Promega), and anti-rabbit IgG (#4011; Promega).

TIL culture
Tumor specimens derived from patients with lung, ovarian,
endometrial, and cervical cancer were minced and cultured with
RPMI GlutaMAX (Gibco) containing 10% fetal bovine serum
(FBS), 3000 IU/mL recombinant human IL-2 (Proleukin; Novartis),
and sodium pyruvate (Gibco) for 14 days. We stimulated the
expanded TILs with K562-OKT3/41BBL (E:T ratio of 10) and
ablated them with PRDM1 4 days later. For the direct ex vivo
analysis of the TIL, tumor specimens were dissociated into
single-cell suspensions using gentleMACS Dissociators (Miltenyi
Biotech).

Statistical analysis
Statistically significant differences between the 2 groups were
assessed using a 2-tailed paired or unpaired Student t test for
parametric data. The log-transformed values were compared
depending on the nature of the data. We performed the Mann-
Whitney U test for nonparametric data that were not corrected
by log transformation. More than 2 groups were compared
using ordinary or repeated measures one-way analysis of vari-
ance (ANOVA) with multiple comparisons test. Differences were
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considered statistically significant for P values ,.05. In the mice
experiments, the Kaplan-Meier curve was analyzed using the
log-rank test. All statistical analyses were performed using
GraphPad Prism software (version 9.0.0).

Study approval
This study was conducted in accordance with the tenets of the
Declaration of Helsinki, and was approved by the Research
Ethics Board of the Aichi Cancer Center, Nagoya, Japan. Written
informed consent was obtained from all patients who provided
the TIL samples. All animal experiments were approved by the
Animal Care and Use Committee of the Aichi Cancer Center
Research Institute (Nagoya, Japan).

Results
PRDM1 knockout suppresses terminal
differentiation in repeatedly stimulated T cells
To recapitulate the tumor microenvironment that continuously
exposes antitumor T cells to the tumor antigen, we repeatedly
stimulated T cells engineered with a CD19-targeting CAR gene
encoding the clone FMC63-derived scFV linked with CD28 and
CD3z signaling domains by CD191 target cells (K562-CD19 or
NALM6) at different intervals (supplemental Figure 1A,B). The
expanded CAR-T cells nearly lost a CD45RA1CD62L1CCR71

CD271CD281 T-cell population (stem cell-like memory T cells:
TSCM) and included a small population of CD45RA-CD62L1

CCR71CD271CD281 cells, representing a central memory phe-
notype (TCM) (supplemental Figure 1C-F). The CAR-T cells stimu-
lated by K562-CD19 expressed higher levels of PD1, LAG3, and
TIM3 than those stimulated by NALM6, likely because of the
high antigen load (supplemental Figure 1G-H). Accompanied by
terminal differentiation, repeatedly stimulated CAR-T cells lost
their polyfunctional cytokine production capacity (supplemental
Figure 1I-K). Using this experimental setting, we investigated if
modulation of the specific epigenetic factors can halt terminal
T-cell differentiation and impaired cytokine production. PRDM1,
which encodes Blimp1, is one of the epigenetic factors associ-
ated with the development of short-lived effector T cells.32,33

Prdm1 knockout in T cells promoted memory formation in virus
infection mouse models.34,35 To investigate if the knockout of
PRDM1 modifies CAR-T cell properties, the CD19 CAR-T cells
were genetically ablated with PRDM1 using CRISPR/Cas9 and
subsequently underwent repeated stimulation (Figure 1A). The
efficient loss of Blimp1 expression was confirmed at protein lev-
els in PRDM1-knockout T cells (Figure 1B). We found that the
knockout of PRDM1 improved the maintenance of TSCM and TCM
phenotypes in repeatedly stimulated CAR-T cells without affect-
ing T-cell proliferation (Figure 1C-E). Furthermore, we analyzed
the expression of another canonical memory marker, IL7R.
PRDM1-ablated T cells displayed a higher frequency of
CD45RA1/2CD62L1CCR71CD271CD281IL7R1 cells compared
with the control (Figure 1F). There was no significant change in

the PRDM1 knockout frequency after repeated stimulation,
thereby suggesting PRDM1 deletion did not impair T-cell prolif-
eration (Figure 1G).

