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The BCL6 corepressor (BCOR) is a transcription factor
involved in the control of embryogenesis, mesenchymal
stem cells function, hematopoiesis, and lymphoid devel-
opment. Recurrent somatic clonal mutations of the
BCOR gene and its homolog BCORL1 have been
detected in several hematologic malignancies and aplas-
tic anemia. They are scattered across the whole gene
length and mostly represent frameshifts (deletions, inser-
tions), nonsense, and missence mutations. These disrup-
tive events lead to the loss of full-length BCOR protein
and to the lack or low expression of a truncated form
of the protein, both consistent with the tumor suppressor
role of BCOR. BCOR and BCORL1mutations are similar to

those causing 2 rare X-linked diseases: oculofaciocardio-
dental (OFCD) and Shukla-Vernon syndromes, respec-
tively. Here, we focus on the structure and function of
normal BCOR and BCORL1 in normal hematopoietic and
lymphoid tissues and review the frequency and clinical
significance of the mutations of these genes in malignant
and nonmalignant hematologic diseases. Moreover, we
discuss the importance of mouse models to better under-
stand the role of Bcor loss, alone and combined with
alterations of other genes (eg, Dnmt3a and Tet2), in pro-
moting hematologic malignancies and in providing a use-
ful platform for the development of new targeted
therapies.

Introduction
The BCL6 corepressor (BCOR) is a tumor suppressor gene that
was first identified in a 2-hybrid screen for interactors with the
POZ domain of the transcriptional repressor BCL6.1 Its product
is a nuclear protein involved in lymphoid development2 (potenti-
ating BCL6 repression1), maintaining pluripotency of human
embryonic stem cells,3,4 and regulating mesenchymal stem cells
function5 and hematopoiesis.6 The BCL6 corepressor-like protein
1 (BCORL1)7 shares several features with BCOR but also shows
distinctive characteristics, suggesting it may play different
functions.8

In 2011, searching for new mutations in de novo adult acute mye-
loid leukemia (AML), we appliedwhole exome sequencing toAML
patients with normal karyotype lacking NPM1, CEBPA, FLT3-ITD,
IDH1, andMLL-PTD (the only knownmutations at that time), which
led us to discovery somatic clonal BCOR mutations in AML.9

Another group simultaneously identified mutations of the BCOR
homolog BCORL1 in de novo and secondary AML.10 Since
then, mutations of these genes were increasingly reported in
both malignant and nonmalignant hematologic diseases.

Germinal BCOR mutations also cause oculofaciocardiodental
(OFCD) syndrome, a rare X-linked dominant disease that is embry-
onic lethal in males.11 OFCD syndrome is characterized by con-
genital cataracts, abnormal facial traits, cardiac defects and
dental anomalies, including canine teeth with extremely long
roots.11 BCORmutations were also identified in Lenzmicrophthal-
mia syndrome.11,12 The great variability in the severity of OFCD
syndrome among females is likely due to differences in the

proportion of cells (mosaicism) carrying a transcriptionally active
X chromosome with BCOR mutation in various tissues.13 In fact,
BCOR is located on chromosome X, and X inactivation occurs ran-
domly in the early embryo. Alternatively, a phenotype may not
become manifest if cells harboring the BCOR mutation on the
active X chromosome fail to survive (eg, leukocytes from OFCD
syndrome patients show 96% to 100% allelic skewing in favor of
cells expressing wild-type BCOR).13 Germline BCORL1mutations
cause the Shukla-Vernon syndrome (named SHUVER), an
X-linked recessive disorder characterized by global develop-
mental delay, variably impaired intellectual development and
behavioral abnormalities.14,15

Although BCOR mutations are relatively uncommon, their occur-
rence has been increasingly reported in various hematologic dis-
eases. The scope of this review is to bring all information in a
single place, so that it can serve as reference for researchers
and clinicians dealing with this issue. In particular, here we focus
on the structure and function of normal BCOR in normal hemato-
poietic and lymphoid tissues and review the frequency and clinical
significance of BCOR mutations in hematologic diseases. When
available, data onBCORL1 homolog are also provided.Moreover,
we discuss the importance of mouse models to better understand
the role of Bcor loss in promoting hematologic malignancies and
providing a platform for developing new targeted therapies.

