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KEY PO INTS

� SOX9 plays an
oncogenic role in
germinal center B-cell
type, IGH-BCL21

DLBCL, by promoting
cell proliferation and
inhibiting apoptosis.

� SOX9 drives
lymphomagenesis
through upregulation
of DHCR24, the key
final enzyme in the
cholesterol biosynthesis
pathway.

Although oncogenicity of the stem cell regulator SOX9 has been implicated in many solid
tumors, its role in lymphomagenesis remains largely unknown. In this study, SOX9 was
overexpressed preferentially in a subset of diffuse large B-cell lymphomas (DLBCLs) that
harbor IGH-BCL2 translocations. SOX9 positivity in DLBCL correlated with an advanced
stage of disease. Silencing of SOX9 decreased cell proliferation, induced G

1
/S arrest, and

increased apoptosis of DLBCL cells, both in vitro and in vivo. Whole-transcriptome analysis
and chromatin immunoprecipitation–sequencing assays identified DHCR24, a terminal
enzyme in cholesterol biosynthesis, as a direct target of SOX9, which promotes choles-
terol synthesis by increasing DHCR24 expression. Enforced expression of DHCR24 was
capable of rescuing the phenotypes associated with SOX9 knockdown in DLBCL cells. In
models of DLBCL cell line xenografts, SOX9 knockdown resulted in a lower DHCR24 level,
reduced cholesterol content, and decreased tumor load. Pharmacological inhibition of cho-
lesterol synthesis also inhibited DLBCL xenograft tumorigenesis, the reduction of which is
more pronounced in DLBCL cell lines with higher SOX9 expression, suggesting that it may
be addicted to cholesterol. In summary, our study demonstrated that SOX9 can drive lym-

phomagenesis through DHCR24 and the cholesterol biosynthesis pathway. This SOX9-DHCR24-cholesterol biosynthe-
sis axis may serve as a novel treatment target for DLBCLs.

Introduction
Sex-determining region Y box 9 protein (SOX9) is a member of
the SOX family of transcription factors, which are developmental
regulators that possess high-mobility group (HMG) box DNA
binding and transactivation domains.1 SOX9 plays a critical role
in cell fate determination,2 cell differentiation,3 maintenance of
the stem cell pool,4 and tissue homeostasis5 in a variety of
developing and adult tissues, the most studied of which are car-
tilage6,7 and testis.8,9 The SOX proteins bind to ATTGTT con-
sensus or related sequence motifs through their high-mobility
group domain, and SOX9 induces significant bending at the
consensus-binding motif (A/TA/TCAAA/TG) by forming an
L-shaped complex in the minor groove of DNA.1,10 Apart from
its normal role as a cell fate and stem-cell regulator, SOX9 has
been implicated in human diseases, including cancer. Most stud-
ies have supported an oncogenic role for SOX9, but a tumor
suppressor function for SOX9 has also been suggested.11 SOX9
is overexpressed in many solid tumors, including hepatocellular

carcinoma and breast, bladder, gastric, prostate, pancreatic, and
colorectal cancers.12,13 Clinically, SOX9 overexpression in these
cancers appear to be associated with worse prognosis. SOX9
mutations, most of which are missense, are infrequent and are
detected in �1% of tumors overall (https://cancer.sanger.ac.uk/
cosmic/gene/analysis?ln=SOX9). However, SOX9 mutations are
enriched in colorectal cancers and are present in �11% of these
tumors.14 More than 80% of these mutations are frameshift or
nonsense mutations that are associated with mutated KRAS and
wild-type TP53 status.14

There is also emerging evidence that SOX9 can regulate diverse
cellular processes related to tumorigenesis and tumor progres-
sion, including cell proliferation, apoptosis, migration, invasion,
chemoresistance, cancer stem cell maintenance, autophagy,
angiogenesis, immune escape, and metastasis.12,15 These protu-
moral activities of SOX9 are effected through regulation of down-
stream genes and multiple signaling pathways. In triple-negative
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breast cancer, SOX9 is essential for cancer cell growth and
metastasis and has been found to suppress the expression of
apoptosis-related genes and increase expression of genes
involved in epithelial-mesenchymal transition by binding to
the respective promoters.16 In gastric cancer, glioblastoma,
and pancreatic cancer, SOX9 promotes cancer cell prolifera-
tion and survival, as well as tumor growth, by upregulation of
BMI1 expression, which consequently inhibits the level of the
tumor suppressor p21.17 It has also been shown that SOX9
drives prostate cancer by activating WNT/b-catenin signaling
through positively regulating genes within the WNT pathway,
including those encoding WNT receptors and the b-catenin
effector TCF4.18 SOX9 is also a stem-cell marker in hepatocel-
lular carcinoma, regulating the Wnt/b-catenin pathway and its
downstream target osteopontin.19 SOX9 mediates chemore-
sistance in non–small-cell lung cancer cells by transcriptionally
activating aldehyde dehydrogenase A1 and promoting their
stemlike properties.20 As a pivotal molecule with multifaceted
functions, SOX9 may serve as a potential therapeutic target
in many cancers.

Although the role of SOX9 in the development and progression
of solid tumors is well established, little is known about SOX9 in
lymphomagenesis. In this study, we defined a novel role of

SOX9 in modulating DHCR24-mediated cholesterol synthesis,
and targeting of this axis inhibited lymphomagenesis.