We evaluated the exhaustion markers of restimulated CAR-T
cells. Intriguingly, PRDM1-knockout CAR-T cells revealed slightly
elevated expression of PD1 and decreased expression of TIM3
upon restimulation with K562-CD19 (Figure 2A-B). Consistent
with PD1 upregulation, PRDM1-ablated CAR-T cells displayed
elevated TOX expression, a transcriptional regulator of immu-
noinhibitory molecules, compared with the control CAR-T cells
(Figure 2C).36-38 In other words, terminal T-cell differentiation
and the induction of immunoinhibitory molecules were regu-
lated by distinct transcriptional mechanisms. Despite PD1 upre-
gulation, PRDM1-knockout T cells were superior in the
production of multiple cytokines regardless of the stimulation
protocol (Figure 2D-F). These results were reproduced upon
individually electroporating CAR-T cells with 2 different guide
RNAs targeting PRDM1 (supplemental Figure 2A-F). Moreover,
CAR-T cells transduced with N-terminally truncated Blimp-1
(tBlimp1), which lacks a DNA-binding domain and functions in a
dominant-negative manner in B cells,39 were superior in main-
taining an early memory phenotype and polyfunctional cytokine
production (supplemental Figure 3A-E). Our findings suggest
that the observed effect of PRDM1 knockout indeed resulted
from the loss of PRDM1 rather than from off-target effects. We
also tested knockout of the DNA hydroxymethylase TET2 as a
comparison, whose disruption enhanced CAR-T cell longevity in
a clinical study.40 TET2 ablation also maintained T cells with an
early memory phenotype significantly better than the control T
cells (supplemental Figure 4A-E). PRDM1 knockout was more
prominent in improving the maintenance of TSCM and TCM pop-
ulations and cytokine polyfunctionality after repeated stimulation
by K562-CD19 and NALM6. Moreover, PRDM1-knockout cells
displayed improved expression of early memory T cell markers
as well as cytokine production in the CD41 CAR-T cell popula-
tion (supplemental Figure 5A-C).

PRDM1-ablated CAR-T cells show superior
persistence and antitumor effects in vivo
We investigated if PRDM1-disrupted CAR-T cells demonstrated
functional superiority in vivo. On being adoptively transferred
into irradiated tumor-free NSG mice, PRDM1-knockout CAR-T
cells were detected at significantly higher frequencies in the
PB (Figure 3A-B). Lethal xenogeneic graft-versus-host disease
(GVHD) induced by the expanded T cells was more frequently
developed in mice infused with the PRDM1-knockout CAR-T
cells than that in controls (Figure 3C; supplemental Figure 6A-C).
The PRDM1 knockout frequency in CAR-T cells that persisted in
the spleen was significantly higher than that in infusion products,
thus suggesting PRDM1-ablated CAR-T cell clones preferentially
expanded in vivo (Figure 3D). Prolonged proliferative capac-
ity and persistence in vivo are some of the hallmarks of

Figure 1. PRDM1 knockout maintains an early memory phenotype in CD19-directed CAR-T cells. (A) CD19-targeting CAR-T cells were electroporated with a Cas9/
sgRNA ribonucleoprotein (RNP) complex against PRDM1 or electroporated without RNP (no target). The CAR-T cells were then stimulated thrice by K562-CD19 or
NALM6. (B) Immunoblotting of Blimp-1 in control or PRDM1-knockout CAR-T cells generated from 3 different donors. (C) Fold expansion of T cells during the 3 stimulations
(n 5 11, paired 2-tailed Student t test). (D-F) Memory markers were analyzed in the CD81 CAR-T cell population after the third stimulation. The data shown are representative
flow cytometry plots of primary CD81 T cells or CAR-T cells stimulated by K562-CD19 (D) and the frequency of CD45RA1/2CD62L1CCR71CD271CD281 cells (E) or
CD45RA1/2CD62L1CCR71CD271CD281IL7R1 cells (F) in the CD81 CAR-T cell population (n 5 12 or 11, paired 2-tailed Student t test for each). (G) Knockout efficiency was
evaluated by Inference of CRISPR Edits (ICE) analysis using the genome extracted before and after repeated stimulation (n 5 11, repeated measures one-way ANOVA with
multiple comparisons test). The data were obtained from different donor samples. Horizontal lines denote the mean values. NS, not significant.
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immature memory T cells.41 Therefore, PRDM1-knockout CAR-T
cells acquire functional and phenotypic features of early memory
T cells.