BCOR and BCORL1 genes and proteins
The characteristics of BCOR and BCORL1 are summarized in
Table 1. The BCOR gene locates at position 11.4 of the short
arm of chromosome X and is made up of 15 exons1 (supplemental
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Figure 1, available on the Blood Web site). BCOR shows a
nuclear localization16 that is driven by the interaction of its 2
nuclear localization signals17 with the nuclear import proteins
KPNA2, 4, and 6.18 The BCOR protein is regarded to be widely
expressed in the lympho-hematopoietic system,19 but immuno-
histochemical studies with specific monoclonal antibodies are
missing. Several alternative spliced transcript variants encoding
4 different isoforms (a, b, c, d) have been described.1,20 The
main isoform c uses 15 exons to generate a protein of 1755
amino acids (192 kDa).1 Only a few isoforms retain known protein
interactions, depending on the domains preserved by alternative
splicing.

The BCORprotein contains 3 well-established functional domains,
whereas the significance of the C-terminal tandem ankyrin (ANK)
repeats remains unknown (Figure 1). The BCL6 binding site
located at the N terminus of BCOR interacts with the POZ domain
of BCL61,21 and with the a-helical region of interferon regulatory
factor 8 (also targeting BCL6).22

The polycomb group RING finger (PCGF) Ub-like fold discrim-
inator (PUFD) binding site is located at the C terminus of BCOR
and interacts with the PCGF homolog 1 (PCGF1)23 (Figure 1).
BCOR, the PCGF1/RING enzymatic core, and KDM2B are crit-
ical components of the noncanonical polycomb repressive
complex PRC1.1.24-27 (Figure 2). The noncanonical PRC1.1
complex contains other proteins that may be tissue specific,
for example, in germinal center B cells, BCOR forms a nonca-
nonical PRC1.1 complex containing BCL6 and the CBX8 subu-
nit.2,24,26 This interaction allows recruitment of the complex to

specific chromatin regions via mechanisms involving interac-
tion with both chromatin marks and sequence-specific tran-
scription factors. Finally, a BCOR-independent mechanism of
recruitment of PRC2/canonical PRC1 complexes to nonrespon-
sive targets that may counteract the gene activation because of
BCOR loss has been previously described.3

The PUFD termini of BCOR, which are critical for binding to
the ubiquitin-like RAWUL domain of PCGF1, are structurally dis-
ordered and become ordered only upon binding PCGF128

(Figure 1). In this way, the PCGF1/BCOR PUFD terminal residues
are placed in conformations that are required to interact with
the leucine-rich repeats of KDM2B (Figure 1).28

The PRC1.1 complex then is recruited to unmethylated cyto-
sine guanine dinucleotide (CpG) islands that are frequently
located around transcription start sites. Binding to unmethy-
lated CpG islands occurs through the zinc finger-CxxC (ZF-
CxxC) DNA-binding domain of histone demethylase
KDM2B3,29 (Figure 2) that specifically demethylates
H3K36me2 via its jmjC domain. Binding of PCGF1-BCOR com-
plex with KDM2B stimulates the E3 ligase activity of RING1B
that in turn monoubiquitylates H2A on K119, promoting the
accrual of canonical PRC2 complex30 to monoubiquinated
loci.26 Conversely, BCOR loss results into a decrease of
H2AK119ub1 at promoter regions of Hoxa and Cebpa family
genes.31 Thus, BCOR appears critical to couple the RING-
PCGF1 enzymatic core to the chromatin bound KDM2B
subunit. This function may be disrupted in case of BCOR loss
or truncation. The tissue specificity of the PRC1.1 complex

Table 1. Characteristics of BCOR and BCORL1 genes and proteins

Characteristics BCOR gene BCORL1 gene

Location Chromosome X (band Xp11.4) Chromosome X (band Xp26.1)

No. of exons 15 13

Associated genetic syndrome OFCD Shukla-Vernon (SHUVER)

Mutations Frameshifts, nonsense, and missense* Frameshifts, nonsense, and missense*,†

Translocations Rare (APL)* No

ITD of PUFD (solid tumors) Yes No

Characteristics BCOR protein BCORL1 protein

Length 1755 amino acids 1711 amino acids

Subcellular location Nucleosol and nuclear dots of various size Speckle-like nuclear dots of consistent size

Major protein domains BCL6-binding domain, PUFD motif, MLLT3-
binding domain

Tandem ankyrin repeats

CtBP1-binding site, PUFD motif, 2 LXXLL
motifs, tandem ankyrin repeats

PUFD motif Disordered Ordered

Function Transcriptional corepressor Transcriptional corepressor

Interactors BCL6, HDACs class I and II, MLLT3, FXBL10/
JHDM1B, MLLT1/ENI, ZBTB5, SP1, ZBTB2,

ZBTB7A/Pokemon, PCGF1, RING1A/B
KDM2D

HDACs class I and II, CTBP1, PCGF1

*Sometimes may co-occur in AML and MDS.