Methods
Ethics approval
This study was conducted in accordance with the Declaration of
Helsinki regulations for the protocols approved by the Institu-
tional Review Board of Weill Cornell Medicine (approval
0107004999). Written consent for the use of the human tissue
samples for research was obtained from patients or their guardi-
ans. All experiments were performed under an Institutional Ani-
mal Care and Use Committee–approved protocol of Shanghai
Jiaotong University School of Medicine, and guidelines for the
proper use of animals in research and animal welfare were
followed.

Patient tissue samples
All tissue samples were diagnosed according to World
Health Organization classification criteria by attending hem-
atopathologists at New York Presbyterian/Weill Cornell
Medical Center, and clinical information was obtained from
electronic clinical records. DLBCLs were subclassified into
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Figure 1. IGH-BCL21DLBCLs manifest high levels of endogenous SOX9. (A) immunohistochemical staining of SOX9 protein in tissue samples from a DLBCL cohort
(n 5 114). Original magnification 3200. Bar represents 100 mm. SOX9 immunostainings are denoted as (1), (11), and (111) to indicate the expression levels of SOX9.
Negative staining is denoted as (2). Normal tonsil tissue was used as the control. SOX9 highlighted scattered follicular dendritic cells and showed only background
staining in the germinal centers. Results of immunoblot (B) and qRT-PCR (C) analysis of endogenous SOX9 protein or SOX9 mRNA levels in DLBCL cell lines. (B-C) Data
represent the mean 6 standard deviation (SD) from technical triplicates.
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Figure 2. Inhibition of SOX9 in IGH-BCL21 DLBCL cells impairs cell survival and proliferation. Immunoblot (A) and CFSE proliferation (B) assays of SOX92 Karpas-
422 and DB cells. (C) Hemocytometer counts of the number of SOX92 Karpas-422 and DB cells. (D) SOX92 Karpas-422 and DB cells were exposed to BrdU for 4 hours
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the germinal center B-cell (GCB) and non-GCB subtypes
based on the Hans’ immunohistochemistry algorithm.21

Drug compounds and antibodies
Simvastatin, triparanol, and JQ1 were purchased from Med
Chem Express (Monmouth Junction, NJ), Santa Cruz Biotechnol-
ogy (Dallas, TX), and Selleckchem (Houston, TX), respectively.
All compounds, except for those used in in vivo experiments,
were reconstituted in dimethyl sulfoxide, stored in 100-mM
stock concentrations in 280�C and used at the indicated doses,
as suggested by the vendor. A CellTrace Violet Cell Proliferation
kit for flow cytometry was obtained from ThermoFisher Scientific
(Waltham, MA). Flow cytometry antibodies, BV421 mouse
anti-Ki67, and Alexa Fluor 647 rabbit anti-active caspase 3 were
purchased from BD Pharmingen (San Jose, CA); immunoblot
antibodies, SOX9, and DHCR24 from Abcam (London, United
Kingdom); Bax, Mcl-1, Bcl2, Bcl-XL, and Bad from Cell Signaling
Technology (Danvers, MA); and tubulin antibody from Protein-
tech (Rosemont, IL).

Descriptions of cell lines, culturing, and assays; animal studies;
and statistical analyses are provided in the supplemental Meth-
ods (available on the Blood Web site). Primer sequences are all
available in supplemental Table 2.

Transcriptome RNA sequencing and
data processing
Total RNA was extracted from SOX9 short hairpin RNA#1
(shRNA#1), SOX9 shRNA#2, and scrambled control
lentiviral–transduced Karpas-422 cells. Messenger RNA
(mRNA) was isolated from total RNA by using the Next Poly(A)
mRNA Magnetic Isolation Module (New England BioLabs, Ips-
wich, MA). The RNA library was prepared by using the KAPA
Stranded RNA-SEQ Library Prep Kit (Illumina, San Diego, CA),
according to an instruction manual before it was subjected to
sequencing on an Illumina NovaSeq 6000. Raw sequencing
data were quality-control qualified, and trimmed data were
aligned with reference genome/transcriptome (GRCh37). Diffe-
rentially expressed genes or transcripts were subjected to
either pathway or Gene Ontology analysis. A Venn graph and
heat map were generated in R language.

Results
SOX9 is highly expressed in GCB subtypes of
DLBCL accompanied by IGH-BCL2 mutations
To determine the expression of SOX9 protein in DLBCL, we per-
formed immunohistochemistry by using microarrays on tissue
from a cohort of patients with DLBCL (n 5 114, see supplemen-
tal Table 1 for patients’ clinical information). The SOX91 DLBCL
cases showed variable staining, whereas SOX9 was absent in
the normal GCB cells (Figure 1A). Overall, 11 of the 114 DLBCL
samples (�10%) were positive for SOX9, among which 90.9%
(10 of 11) were of the germinal center B-cell–like (GCB) subtype,
according to Hans’ classifier (P 5 .008). In 93 cases, cytogenetic
data were available. Although only 2 of 73 (2.7%) of IGH-BCL22