Previous studies have demonstrated that while Prdm1-knockout
mice display enhanced memory T-cell formation, Prdm12/2 T
cells exhibit attenuated antigen-induced cytotoxicity.34,35 Con-
sistent with these results, PRDM1 ablation significantly impaired
the production of cytolytic molecules, including granzyme B and
perforin in CAR-T cells (supplemental Figure 7A-B). PRDM1-
knockout CAR-T cells exhibited delayed but potent cytolytic
activity against target tumor cells (Figure 3E-G). To evaluate the
impact of PRDM1-ablated CAR-T cells on effective antitumor
functions in vivo, CAR-T cells with or without PRDM1 knockout
were adoptively transferred to NALM6-bearing NSG mice (Fig-
ure 3H). PRDM1-knockout CAR-T cells persisted significantly
better than the control CAR-T cells (Figure 3I), which resulted in
the superior control of leukemia progression (Figure 3J-K; sup-
plemental Figure 8A). Moreover, PRDM1-knockout T cells
expanded and induced xenogeneic GVHD in some of the
treated mice (supplemental Figure 8B-C; supplemental Table 2),
thereby suggesting PRDM1-disrupted CAR-T cells retained their
proliferative capacity following the control of leukemia progres-
sion. Similar to the results in the tumor-free model, the PRDM1-
knockout frequency in the T cells that persisted in the spleen

was higher than that of the infusion products (Figure 3L). We fur-
ther investigated the mechanism by which PRDM1 ablation
affects CAR-T cell expansion and differentiation in vivo. On day
7 following T-cell infusion, PRDM1 ablation mitigated CAR-T cell
expansion (Figure 3M). However, the persistence of PRDM1-
knockout CAR-T cells outperformed the control T cells on days
14 and 24, thus suggesting PRDM1-ablated CAR-T cells dis-
played a delayed-onset response but eventually better persis-
tence at later time points. Importantly, T cells with an early
memory phenotype were substantially maintained in the
PRDM1-knockout CAR-T cell population (Figure 3N; supplemen-
tal Figure 9A-B), consistent with the in vitro results. The persis-
tence of CD41 CAR-T cells was also enhanced by PRDM1
knockout despite no prominent difference in the frequency of
immature memory T cells at each time point.

Next, we investigated if PRDM1-deficient CAR-T cells exhibited
durable antitumor functions in a solid tumor model using the
melanoma cell line A375 transduced with CD19 (A375-CD19)
(Figure 3O). The infused CAR-T cells efficiently controlled the
growth of initially engrafted tumors in all mice (Figure 3P). To
evaluate the durability of their therapeutic efficacy, NSG mice
were rechallenged with A375-CD19 24 days after the initial
transplantation. PRDM1-knockout CAR-T cells demonstrated
better control of tumor growth and better persistence than the
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(A) and mean fluorescence intensity of PD1, LAG3, and TIM3 in the CD81 CAR-T cell population (B) (n 5 6, paired 2-tailed Student t test). (C) Expression of TOX in
repeatedly stimulated CAR-T cells with or without PRDM1 knockout was analyzed by immunoblotting. (D-F) Cytokine production after the third stimulation was analyzed
by flow cytometry (IL2, IFNg, and TNFa). Representative flow cytometry plots of CAR-T cells restimulated by K562-CD19 (D), pie charts of the percentages of CAR-T cells
producing single, double, and triple cytokines (E), and the frequency of IL21IFNg1TNFa1 cells in the CD81 CAR-T cell population are shown (F) (n 5 11, paired 2-tailed
Student t test). The data presented in B and F are derived from different donor samples. Horizontal lines indicate the mean values. NS, not significant.
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control CAR-T cells (Figure 3P-R). Taken together, despite
PRDM1 knockout attenuating rapid-onset cytolytic activity, it
enhanced the in vivo expansion and persistence of CAR-T cells,
thereby resulting in improved therapeutic efficacy in both liquid
and solid tumor models.