†Rare variant of acute promyelocytic leukemia (APL).
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may account for the localized rather than global effects of
BCOR loss on H2A ubiquitination on K119.

EZH2, 1 of the members of the PRC2 complex, mediates the
mono-, di-, and trimethylation of lysine 27 of histone H3 to gener-
ate H3K27me1/me2/me3 (Figure 2).6 These events ultimately lead
to repression of transcription by histone modifications in specific
promoter regions (Figure 2). Conversely, the Kdm2b depletion
(eg, in mouse embryonic stem cells) induces the derepression of
lineage-specific genes and early differentiation.32

The third functional binding site of BCOR directly interacts with
the transcriptional regulator AF9 (MLLT3),33 the common fusion
partner of mixed lineage leukemia (MLL) in leukemias.34 In partic-
ular, AF9 binds the 2 BCOR isoforms with a unique 34 amino acid
sequence in the midportion of the protein.33

The BCORL1 gene maps to chromosome Xq25-q26.1.7 The
encoded nuclear protein seems to be expressed at higher levels

in testis and prostate than in other tissues7 (Table 1). BCORL1 is
1711 amino acids long and contains a PUFD domain necessary
and sufficient to bind PCGF1 RAWUL and together bind
KDM2B35 (Figure 1). However, unlike BCOR, it lacks the BCL6
and MLLT3 binding sites and contains an LXXLL nuclear receptor
recruitment motif and a PXDLS motif that interacts with the
C-terminal binding protein (CtBP) corepressor, resulting in nega-
tive regulation of its target genes, including E-cadherin (Figure
1; Table 1). The repressive BCORL1 activity is mediated at least
partially by class II histone deacetylases7 (Table 1).

BCOR function in hematopoiesis and
lymphoid development
The BCOR-containing PRC1.1 complex regulates hematopoiesis
by opposing differentiation toward the myeloid lineage6,31,36,37

through repression of HoxA and Cebp family genes.27,38 Con-
versely, after depletion of Pcgf139 or Kdm2b,40 hematopoietic
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Figure 1. BCOR and BCORL1 proteins. (A) The BCOR protein is characterized by the BCL6 binding site, the AF9 (MLLT3) binding site, the ANK repeats, and the PUFD
binding site capable to dimerize with PCGF1. When the BCOR PUFD domain binds to the RAWUL domain of PCGF1, the complex acquires stability and therefore BCOR is
able to interact with the leucine-rich repeat domains of KDM2B. Other components of the multiprotein complex include the catalytic enzyme RING1A/B, RYPB, and SKP1.
(B) The BCORL1 protein is characterized by the CtBP1 binding site (CBS), 2 LXXLL (nuclear receptor recruitment motifs), the ANK repeats, and the PUFD binding site.
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stem cells (HSCs) are biased toward the myeloid lineage. More-
over, myeloid cells from mice lacking BCOR exons 9 to 10 and
expressing a C terminus truncated BCOR unable to bind Pcgf1
show higher proliferation and differentiation rates in vitro.37

Myeloid-biased hematopoiesis is also found in BcorDE9-10/y pro-
genitors.31 Moreover, depletion of both Runx1 and Pcgf1 sustain
the proliferative status and perturb the differentiation of HSCs
because of increased expression of Hoxa9.38 Thus, the BCOR-
containing PRC1.1 complex is required to repress myeloid regula-
tory genes and to commit progenitors toward lymphopoiesis.
Accordingly, loss-of-function Bcor leads to a selective disadvan-
tage in B- and T-cell lineages.40