DLBCL samples expressed SOX9, 7 of 20 (35%) of IGH-BCL21

samples were positive for SOX9 (P , .001; see supplemental
Table 3). Thus, most of the SOX91 DLBCLs likely belong to the
recently proposed EZB genetic subtype,22 given that IGH-BCL2
fusion is highly specific for this subtype of DLBCL. Mutation data
for 2 of these 7 IGH-BCL21, SOX91 DLBCLs were also available.
One of the 2 cases harbored an EZH2 p.A692V pathogenic
mutation, which provided additional supporting evidence for the
EZB genetic subtype. The other was associated with a TP53
p.T253P hotspot mutation. TP53 mutations, though most fre-
quently seen in the A53 genetic subtype, are not specific among
the genetic subtypes and can be present in �38% of the DLBCL
of the EZB subtype. We attempted to look for SOX9 mutations
in SOX91DLBCL by Sanger performing Sanger sequencing on 7
cases. We did not identify SOX9 mutations but the sequencing
was limited by the poor quality of the DNA extracted from
archived paraffin blocks (see supplemental Data). We also tried
to correlate SOX9 expression with different clinicopathologic
parameters in DLBCL and found that SOX9 positivity in DLBCL
was significantly associated with advanced stage disease (sup-
plemental Table 2; P , .011).

To investigate SOX9 expression in DLBCL cell lines, we per-
formed immunoblot analysis and quantitative reverse transcrip-
tion polymerase chain reaction (qRT-PCR) analysis in 8 DLBCL
cell lines, including Karpas-422 and DB, which are of the GCB
subtype and harbor IGH-BCL2 translocation (Figure 1B-C). In
concordance with the protein level, the SOX9 mRNA level was
also high in Karpas-422 and DB cells, but relatively low in the
other cell lines (Figure 1C). In light of the tumorigenic role of
SOX9 in many solid tumors, these studies suggest that SOX9
participates in the pathogenesis of DLBCLs, particularly those
associated with IGH-BCL2 translocation.

Inhibition of SOX9 in IGH-BCL21 DLBCL cells
impairs cell survival and proliferation
To further explore the biological effects of SOX9 on DLBCL, len-
tivirus encoding shRNAs against SOX9 (shSOX9#1, shSOX9#2)
or overexpressing SOX09 (pCDH-SOX9) were transduced to
Karpas-422/DB cells, or OCI-LY1/SUDHL-6 cells, respectively.
SOX9 protein was significantly reduced in shSOX9#1- or
shSOX9#2-transduced Karpas-422 cells (2.5- or 3.3-fold reduc-
tion relative to the scrambled control; Figure 2A; supplemental
Figure 6A) or DB cells (2.2- or 2-fold reduction relative to scram-
bled control, Figure 2A; supplemental Figure 6B), but was
significantly increased in OCI-LY1 or SUDHL6 cells carrying
pCDH-SOX9 compared with the vector control (supplemental
Figures 1A and 6C-D). Both shSOX9-transduced cell lines
showed a reduction in SOX9 mRNA, consistent with the
decrease in SOX9 protein levels (supplemental Figure 2A). We
then performed the CellTrace carboxyfluorescein diacetate suc-
cinimidyl ester cell proliferation assay to determine whether inhi-
bition or overexpression of SOX9 affects DLBCL cell
proliferation. shSOX9#1- or shSOX9#2-transduced Karpas-422
or DB cells, or pCDH-SOX9–transduced OCI-LY1 or SUDHL6
cells were seeded, harvested, and labeled with CellTrace violet
solution per the manufacturer’s instruction manual. Cells were

Figure 2 (continued) before flow cytometry analysis. Quantitation of the percentage distribution of cell cycle phases was determined by gating of live cells in the G1

(light gray bar), S (dark gray bar), or G2 (white bar) phases. (E) Immunoblot assay of expression of Bcl-xL, Mcl-1, Bcl-2, Bad, and Bax. b-Actin was included as the control
for equal loading. (C-D) Data represent the mean 6 SD of technical triplicates. ****P , .005. CFSE, carboxyfluorescein diacetate succinimidyl ester.
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Figure 3. SOX9 regulates expression of cholesterol biosynthesis–related genes. (A) A Venn diagram of a small subset of overlapping SOX9-responsive genes
downregulated in RNA-seq and showing a SOX9 peak in ChIP-seq. Green, blue, and red overlaid region (n 5 20). Genes are listed to the right. (B) KEGG analysis of
SOX9-responsive genes categorized according to the top 10 signaling pathways. (C) Downregulation of the steroid biosynthesis pathway in SOX92 Karpas-422 cells
compared with the control, based on Gene Set Enrichment Analysis of SOX9-responsive genes. (D) Real-time PCR validation of steroid biosynthesized gene expression
in SOX92 Karpas-422 cells and DB cells. (E) qRT-PCR determination of steroid biosynthesized gene expression in SUDHL6 and OCI-LY1 cells transduced with pCDH-
SOX9 lentivirus. (F) Real-time PCR assay determined the relative expression of steroid biosynthesized genes in DLBCL cells with high (n 5 2) and low (n 5 6) levels of
SOX9. (D-F) Data represent the mean 6 SD of technical triplicates. **P , .01; ****P , .005. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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then subcultured at 37�C for another 3 days, followed by flow
cytometry analysis of cell proliferation at day 0 (proliferation con-
trol) and day 3. As demonstrated in Figure 2B, the knockdown
of SOX9 significantly inhibited cell proliferation when compared
with its scrambled control counterpart. In contrast, overexpres-
sion of SOX9 had no major impact on DLBCL cell proliferation
(supplemental Figure 1B). To explore whether inhibition or over-
expression of SOX9 affected DLBCL cell growth, shSOX9#1- or
shSOX9#2-transduced Karpas-422 or DB cells or pCDH-SOX9-–
transduced OCI-LY1 or SUDHL6 cells were seeded in 96-well