PRDM1 knockout globally alters gene expression
and epigenetic profiles of CAR-T cells
To gain more insight into the mechanism by which PRDM1 defi-
ciency modified CAR-T cell functions, we compared the
genome-wide gene expression profiles between PRDM1-
knockout and control CD81 CAR-T cells following repeated
antigen stimulation. Overall, 2192 genes were differentially
expressed between the groups (false discovery rate [FDR]
, 0.05). Unsupervised hierarchical clustering and principal com-
ponent analysis demonstrated that PRDM1-ablated CAR-T cells
formed a distinct cluster from the control CAR-T cells, notwith-
standing the variability among different donors (Figure 4A-B).
Upregulated genes in PRDM1-knockout CAR-T cells included
memory-associated transcription factors and surface molecules
(TCF7, LEF1, STAT3, CCR7, and IL7R), while multiple genes
induced upon effector differentiation (KLRG1, EOMES, TBX21,
and ID2) were significantly downregulated (supplemental Figure
10A-B).42 Some but not all direct or indirect target genes of
Blimp1 (ID3, TCF3, MYC, and PAX5) displayed altered expres-
sion in PRDM1-knockout T cells (supplemental Figure 10C).32,43

Consistent with the immunoblotting analysis, TOX was signifi-
cantly upregulated in PRDM1-knockout T cells (supplemental
Figure 10D). PRDM1 knockout did not alter the expression of
NR4A family genes. The gene set enrichment analysis demon-
strated that genes representing the early memory phenotype44-
46 were significantly enriched in PRDM1-knockout CAR-T cells,
thus corroborating PRDM1 ablation globally remodeled gene
expression profiles toward those of less differentiated memory T
cells (Figure 4C). We also investigated the epigenetic alteration
of CAR-T cells induced by PRDM1 ablation using ATAC
sequencing. As observed in the gene expression profiles,
PRDM1-knockout CAR-T cells from 2 different donors formed
distinct epigenetic signatures compared with the control T cells
(Figure 4D-E). The majority of differentially accessible regions
were more accessible in PRDM1-knockout CAR-T cells, which
was reasonable considering the role of PRDM1 as a transcrip-
tional repressor.47 Consistent with the RNA-sequencing data,
PRDM1-knockout CAR-T cells demonstrated increased chromatin

accessibility in the promoter regions of memory-related
genes, including CCR7 and TCF7 (Figure 4F). We observed a
substantial correlation between gene expression and epige-
netic changes, thus suggesting PRDM1 ablation induced epi-
genetic remodeling, which in turn altered the gene
expression (Figure 4G). To investigate if a specific PRDM1-
regulated gene affected T-cell properties, we focused on tran-
scription factors TCF7 and STAT1, which were robustly upre-
gulated upon PRDM1 knockout at transcriptional, epigenetic,
and protein levels (Figure 4H; supplemental Figure 11A-C).
While PRDM1 knockout principally upregulated CD62L and
CCR7 expression, an ectopic expression of TCF7 in CAR-T
cells helped in maintaining other memory markers, such as
CD27, CD28, and IL7R (Figure 4I; supplemental Figure 12A).
The overexpression of a constitutively active STAT1 mutant
slightly improved cytokine polyfunctionality; however, it did
not affect memory marker profiles (Figure 4J; supplemental
Figure 12B-C). Therefore, the altered transcriptional activity of
multiple downstream targets of PRDM1 collectively orches-
trated the functional properties of PRDM1-ablated CAR-T
cells.