BCL6 is strongly expressed by the germinal center B cells of lym-
phoid follicles,41,42 and by interacting with BCOR recruits the
PRC1.1 complex that leads to the epigenetic transcriptional
repression of BCL6 target genes (Figure 3). Specifically, genes
controlling differentiation of B cells to plasma cells (PRDM1,
IRF4) and cell cycle checkpoint (CDKN1A, CDKN1B) are tran-
siently silenced to allow immunoglobulin affinity maturation2 (Fig-
ure 3). This process is critical for the formation and function of
germinal center B cells that physiologically shut off BCL6 immedi-
ately after they exit the germinal center. Aberrant persistence of
this status because of deregulated BCL6 expression through trans-
locations or activating mutations promotes lymphomagenesis.43

The Bcor-mediated recruitment of PRC1.1 complex by Bcl6 is also
required for the differentiation of CD41 T cells into follicular
helper T cells (helping B cells to become plasma cells and mem-
ory cells), through repression of genes promoting differentiation
toward other lineages.44,45 Independently by Bcl6, Bcor and
Kdm2b in mice are both required to form CD41 T helper 17
(Th17) cells that protect from extracellular pathogens at mucosal
surfaces.46 Specifically, Bcor enhances Th17 development by

repressing the Lef1, Runx2 (runt-related transcription factor 2),
and Dusp4d (dual-specificity phosphatase 4) genes, encoding
proteins that inhibit the Th17 cell fate.46

No information is currently available on the BCORL1 function.
Association of BCORL1 hemizygous variants with the Shukla-
Vernon syndrome suggests a potential role in neural develop-
ment. Generation of a BCORL1 targeted mouse model is war-
ranted to address this issue.

BCOR and BCORL1 gene alterations in
human neoplasms
BCORmutations mostly occur in hematologic malignancies and in
mesenchymal tumors that curiously share histologic features (ie,
small round blue cell appearance [Ewing-like sarcoma] or mixoid
background and delicate capillary channels).47,48 BCORmutations
are also detected in some central nervous system neoplasms and
rare carcinomas.49

Unlike BCOR and BCORL1, other genes encoding components of
the PRC1.1 complex are rarely mutated or deleted in hematologic
malignancies. As far it concerns T cell malignancies, this may due
to the fact that mice lacking the Pcgf1-binding domain of Bcor
show a normal T lymphopoiesis,31 thereby providingmore oppor-
tunities for transformation than mice insufficient for Kdm2b
(another component of PRC1.1) that display severely impaired
lymphopoiesis.40,50

In both myeloid and lymphoid malignancies BCOR mutations are
scattered throughout the BCOR coding sequence, more fre-
quently exon 4 (52.2%), and resemble germline BCOR mutations
causing the OFCD syndrome11 (Figure 4A-B). The most common
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Figure 2. Noncanonical PRC1.1 complex and canonical PRC2 and PCR1 complexes in HSCs. The BCOR complex is recruited to the chromatin via binding of KDM2B to
nonmethylated CpG islands, and it catalyzes the ubiquitination of the histone H2A at Lys119 (H2AK119ub) via the RING-PCGF1 enzymatic core. Ubiquinated loci (white asterisk)
recruit the histone methyltransferase EZH2, one of the components of the polycomb repressor complex 2 (PRC2). PRC2 is then responsible for the histone H3 methylation at
Lys27 (H3K27me3). All these histone modifications lead to the suppression of gene transcription. Canonical PRC1 complex through its components RING1B and CBX catalyzes
both the ubiquitination of the histone H2A at Lys119 (H2AK119ub) and the histone H3 methylation at Lys27 (H3K27me3), also leading to the suppression of gene transcription.
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mutations are frameshifts (deletions and insertions; 36.83%) fol-
lowed by nonsense and missense mutations (20.49% and
20.24%, respectively; supplemental Table 1; supplemental Figure
2). BCOR-mutated AML samples show low BCOR mRNA levels