plates, and the number of cells was counted manually on a
hemocytometer at the indicated time points (Figure 2C). Knock-
down of SOX9 significantly inhibited an increase in the number
of cells over time when compared with its scrambled control
counterpart (Figure 2C). In contrast, overexpression of SOX9
had no major impact on the number of DLBCL cells over time
(supplemental Figure 1C). A cell-cycle analysis was performed
by exposing shSOX9#1, shSOX9#2, or scrambled control-
transduced Karpas-422 or DB cells to BrdU for 4 hours. Inhibi-
tion of SOX9 promoted G1/S phase arrest, resulting in a
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luciferase reporter plasmids is shown. (C) Data represent the mean 6 SD of technical triplicates. **P , .01.
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significant increase in the percentage of cells in G1 phase from
51% (scrambled control) to 62.7% (shSOX9#1) or 61%
(shSOX9#2) in Karpas-422 cells, or from 47.9% (scrambled

control) to 65% (shSOX9#1) or 64.2% (shSOX9#2) in DB cells.
Meanwhile, the percentage of cells in S phase decreased from
39.5% (scrambled control) to 28.4% (shSOX9#1) or 28.5%

0.5

0.3

0.4

0.2

Ch
ol

es
te

ro
l (
�m

ol
/1

04  ce
ll)

0.1

0.0
Total Free Ester

OCI-LY1

SUDHL8

Karpas-422

DB

A
0.4

**
**

**
**

0.3

0.2

Ch
ol

es
te

ro
l (
�m

ol
/1

04  ce
ll)

0.1

0.0
Total Free

Karpas-422

Ester

shCtrl

shSOX9#1

shSOX9#2

B

0.5
**

** **
**

0.3

0.2

Ch
ol

es
te

ro
l (
�m

ol
/1

04  ce
ll)

0.1

0.0
Total Free

DB

Karpas-422

Dhcr24

Tubulin

Dhcr24

Tubulin

sh
Ct
rl

sh
SO
X9
#1

sh
SO
X9
#2

sh
Ct
rl

sh
SO
X9
#1

sh
SO
X9
#2

Ester

0.4

shCtrl

shSOX9#1

shSOX9#2

C

0.3
***

0.2

Ch
ol

es
te

ro
l (
�m

ol
/1

04  ce
ll)

0.1

0.0
Total Free

pCDH-SOX9

Ester

Ctrl

Triparanol

Karpas-422

***

0.4

*
0.3

0.2

Ch
ol

es
te

ro
l (
�m

ol
/1

04  ce
ll)

0.1

0.0
Total Free Ester

Ctrl

pCDH-SOX9

D

E F

*

*

DB

1.0

0.8

Re
la

tiv
e 

ex
pr

es
sio

n 
of

DH
CR

24
 to

 Tu
bu

lin

0.2

0.4

0.6

0.0

sh
Ct
rl

sh
SO
X9
#1

sh
SO
X9
#2

DB

1.0

0.8

Re
la

tiv
e 

ex
pr

es
sio

n 
of

DH
CR

24
 to

 Tu
bu

lin

0.2

0.4

0.6

0.0

sh
Ct
rl

sh
SO
X9
#1

sh
SO
X9
#2

Figure 5. SOX9 modulates cholesterol biosynthesis via DHCR24. (A) Total and free cholesterol levels were measured in DLBCL cells with high (Karpas-422 and DB) or low
(OCI-LY1 and SUDHL8) levels of SOX9. A total of 1 3 106 cells were used for each measurement. (B-D) Total and free cholesterol levels were measured in SOX92 Karpas-422
cells and DB cells and in SOX9-overexpressing OCI-LY1 cells. The level of cholesterol ester was calculated: total cholesterol 2 free cholesterol content. (E) Immunoblot assay
and densitometry quantitation of DHCR24 protein in SOX92 Karpas-422 and DB cells. (F) Karpas-422 or DB cells were treated with triparanol for 48 hours or left untreated before
they were subjected to cholesterol content measurement. (A-D, F) Data represent the mean 6 SD of technical triplicates. *P , .05; **P , .01; ***P , .001.
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(shSOX9#2) in Karpas-422 cells, or from 40.4% (scrambled con-
trol) to 26.7% (shSOX9#1) or 26.5% (shSOX9#2) in DB cells (Fig-
ure 2D). However, overexpression of SOX9 had no significant
impact on OCI-LY1 (supplemental Figure 1D, top left and right)
and SUDH6 cell cycle distributions (supplemental Figure 1D,
bottom left and right). To investigate whether inhibition of
SOX9 modulates the survival of DLBCL cells, an annexin
V/7ADD apoptosis assay was performed, and caspase 3 activity
was determined in the aforementioned cells. Inhibition of SOX9
significantly increased the percentage of V1/7AAD1 cells (sup-
plemental Figure 2B) and induced caspase 3 activity in SOX9-
silenced Karpas-422 (supplemental Figure 2C) and DB (supple-
mental Figure 2D) cells compared with the scrambled control. In
contrast, overexpression of SOX9 showed no significant effect
on the percentage of either annexin V1/7AAD1 (supplemental
Figure 1E) or caspase 3 activity (supplemental Figure 1G-H).