PRDM1 knockout prevents accelerated
differentiation of tonic-signaling CAR-T cells
We examined if PRDM1 knockout provided a therapeutic advan-
tage in antitumor T cells targeting antigens other than CD19.
The 28z CAR against GD2 (clone 14g2a with E101K mutation)
induces tonic signaling, in which T cells undergo antigen-
independent activation.48,49 We confirmed that PRDM1 was effi-
ciently ablated by CRISPR/Cas9 in GD2-targeted CAR-T cells as
in CAR-T cells targeting CD19 (Figure 5A). PRDM1 ablation did
not prevent tonic signaling-mediated PD1 upregulation in the
anti-GD2 28z CAR-T cells (Figure 5B-C). However, the PRDM1-
knockout CAR-T cells demonstrated better maintenance of an
early memory T-cell phenotype and cytokine polyfunctionality
compared with control CAR-T cells (Figure 5D-E; supplemental
Figure 13A-C). These tendencies were more prominent in 28z
CAR-T cells than those in BBz CAR-T cells. PD1 expression in T
cells suppresses IL-2 secretion upon ligation with PDL1.50 How-
ever, PRDM1-deficient anti-GD2 CAR-T cells demonstrated
increased cytokine production upon stimulation by the
PDL1-expressing target cells (supplemental Figure 13D-E). The
28z CAR-T cells further upregulated immunoinhibitory molecules
and showed a terminally differentiated phenotype and

Figure 3. PRDM1-ablated CD19-targeting CAR-T cells show superior persistence and antitumor activity in vivo. (A-C) CD19-targeting CAR-T cells electroporated
with or without Cas9 and sgRNAs against PRDM1 were infused into tumor-free NSG mice. The frequency of human T cells in the PB was monitored at the indicated
time points (B) (unpaired 2-tailed Student t test). Kaplan-Meier analysis for overall survival after CAR-T cell infusion (C) (n5 7 mice for each group, log-rank test). The
data are a composite of 2 independent experiments. (D) The PRDM1 knockout efficiency in infusion products and the persisting CAR-T cells within the spleen was ana-
lyzed (n 5 7, paired 2-tailed Student t-test). (E) Cytolytic activity of control or PRDM1-knockout CAR-T cells against the indicated target cells was analyzed with flow
cytometry (n 5 3 cultures, unpaired 2-tailed Student t test for each condition). Representative data of 2 experiments. (F-G) Cytolytic activity of control or PRDM1-
knockout CAR-T cells against NALM6 (F) or K562-CD19 (G) at the indicated time points (n 5 3-4 cultures, one-way ANOVA with multiple comparisons test). (H-L) NSG
mice were intravenously infused with NALM6-GL, and then with CAR-T cells with or without PRDM1 knockout 10 days later (n 5 10 mice for each CAR). (I) The fre-
quency of human T cells in the PB was analyzed at the indicated time points (unpaired 2-tailed Student t test of the log-transformed values for each time point). (J)
Total flux in the whole body was measured by in vivo bioluminescence imaging (unpaired 2-tailed Student t test of the log-transformed values). (K) Kaplan-Meier analy-
sis for leukemia-related survival after NALM6-GL infusion (log-rank test). In (H-K), representative data of 2 independent experiments are shown. (L) The PRDM1-
knockout frequency was compared between infusion products and T cells within the spleen of the mice that developed xenogeneic GVHD (n 5 4, paired 2-tailed Stu-
dent t test). (M-N) NALM6-GL-engrafted NSG mice were transplanted with control or PRDM1-knockout CAR-T cells generated in the same protocol as that shown in
(H). The frequency of CD81 or CD41 CAR-T cells (M) (n 5 6, unpaired 2-tailed Student t test of the log-transformed values) or those with TSCM and TCM phenotypes (N)
(n 5 6, unpaired 2-tailed Student t test for each time point) in the PB was determined by flow cytometry. (O-R) NSG mice subcutaneously inoculated with A375-CD19
(day 0) were treated with CAR-T cells with or without PRDM1 knockout (day 7). The mice were rechallenged with A375-CD19 (day 24) and monitored for tumor progres-
sion (n 5 9 mice for each group). The data shown are serial monitoring of tumor volume (P), relapse-free survival (Q) (log-rank test), and the frequency of human T cells
at the indicated time points (R) (unpaired 2-tailed Student t test of the log-transformed values). In B, E, F, G, I, J, M, N, and R, horizontal lines denote the mean values.
NS, not significant.
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attenuated cytokine production following repeated antigen stim-
ulation (supplemental Figure 14A-H). The PRDM1-knockout
CAR-T cells again revealed an increased frequency of a central
memory phenotype and multiple cytokine-producing cells with-
out substantially affecting the upregulation of exhaustion
markers.