(mean of 22%), likely because of nonsense-mediated mRNA
decay.9,51 BCOR mutations result into the absence of full-length
BCOR protein (192 kDa) and the lack or low expression of a trun-
cated form of the protein of lower molecular weight.9 The
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Figure 3. Role of BCOR and noncanonical PRC1.1 complex in the germinal centers of B-cell follicles. Mantle naïve B cells do not express BCL6. Germinal center B cells
strongly express BCL6 (nuclear brown positivity at immunoperoxidase staining with monoclonal antibody PG-B6p42). BCL6 interacts with BCOR to recruits the PRC1.1 that
leads to the epigenetic transcriptional repression of BCL6 target genes. CBX8 is also a component of the complex in the germinal center B cells.2 The white asterisk indi-
cates recruitment of PRC2 to the ubiquitinated loci. In addition to BCOR, the POZ domain of BCL6 also interacts with the SMRT and N-CoR corepressors that are part of the
large multiprotein histone deacetylase-containing complexes and are also required for the repressive activity of BCL6. These events result into the temporary silencing of
genes controlling differentiation of B cells to plasma cells and cell cycle checkpoint (CDKN1A, CDKN1B) to allow immunoglobulin affinity maturation. B cells that exit from
germinal center downregulate BCL6 before giving raise to plasma cells and memory B cells.
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disruptive nature of mutations is consistent with the tumor sup-
pressor role of BCOR. BCORL1 mutations show similar features
(supplemental Table 2; Figure 4C-D). Next-generation sequenc-
ing52 for copy number changes has also revealed BCOR deletions
in AML.53

Mutations involving BCOR and other chromosome X
genes (PHF6, STAG2, ZRSR2) were associated with male bias in
AML.54 The fact that, in females, the mutation of BCOR
(or PHF6) has no deleterious effect if it occurs in the X chromo-
some inactivated by lionization could explain the male
predominance.54

Internal tandem duplications (ITDs) of PUFD domain do not occur
in hematologic malignancies but are detected in kidney clear cell
sarcoma and central nervous system high-grade neuroepithelial
tumor with BCOR alteration (CNS-HGNET-BCOR), a rare pediat-
ric aggressive brain tumor.55,56 Curiously, ITDs map to the struc-
turally disordered BCOR PUFD termini, abrogating the binding to
the PCGF1 RAWUL and preventing the formation of PRC1.1 com-
plex.28 Notably, such alterations were not reported for
BCORL1.28

Translocations involving BCOR are mainly detected in undiffer-
entiated round cell sarcoma, high-grade endometrial sarcoma,
and ossifying fibromyxoid tumor.47-49 Conversely, BCOR

fusions were reported only in 2 patients with acute promyelo-
cytic leukemia.57,58 In both cases, BCOR was translocated
with the retinoic acid receptor a (RARa) gene because of a
rare t(X;17)(p11;q12).57,58 Morphologically, 1 case showed
Auer rods and Faggot cells, whereas the other did not. Both
patients responded to all-transretinoic acid but experienced
frequent relapses and were refractory to arsenic trioxide. The
incidence (supplemental Table 1), significance, and clinical rel-
evance of BCOR mutations in hematologicl diseases are dis-
cussed below.

BCOR and BCORL1 mutations in
myeloid neoplasms
AML
BCOR mutations are detected in 3.8% to 5.0% of adult de novo
AML9,59,60 and about 4% of AML with myelodysplasia-related
changes.61 Frequency is lower in pediatric AML62 (BCOR 1.7%)
and higher in secondary AML52,63 (about 8%). We found that
about 45% of BCOR-mutated AML had concomitant DNMT3A
and/or RUNX1 mutations and were mutually exclusive with FLT3
and NPM1 mutations.9 The hierarchy of BCOR, DNMT3A, and
RUNX1 mutations in AML is poorly understood. BCOR-mutated
AMLpatients also show a high rate ofN-RAS andK-RASmutations
(36.8%).59 BCORL1 mutations occur at a frequency of 3.7% to
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5.8% of AML adult patients10,59 and 1.2% of pediatric AML
patients.62 Coincidental BCOR and BCORL1 deleterious muta-
tions were suggested to play a role (together with PHF6mutation)
in the leukemic transformation of a patient with familial platelet
disorder related to germinal C-terminal RUNX1 mutation.64

Thus, occurrence of BCOR and BCORL1 mutations in the same
tumor suggest the they may not be redundant, consistently with
the likely different function of the 2 proteins.