To explore possible mechanisms of SOX9-mediated cell survival,
immunoblot analysis was performed to determine the expres-
sion of antiapoptotic proteins, such as Bcl-xL, Mcl-1, and Bcl-2,
or proapoptotic proteins, such as Bad and Bax. Inhibition of
SOX9 downregulated Bcl-xL, Mcl-1, and Bcl-2 expression, but
upregulated Bad and Bax expression (Figure 2E; supplemental
Figure 7A-E). Overexpression of SOX9 only mildly elevated Bcl-
2 expression, but did not result in significant changes in Bcl-xL
and Mcl-1 expression. However, overexpression of SOX9 down-
regulated Bad and Bax expression (supplemental Figures 1F
and 9A-E). Taken together, these results suggest that SOX9 may
play an oncogenic role in GCB-type, IGH-BCL2 DLBCL by pro-
moting cell proliferation and inhibiting apoptosis.

SOX9 regulates expression of cholesterol
metabolism–related genes
We explored the molecular mechanisms underlying the SOX9-
induced biological consequences in DLBCL. RNA extracted from
shSOX9#1, shSOX9#2, and scrambled control–transduced
Karpas-422 cells were subjected to whole-transcriptome RNA-
sequencing (RNA-seq) analysis (GSE180051; see the footnote).
A small subset of genes (n 5 135) were downregulated in both
shSOX9#1- and shSOX9#2-transduced cells (Figure 3A). Kyoto
Encyclopedia of Genes and Genomes analysis revealed that the
steroid biosynthesis signaling pathway was the most significantly
altered pathway in SOX92 cells (Figure 3A-B). This result was
further confirmed by Gene Set Enrichment Analysis showing a
downregulation of gene sets involved in steroid biosynthesis rel-
ative to the scrambled control (Figure 3C). We also observed a
concordance in the modulation of a small subset of genes
involved in steroid biosynthesis by constructing a heat map of
both shSOX9#1- and shSOX9#2-transduced Karpas-422 cells
(supplemental Figure 3A). Downregulation of the expression of
these genes was confirmed by qRT-PCR in Karpas-422 and DB
cells transduced with shSOX9#1, shSOX9#2 (Figure 3D), or
SUDHL6 and OCI-LY1 cells transduced with pCDH-SOX9
(Figure 3E). To further evaluate whether expression of steroid
biosynthesis–related genes are dependent on SOX9, the RNA-
seq raw data were analyzed, and the expression of these gene

was compared between 2 IGH-BCL21 DLBCL cell lines express-
ing high levels of SOX9 and 6 IGH-BCL22 DLBCL cell lines man-
ifesting low levels of SOX9 (Figure 3F), and the results were
validated by qRT-PCR (supplemental Figure 3B-F). These analy-
ses demonstrate that, except for FDFT1, the expression of the
steroid synthesis–related genes tested including CYP51A1,
DHCR24, MSMO1, and NSDHL1 were significantly higher in
DLBCL cells with higher SOX9 expression. These data support
the notion that SOX9 may regulate cholesterol metabolism in
DLBCL.

SOX9 directly targets and transcriptionally
activates DHCR24 via direct binding to the SOX9
binding site
Chromatin immunoprecipitation–sequencing (ChIP-seq) was per-
formed in the Karpas-422 cell line to identify the genes directly
targeted by SOX9. Peak calling by the model-based analysis for
the ChIP-seq algorithm revealed 9922 transcription sites bound
directly to SOX9 (GSE179960, see footnote for ChIP-seq data
deposition and supplemental Table 4 for peak calling). Interest-
ingly, when we compared the 135 commonly downregulated
genes identified by RNA-seq and the genes with SOX9-bound
transcription sites detected by ChIP-seq, we identified 20 over-
lapping genes, among which DHCR24 showed the highest
enrichment of bound SOX9 within its promoter and a significant
change in RNA expression (Figure 3A; supplemental Table 5), in
addition to being one of the genes in the steroid biosynthesis
pathway. The 800-bp region upstream of the transcription
start site of DHCR24 was highly enriched for SOX9 binding
(Figure 4A). To validate the ChIP-seq results, the ChIP assay was
performed in the Karpas-422 DLBCL cells. We identified a puta-
tive SOX9 binding site with the previously published consensus
SOX9 binding motif (ACAATG)23 at position 2576 of DHCR24.
Three pairs of PCR primers were used to amplify 3 separate seg-
ments of the DHCR24 promoter. An amplification product was
seen in 2 short DNA fragments, corresponding to 2599 to
2348 nt or 2636 to 2452 nt of the DHCR24 promoter, which
harbor the SOX9 consensus motif (ACAATG; Figure 4B). How-
ever, no band was observed in the negative control DNA frag-
ment corresponding to 2251 to 278 nt of DHCR24. These
results suggest direct binding of SOX9 to the DHCR24 promoter
at the putative SOX9 binding site. To further confirm that
DHCR24 is indeed a functional target of SOX9, we constructed
luciferase reporters containing either the wild-type DHCR24 pro-
moter encompassing a consensus binding motif of SOX9 or the
DHCR24 promoter harboring a mutated SOX9 consensus motif
(Figure 4B, top). The wild-type or mutant DHCR24 (encompass-
ing 5 point mutations of SOX9 consensus motif; Figure 4C, top)
reporter plasmids were cotransfected with the pCDH-SOX9,
shSOX9, or empty vector lentiviral plasmids into 293T cells, and
their luciferase activities were measured at 48 hours. Interest-
ingly, overexpression of SOX9 significantly increased wild-type
DHCR24 luciferase reporter activity compared with either empty
vector or SOX92 counterparts (Figure 4C, bottom). In contrast,
overexpressing SOX9 had no effect on the luciferase activity of
the mutant DHCR24 promoter (Figure 4C, bottom). These