When adoptively transferred to NSG mice harboring GD2-
expressing NALM6, PRDM1-knockout CAR-T cells were detected
at higher frequencies and delayed tumor progression significantly
better than the control CAR-T cells (Figure 5F-I; supplemental Fig-
ure 15A-B). PRDM1 ablation in the GD2-targeting BBz CAR-T
cells also enhanced T-cell persistence and therapeutic response
(supplemental Figure 16A-D). Moreover, we confirmed the effects
of PRDM1 ablation on the maintenance of an immature memory
phenotype and cytokine polyfunctionality in mesothelin-targeting
CAR-T cells and TCR-transduced T cells against HLA-A2 MART1
(Figure 5J-L). The frequency of PRDM1 knockout was maintained
after repeated stimulation (Figure 5M). These results suggest that
PRDM1 knockout is potentially useful for enhancing the efficacy
of CAR- or TCR-engineered T cells that target antigens other
than CD19.

PRDM1 knockout partially restores a memory
phenotype in terminally differentiated T cells
Finally, we investigated if the ablation of PRDM1 could restore
memory T-cell properties in already differentiated T cells.
Repeatedly stimulated CAR-T cells were nearly deprived of an
early memory phenotype (Figure 6A). Surprisingly, the CAR-T
cells regained the expression of some memory markers, such as
CCR7, CD62L, and CD28, upon PRDM1 knockout (Figure 6A-B).
The T cells ablated with PRDM1 following repeated stimulation
displayed significantly better in vivo persistence compared with
the control T cells, which hardly revealed long-term persistence
(Figure 6C-D).

We also determined the effect of PRDM1 knockout on TILs
derived from gynecologic or lung cancer (Figure 6E; supplemen-
tal Table 3). Most of the expanded TIL samples possessed a ter-
minally differentiated phenotype (Figure 6F).16 Upon PRDM1
knockout, cultured TILs partially restored CD62L and CCR7
expression, as observed in repeatedly stimulated CAR-T cells
(Figure 6G). PRDM1-disrupted TILs also displayed increased
TCF7 expression and polyfunctional cytokine production upon
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Figure 4. Gene expression and epigenetic architecture of PRDM1-knockout CAR-T cells. (A-F) The CD19-targeting CAR-T cells with or without PRDM1 knockout
were repeatedly stimulated with NALM-6 3 times and analyzed for gene expression profiles by RNA-sequencing (A-C) (n 5 3 different donors) or epigenetic profiles by
ATAC-sequencing (D-F) (n 5 2 different donors). The data shown are unsupervised hierarchical clustering (A), principal component analysis (B) of differentially expressed
genes (FDR , 0.01), and gene set enrichment analysis between control and PRDM1-knockout CAR-T cells using genes upregulated in T cells with an early memory phe-
notype (C) (nominal P values are shown). (D) Heatmap of differentially accessible regions between control and PRDM1-ablated CAR-T cells (FDR , 0.05). (E) Log2 fold
change in read counts (y-axis) between control and PRDM1-knockout CAR-T cells were plotted against log2 average read counts of all samples (x-axis) for individual
peak regions. Red dots denote differentially accessible sites at FDR , 0.05. (F) Chromatin accessibility tracks at the promoter regions of the indicated genes. (G-H) Cor-
relation between RNA-seq and ATAC-seq results in the genes with differential expression and chromatin accessibility at promoter regions (FDR , 0.05). Only transcrip-
tion factor-encoding genes are shown in H. (I) CAR-T cells with or without ectopic expression of TCF7 or PRDM1 knockout were restimulated with NALM-6 and analyzed
for the indicated memory markers 4 days later. Mean fluorescence intensity calculated for each sample was shown (n 5 4, one-way ANOVA with multiple comparisons
test). (J) CAR-T cells transduced with constitutively active STAT1 (caSTAT1) and/or ablated with PRDM1 were analyzed for cytokine production upon restimulation with
NALM-6 (n 5 4, one-way ANOVA with multiple comparisons test). In (I-J), horizontal lines denote the mean values. NS, not significant.
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restimulation (Figure 6H-I). These results collectively demon-
strated that differentiated T cells could partially restore early
memory T-cell phenotypes and functions by the genetic knock-
out of PRDM1.