Most BCOR-mutated AML patients show a normal karyotype.9

Cases with abnormal karyotype include the following: trisomy 8,
t(9;11), 27, and complex karyotype.65 Trisomies 11 and 13, as
well as inv(3)(q21q26)/t(3;3)(q21;q26), associate with high rate of
BCOR mutations65-68 (25%-38%). In AML with t(16;21)(p11;q22)/
FUS-ERG, BCOR mutations are frequent and appear to precede
chromosomal translocation.69

BCOR-mutated AML shows a lower remission rate after induc-
tion (47.4%).59 In 422 de novo AML patients with normal cyto-
genetic, we found a shorter overall survival (OS) at 2 years in
BCOR-mutated (25.6%) vs BCOR-unmutated (56.7%) patients.9

In a Japanese cohort of 377 de novo AML patients, BCOR
mutations were associated with lower 5-year OS and relapse-
free survival, especially in patients #65 years of age, FLT3-
ITD negative, and with intermediate cytogenetic prognosis.59

Similarly, in 509 Chinese patients, BCOR-mutated cases
showed an inferior 2-year OS and 2-year relapse-free survival
compared with unmutated cases.65 Hematopoietic stem cell
transplantation seems to abrogate the adverse prognostic
impact of BCOR mutations.59,65

The 2017 EuropeanLeukemiaNet risk stratification does not
regard BCOR mutations as a prognostic predictor,70 but their
inclusion in the intermediate risk group was recently proposed.71

Mutations of BCOR, other epigenetic modifiers, and RNA-splicing
regulators also define a heterogeneous category (18% of AML)
with intermediate/adverse prognosis of the genetic classification
of AML.60 BCOR mutations predicted complete response to ven-
etoclax plus hypomethylating agents in AML.72,73

Myelodysplastic syndromes and myelodysplastic/
myeloproliferative neoplasms
BCOR mutations occur in 4.2% to 5.0% of myelodysplastic syn-
dromes (MDS) (vs 0.8%-2.0% ofBCORL1mutations),51,74 who usu-
ally carry a normal karyotype75 and are comutated for RUNX1 and
DNMT3A.51,74,76,77 BCOR mutations also associate with muta-
tions of ASXL1, NF1, ETV6, BCORL1, MECOM, RAD21, CEBPA,
and Cohesin genes.74,78 BCORmutations occur in all International
Prognostic Scoring System (IPSS) risk groups and World Health
Organization subtypes,74 being more frequent in patients
younger and with lower platelet counts at diagnosis.51,74 Cryptic
recurrent deletions at Xp11.4 (where BCOR is located) are
detected in 2.8% MDS patients with normal or noninformative
karyotype.79

The BCOR mutant-copy burden in flow-sorted CD341/CD382

early hematopoietic progenitors is lower than that of RUNX1,
STAG2, andASXL1mutations,51 suggesting that BCORmutations
hierarchically occur at a later stage and define the clinical course
rather than initiation of MDS.51
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The prognostic impact of BCOR mutations in MDS remains
controversial.51,74,76 Two studies on about 1000 patients showed
inferior OS.51,76 In another cohort of 621 patients, BCOR and
BCORL1 mutations did not impact OS, whereas the mutation
type did. In particular, patients carrying frameshift mutations
showed a median OS74 lower than those with other types of
mutations.74 Moreover, mutations at the C terminus of BCORL1
were associated with an OS shorter than mutations outside the C
terminus.74 However, these findings need to be confirmed.

Finally, MDS patients with isolated BCOR mutations showed a
trend toward a prognosis poorer than cases comutated for
BCOR and TET2, ASXL1, or DNMT3A.80 This may be due to
enrichment of poor cytogenetic in the BCOR-mutated-only group
or to better response to hypomethylating agents when other epi-
genetic modulators are comutated.80

BCOR mutations occur in 3% to 10% of chronic myelomonocytic
leukemia (CMML),35,81,82 especially CMML-2, which is frequently

comutated for U2AF1 and RUNX151 or ASXL1/EZH2.83 The prog-
nostic value of BCOR mutations in CMML remains uncertain.84,85

BCORmutations also occur in 24% of MDS/myeloproliferative neo-
plasms with ring sideroblasts and thrombocytosis.82,86 Notably,
increasedmedian corpuscular volumeof erythrocytes and thrombo-
cytosis was observed in our conditional knockout Bcor mice.87