Figure 6 (continued) SOX92 Karpas-422 cells and DB cells and in SOX9-overexpressing OCI-LY1 cells. The level of cholesterol ester was calculated: total cholesterol 2
free cholesterol content. (E) Immunoblot assay and densitometry quantitation of DHCR24 protein in SOX92 Karpas-422 and DB cells. (F) Karpas-422 or DB cells were
treated with triparanol for 48 hours or left untreated before they were subjected to cholesterol content measurement. (A-D, F) Data represent the mean 6 SD of techni-
cal triplicates. *P , .05; **P , .01; ***P , .001; ****P , 0.0005.
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Figure 7. Inhibition of SOX9 and cholesterol synthesis deaccelerates tumor growth in vivo. (A) Ten million SOX92 Karpas-422 cells were subcutaneously injected
into each nude mouse (n 5 5). Three weeks after transplantation, the mice were euthanized and tumor size (A), tumor volume (B), apoptosis (C), proliferation (D), and
cholesterol contents (E) were measured, and DLBCL morphology (F) was examined in the mice. Ten million DLBCL cells harboring a high level (Karpas-422) or a low
level (SUDHL8) of SOX9 were subcutaneously injected into each nude mouse (n 5 5). Meanwhile, 10 mg/kg U18666A (every 2 days) or 50 mg/kg simvastatin (every 2
days) were either orally administered or intraperitoneal injected into the DLBCL xenograft-recipient mice for a week. Bar represents 50 mm. Three weeks after transplan-
tation and drug administration, the mice were euthanized and tumor size (G), relative tumor weight (H), and relative cholesterol contents (I) were measured. (B-I) Data
represent the mean 6 SD from technical triplicates. *P , .05; **P , .01; ***P , .001; ****P , .005.
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results indicate that SOX9 directly targets and transcriptionally
activates DHCR24 via direct binding to the SOX9 binding site.

SOX9 regulates cholesterol biosynthesis
via DHCR24
To determine whether steroid biosynthesis can be modulated in
a SOX9-dependent manner in DLBCL cells, cholesterol content
was measured in DLBCL expressing either a high (Karpas-422
and DB cell lines) or a low (OCI-LY1 and SUDHL6 cell lines) level
of SOX9. Total cholesterol and cholesterol ester levels were pre-
sent at significantly higher levels in the high SOX9-expressing
Karpas-422 and DB cells (Figure 5A). Cholesterol levels were
also determined in Karpas-422 and DB cells transduced with
shSOX9#1, shSOX9#2, or in OCI-LY1 cells transduced with
pCDH-SOX9 lentivirus. Inhibition of SOX9 significantly decreased
total cholesterol or cholesterol ester contents in Karpas-422 and
DB cells (Figure 5B-C). Vice versa, induction of SOX9 increased
total cholesterol and cholesterol ester contents in OCI-LY1 cells
(Figure 5D). Because DHCR24 was reported to be a pivotal
enzyme in cholesterol biosynthesis that catalyzes the transforma-
tion of desmosterol to cholesterol, we explored whether
SOX9 modulates cholesterol biosynthesis through regulation of
DHCR24. Indeed, inhibition of SOX9 downregulated the expres-
sion of DHCR24 by 1.3-fold (shSOX9#1) or 2.5-fold (shSOX9#2)
in Karpas-422 cells, or by 2.5-fold (shSOX9#1) or 3.3-fold
(shSOX9#2) in DB cells (Figure 5E, top and bottom). Moreover,
inhibition of DHCR24 by triparanol, a DHCR24 inhibitor, partially
counteracted the SOX9-induced increase in total cholesterol and
cholesterol ester contents (Figure 5F). Collectively, these data
suggest that SOX9 is a positive regulator of cholesterol biosyn-
thesis via increasing DHCR24 expression.

DHCR24 rescues the SOX9
knockdown phenotype
To investigate whether DHCR24 has a role in modulating the
potentially oncogenic functions of SOX9, a lentiviral vector
encoding a DHCR24-overexpressing plasmid (pGMLV-DHCR24)
was constructed and transduced into SOX9-expressing Karpas-
422 cells. Overexpression of pGMLV-DHCR24 significantly
decreased DLBCL cell apoptosis and accelerated DLBCL cell
growth (Figure 6A-B). To further test whether overexpression of
DHCR24 rescues the phenotype associated with SOX9 knock-
down, pGMLV-DHCR24 lentivirus was transduced to SOX92

Karpas-422 cells and incubated for 48 hours. Short hairpin (sh)
scrambled control-overexpressing Karpas-422 cells and vector
control-transduced SOX92 Karpas-422 cells were used as exper-
imental controls. Elevated DHCR24 expression was capable of
rescuing the decrease in DLBCL cell survival and cell growth
associated with SOX9 knockdown (Figure 6C-D). Moreover,
overexpression of DHCR24 rescued SOX9 shRNA-induced G1/S
arrest (Figure 6E, left and right). Furthermore, overexpression of
DHCR24 overcame the downregulation of Bcl-xL, Mcl-1, and
Bcl2 and the upregulation of Bad and Bax in Karpas-422 cells
after SOX9 knockdown (Figure 6F; supplemental Figure 8A-E).
Taken together, our findings provide supportive evidence of a
pivotal role of DCHR24 in modulating SOX9 functions.