Discussion
The balance between memory and effector T cell functions is
required for the T cells infused in vivo to induce potent and
durable therapeutic efficacy. PRDM1-disrupted CAR-T cells
acquire the potential of greater survival equipped with memory
T cells and demonstrate impaired cytotoxic functions, which
could negatively affect the antitumor response. Our findings
indicated PRDM1 knockout as a suitable approach, at least for
CD19-directed CAR-T cells, to induce a sustained antitumor
response. Considering the less prominent therapeutic advantage
of PRDM1-ablated CAR-T cells targeting GD2, the feasibility of

this strategy may depend on multiple factors, such as target
antigens and the avidity of antitumor T cells.

While PRDM1-knockout T cells displayed increased cytokine
production and superior proliferation in vivo, they revealed
increased expression of TOX, which regulates T-cell exhaus-
tion. Previous mouse studies have demonstrated that
Tox-deleted T cells acquire gene expression and epigenetic
profiles associated with terminal effector differentiation and
instead lose the memory T-cell gene signature.36 Tox-
knockout T cells initially display potent effector functions;
however, Tox-knockout antitumor or antiviral T cells were infe-
rior in long-term survival because of accelerated effector
differentiation.37,38,51 Increased TOX expression in PRDM1-
knockout T cells may contribute to the acquisition of long-
term survival capacity by suppressing the over-activation of
antitumor T cells. Alternatively, the inhibition of TOX or other
exhaustion-associated factors, such as NR4A and AP-1
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transcription factors, may further enhance the antitumor
response of PRDM1-knockout T cells by downregulating
inhibitory receptors.36,49,52

PRDM1 knockout did not affect the expression of some canoni-
cal Blimp1-regulated genes.43 The effect of PRDM1 knockout
may vary depending on the T cell conditions (eg, naïve, mem-
ory, and effector). Transient suppression of PRDM1 at different
time points will provide further insights into the role of Blimp-1
in T cells. Moreover, the effect of PRDM1 knockout on maintain-
ing an early memory phenotype was weaker in CD41 T cells
than in CD81 T cells. It would be necessary to elucidate how
PRDM1 ablation modulates CD41 T-cell functions at epigenetic
and gene expression levels.

PRDM1 knockout not only supported the maintenance of an
early memory phenotype but also restored a portion of
memory T-cell profiles in terminally differentiated T cells.
The direct dedifferentiation of terminally differentiated T
cells into early memory T cells will initiate a revolutionary
improvement in TIL therapy, in which extracted antitumor T
cells have often acquired a terminally differentiated pheno-
type.53 PRDM1 knockout in TIL samples did not restore the
expression of several memory markers, such as CD27 and

CD28. This warrants additional modification to completely
reprogram terminally differentiated T cells into early memory
T cells.

In summary, the present study provided a rationale that PRDM1
knockout in antitumor T cells enabled long-term persistence
and durable therapeutic response through the epigenetic modu-
lation of T-cell differentiation programs. These findings are
potentially applicable to a wide range of adoptive cancer
immunotherapies.
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Figure 6. Terminally differentiated T cells partially acquire memory T-cell properties upon PRDM1 knockout. (A-B) CD19-targeting CAR-T cells were electropo-
rated with Cas9/sgRNA against PRDM1 following repeated stimulation by NALM-6 and analyzed for memory T-cell markers. Representative flow cytometry plots (A) and
the frequency of the indicated populations are shown (B) (n 5 4, ordinary one-way ANOVA with multiple comparisons test). Representative data of 2 experiments. (C,D)
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electroporation. Mean fluorescence intensity within the CD81 T-cell population was shown (n 5 5, paired 2-tailed Student t test). (I) Expanded TILs were restimulated by
K562 expressing anti-CD3 mAb and 41BBL, and the production of IL-2, IFN-g, and TNF-a was analyzed by flow cytometry (n 5 5, paired 2-tailed Student t test).
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