Myeloproliferative neoplasms
BCL6-mediated repression of p53 is critical for leukemia stem cell
survival in chronic myeloid leukemia (CML).88 BCORmutations are
rare in chronic-phase CML and, when present, usually persist
despite marked reduction of BCR-ABL transcript following tyro-
sine kinase inhibitors. Thus, theymay originate from a preleukemic
Philadelphia-negative (Ph2) clone that existed independently of
Ph11 clones.89 BCOR mutations occur in about 16% of blastic-
phase CML90 and contribute driving CML transformation.91

BCOR and ASXL1 mutations also appear to be independent pre-
dictors for worse response to tyrosine kinase inhibitors of blastic-
phase CML.92
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A missense BCOR mutation was reported in 1 essential thrombo-
cytemia patient triple negative for JAK2, CALR, andMPL and with
a normal karyotype,93 presenting with a high platelet count and
resistant to therapy. Curiously, we observed thrombocytosis in
our conditional knockout Bcormice.87 BCORL1 and RUNX1muta-
tions occurring concomitantly with a novel mutation of JAK2 at
serine 523 were detected in a patient with increased hematocrit.94

Moreover, mutations of BCORL1 (together with TP53 and NRAS)
have been associated with long-term (.21 years) leukemic trans-
formation of polycythemia vera and essential thromcocytopenia.95

However, this event is very rare.96

BCOR mutations in B-cell malignancies
The somatic mutation rate of B-cell chronic lymphocytic leukemia
is low, including up to 2% of BCOR mutations.97,98 Despite the
low incidence of B-cell chronic lymphocytic leukemia in Asia,
BCOR mutations tend to be more frequent in Korean than White
patients.99 Most BCOR-mutated cases are IGHV unmutated,100

carry trisomy 12, and are NOTCH1 mutated.101,102

B-cellprolymphocytic leukemia (B-PLL)usuallycarriesacomplexkar-
yotype with frequent MYC translocations or gains and (del)17p.103

About 25% of B-PLL patients harbor BCOR mutations103 that are
usually early clonal events.103 BCOR mutations likely cooperate
with MYC translocations in promoting B-PLL. BCOR mutations
were detected in 9% of mantle cell lymphoma patients104 and
may cooperate with KDM5C mutations by increasing H3K4 and
try-methylation in the late stages of mantle cell lymphoma.105

Clonal BCOR mutations or losses occurred in 24% of splenic dif-
fuse red-pulp small B-cell lymphoma,106 whereas they were absent
in hairy cell leukemia and hairy cell leukemia variant and were only
rarely found in splenic marginal zone lymphoma. Other B-cell lym-
phomas mutated for BCOR are listed in supplemental Table 1.

BCOR mutations in T-cell malignancies
BCOR mutations were detected in 2% to 3% of pediatric T-cell
acute lymphoblastic leukemia with high TAL1 expression, being
mutually exclusive with TLX1 and TLX3 expression (TLX-
related).107

T-cell prolymphocytic leukemia is an aggressive disease carrying
the inv(14) (q11q32)/t(14;14) (q11;q32) or t(X;14)(q28;q11). How-
ever, other genetic alterations may contribute to promote T-cell
prolymphocytic leukemia, such as BCOR mutations that occur in
8% to 9% of cases.108,109 BCOR deletion, at Xp11.4, is also
revealed by Comparative Genomic Hybridization (CGH) array.108

Extranodal natural killer/T-cell lymphoma nasal type (ENKTL) fre-
quently carries mutations in the JAK-STAT pathway.110 BCOR
mutations occur in 20.6% to 32% patients,110,111 suggesting
they may play a pathogenetic role in ENKTL.112 However, the
BCOR K607E mutation is not restricted to natural killer/T-cell lym-
phomas (31.9%), being also observed in angioimmunoblastic
T-cell lymphomas (11.1%) and peripheral T-cell lymphomas not
otherwise specified (33.3%).113 Because Epstein-Barr virus infec-
tion promotes ENKTL through epigenetic mechanisms,114

BCOR mutations could cooperate with Epstein-Barr virus by
amplifying epigenetic deregulation.

BCOR and BCORL1 mutations in
nonmalignant hematologic diseases
Acquired aplastic anemia
Aplastic anemia (AA) shows a high frequency of clonal hematopoi-
esis.115,116 Mutations of BCOR, BCORL1, DNMT3A, ASXL1, and
PIGA have been detected in AA.117-120 Frequency of BCOR/
BCORL1 mutations in AA ranged between 0% and 10.9%.118-122

This suggests that, when such mutations occur without a proper
ancestral hit, they are possibly unable to drive an efficient clonal
expansion and are thus overridden once normal polyclonal hema-
topoietic stem cells recover.