Inhibition of SOX9-dependent cholesterol biosyn-
thesis reduces tumor growth in vivo
To explore the biological significance of inhibiting SOX9 in vivo,
10 million shSOX9 lentivirus-transduced Karpas-422 cells were

subcutaneously injected into each nude mouse (n 5 5). Three
weeks after transplantation, the DLBCL-recipient mice were
euthanized, and tumorigenesis-related phenotypes were mea-
sured. The tumor size and volume were dramatically reduced in
recipients of shSOX9-transduced Karpas-422–xenografts when
compared with the controls (Figure 7A-B). Moreover, the
increased cell death and the decreased proliferation rate of the
DLBCL cells were observed in recipients of SOX92 Karpas-422
xenografts compared with scrambled control recipients
(Figure 7C-D). Moreover, total cholesterol and cholesterol ester
levels were significantly reduced in SOX92 Karpas-422–recipient
mice (Figure 7E). Furthermore, DLBCL cell morphology was con-
firmed by hematoxylin-eosin staining in mice with SOX92

Karpas-422 xenografts and scrambled control–recipient mice.
(Figure 7F). We also generated mice with DB xenografts mice,
and results similar to those of Karpas-422–recipients were
obtained (supplemental Figure 4B-F).

To further investigate whether inhibition of the SOX9-DCHR24-
choelsterol biosynthesis axis represses lymphomagenesis, 10
million Karpas-422 cells expressing high levels of SOX9 or
SUDHL8 cells exhibiting low levels of SOX9 were transplanted
into nude mice. Three weeks after transplantation, the xenograft-
recipient mice were randomized and administered simvastatin
(oral) or U18666A (intraperitoneal injection) at the indicated
doses and time intervals (supplemental Figure 4A) or were left
untreated. Although tumor size and weight were significantly
reduced in both recipients of Karpas-422 or SUDHL8 xeno-
grafts, the degree of reduction was higher in the former after
treatment (Figure 7G-H). Moreover, an approximately three-
to fourfold reduction in tumor weight was observed in Karpas-
422 xenograft–recipient mice that had been treated with sim-
vastatin or U18666A, respectively, when compared with a 1.8-
or 2.8-fold reduction in mice receiving SUDHL8 xenografts
after having the same treatments (Figure 7H). Furthermore,
the relative fold reductions of total and cholesterol ester con-
tents were more pronounced in the Karpas-422 recipients (P
, .001) than in the SUDHL8 (P , .01) recipients (Figure 7I). In
summary, our in vivo data support an oncogenic role of SOX9
in DLBCL via the SOX9-DHCR24-cholesterol biosynthesis axis,
which appears to confer increased vulnerability of the DLBCL
cells to inhibition of cholesterol synthesis.

To explore whether SOX9 can be a promising therapeutic target
in DLBCL, SOX9high (Karpas-422) and SOX9low (SUDHL6) cell
lines and SOX9-overexpressing OCI-LY1 cells were treated
in vitro with 0.5 mM JQ1, a BET inhibitor reported to inhibit
SOX9 transcription and protein stability.24 In addition, Karpas-
422– or SUDHL6-recipient mice were injected with JQ1
(50 mg/kg, intraperitoneally). JQ1 inhibited cholesterol synthesis
in a SOX9-dependent manner in vitro (supplemental Figure 5A-
D). Importantly, JQ1 inhibited lymphomagenesis and cholesterol
biosynthesis in a SOX9-dependent manner in vivo (supplemental
Figure 5E-H), suggesting the potential of therapeutic targeting
of SOX9 in management of DLBCL.

Discussion
In our study, SOX9 was overexpressed in a subset of DLBCLs,
particularly those harboring IGH-BCL2 translocations. Limited
Sanger sequencing results indicated that the overexpressed
SOX9 is most likely wild-type, which is similar to the mutation
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profiling results of Schmitz et al, who rarely found SOX9 muta-
tions in a large cohort of patients with DLBCL.25 Our data also
suggest that SOX9 expression in DLBCL is associated with
advanced clinical stage, which must be confirmed in a larger,
independent cohort.

The molecular mechanism behind the association of SOX9 over-
expression and the presence of IGH-BCL2 is unknown. We spec-
ulate that certain signaling pathways (eg, NF-kB signaling) are
responsible for inducing SOX9 expression. Lymphoma cells with
the t(14;18) translocation showed high levels of nuclear NF-kB,
which may induce BCL2 expression in these cells as a result of
NF-kB activation in the setting of global epigenetic dysregula-
tion.26-28 Further investigation is necessary to delineate the pre-
cise mechanisms of SOX9 overexpression in these lymphoma
cells.

Knockdown of SOX9 in SOX9high cell lines decreased cell prolif-
eration and enhanced survival of DLBCL cells in vitro and in
mouse xenograft recipients, in line with the published data
regarding SOX9 function in promoting cell proliferation and
inhibiting apoptosis. SOX9 has been shown to facilitate cell pro-
liferation and differentiation of normal tissues or stem cells, such
as sebocytes,29 human lung fibroblast cells,30 and undifferenti-
ated rat mesenchymal stem cells.31 In addition, SOX9 was found
to exert its oncogenic role by modulating cell proliferation and
apoptosis and promoting tumor progression and chemoresist-
ance in various solid tumor models including gastric,17,32

hepatocellular,33,34 and pancreatic35 cancers and in glioma,36

chordoma,37 and chondrosarcoma,38 among others.

Screening for a potential SOX9-regulated signaling pathway
revealed that genes differentially expressed after SOX9 knock-
down were enriched in the cholesterol biosynthesis signaling
cascade. In combination with our ChIP-seq data, we identified
DHCR24, a terminal enzyme in cholesterol biosynthesis that cat-
alyzes the conversion of desmosterol to cholesterol, as a SOX9
target for transcription activation. Enforced expression of
DHCR24 rescued the SOX9-silencing phenotype. SOX9 overex-
pression elevated the DHCR24 level, resulting in promoted cho-
lesterol synthesis and lymphomagenesis. We showed that
cholesterol content was higher in DLBCL cells with high levels of
SOX9. Inhibitors targeting cholesterol synthesis induced apopto-
sis and reduced tumorigenesis in DLBCL cells expressing high
levels of SOX9, suggesting that these cells are more addicted to
cholesterol. The link between a transcription factor and addic-
tion to cholesterol biosynthesis has been demonstrated previ-
ously. Multiple myeloma cells have been shown to be addicted
to an abnormal, pleiotropic regulatory network controlled by the
transcriptional factor interferon regulatory factor-4.39 Among the
various molecules and cellular processes regulated by interferon
regulatory factor-4 are many enzymes and regulators of sterol
and lipid synthesis, including squalene monooxygenase and
stearoyl-CoA desaturase, which encode rate-limiting enzymes in
these pathways.39

Accumulating evidence suggests that unbalanced cholesterol
homeostasis and dysregulation of cholesterol metabolism con-
tributes to carcinogenesis.40,41 Interestingly, the incidence of
coronary diseases is higher in patients with DLBCL than in the
general population,42,43 suggesting a link between de novo cho-
lesterol synthesis in lymphoma development and maintenance.

Our study showed that pharmacological inhibition of cholesterol
biosynthesis using simvastatin dramatically decreased growth of
DLBCL cells and lymphomagenesis in DLBCL xenografts. This
pharmacological approach is especially effective in DLBCL cells
expressing high levels of SOX9 because of their addiction to the
cholesterol biosynthesis pathway, which supports an important
role of de novo cholesterol synthesis in lymphoma development
and maintenance. The role of simvastatin in preventively manag-
ing and treating patients with atherosclerotic cardiovascular dis-
ease,44 heart failure,45 and stroke46 via inhibition of low-density
lipoprotein cholesterol synthesis has been well established.
Repurposing of this common drug to treat DLBCLs with high
SOX9 expression may represent a potentially effective therapeu-
tic regimen for this subset of DLBCLs. Other studies have identi-
fied potential targets for lowering cholesterol content in
lymphoma cells. For instance, high-density lipoprotein nanopar-
ticles targeting scavenger receptor type B1 reduce cholesterol
uptake and induce ferroptosislike cell death, thus inhibiting lym-
phomagenesis.47-49 Moreover, cholesterol auxotrophy, because
of loss of squalene monooxygenase expression, may present a
targetable liability in anaplastic large cell lymphoma. Further-
more, inhibition of the SYK/PI3K pathway can interfere with mul-
tiple components of the cholesterol synthesis pathway in
DLBCL.50

Cholesterol metabolism contributes to tumorigenesis via regula-
tion of signaling pathways, and it can be regulated by signaling
pathways. For example, cholesterol enhances liver carcinogene-
sis by activating the MAPK signaling pathway.51 Moreover, the
EGFR/SRC/extracellular signal–regulated kinase–signaling cas-
cade stabilized YTHDF2 and promoted cholesterol dysregulation
and growth of glioblastoma.52 Our study illustrates SOX9-
mediated regulation of de novo cholesterol synthesis in DLBCL
by a novel pathway involving DHCR24, which has been shown
to promote tumorigenesis through its positive regulation of cho-
lesterol synthesis in a variety of cancers including breast cancer
stem cells,53 endometrial carcinoma,54 and hepatocellular carci-
noma cells.55

In summary, our study demonstrates, for the first time, the onco-
genicity of SOX9 in DLBCL and identifies a novel role for the
SOX9-DHCR24-cholesterol biosynthesis axis in lymphomagene-
sis. It is likely that a subset of DLBCLs, in particular those with
IGH-BCL2 rearrangement, are addicted to this axis. Pharmaco-
logical targeting of SOX9 with selective SOX9 inhibitor, nano-
particle delivery, or long noncoding RNA may be promising
treatment strategies for DLBCL.
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