AA patients carry a disproportionate number of BCOR and
BCORL1 mutations compared with their expected frequency in
an age-matched population. Thus, thesemutations aremore likely
to be selected by the AA bone marrow milieu rather than repre-
senting an age-related outgrowth.120,122 In AA, the autoimmune
attack of T lymphocytes against HSCs can result into selective
growth advantage of cells that, by acquiring somatic mutations,
become less immunogenic.117 Unlike DNMT3A and ASXL1muta-
tions, those involving PIGA, BCOR, and BCORL1 tended to disap-
pear or showed stable clone size. Moreover, AA patients carrying
BCOR, BCORL1, and PIGAmutations responded better to immu-
nosuppressive therapy than patients with other mutations and
showed a good OS and progression-free survival.120 Conversely,
DNMT3A and ASXL1 mutations tended to increase their clone
size and were associated with worse outcome.120 Similar findings
have been reported for BCOR and BCORL1mutations in pure red
cell aplasia.123

MDS and AML usually develop in 15% to 26% of AA patients over
a period of 10 years.115 Unlike high-risk ASXL1 and RUNX1muta-
tions that promote evolution of AA to MDS/AML, BCOR and
BCORL1 mutations impart a low risk of transformation into
MDS/AML.115,124,125

Erythrocytosis
Erythrocytosis definedby the strict 2008WorldHealthOrganization
classification criteria (hemoglobin . 18.5 g/dL or Hematocrit (Hct)
$ 52% in males; hemoglobin . 16.5 g/dL or Hct $ 48% in
females), associates with cardiovascular morbidity/mortality and
all-cause mortality,126 independently of conventional risk factors.
Moreover, cardiovascular morbidity is strongly associated with
clonal hematopoiesis,mostly because ofBCOR/BCORL1mutations
(16%).126 Similar to AA, BCOR/BCORL1 mutations in erythrocy-
tosis associate with a low risk of transformation into MDS/AML.126

Role of BCOR in the pathogenesis of
hematologic malignancies
Given the disruptive nature of BCORmutations, the role of BCOR
in promoting hematologic malignancies was mainly investigated
in animal models whose endogenous gene had been inactivated.
Initial Bcor loss-of-function studies in zebrafish and Xenopus reca-
pitulated the phenotype of OFCD syndrome.127 Bcor knockout
mouse models are discussed below.

Myeloid malignancies
A conditional loss-of-functionmodel targeting exons 9 and 10 of
the Bcor allele allowing their removal via expression of either a
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retrovirus-expressing Cre ex vivo or a Vav-iCre recombinase in
vivo was generated.37 Excision led to a premature stop codon
with deletion of carboxy-terminal Bcor domain required for
proper formation of PRC1.1 complex.24 Bcor mutant cells cul-
tured under myeloid stem/progenitor conditions showed higher
proliferation rates than control cells. Bcor knockout mice exhib-
ited a marked increase of peripheral blood neutrophils without
significant changes in red blood cells, platelet and lymphocyte
levels. Conversely, other investigators failed to demonstrate
peripheral blood counts alterations, using the same conditional
model crossed with HSC-SCL-Cre-ERT mice to facilitate
tamoxifen-inducible Bcor deletion specifically in HSCs.128 Nev-
ertheless, mutant mice showed expanded BM cKit1Sca12Lin2

myeloid progenitors with enhanced repopulating capacity in
vivo.128 Both mouse models exhibited overexpression of Hox
genes. Specifically, Bcor loss reduced the levels of RING1B in
the complex, leading to a reduced monoubiquitylation of H2A
at position 119 of HoxA promoters with consequent upregu-
lated Hox transcription.

More recently, we developed a conditional Bcor knockout
mutant87 targeting exons 8 to 10 resulting in a premature stop
codon in exon 11 and tested the effects of Bcor loss in hematopoi-
esis using Mx1-Cre mice.87 Mice displayed leukopenia, mainly
because of B-cell lymphopenia, red blood cell reduction with
increased mean corpuscle volume, and progressive increase of
platelet counts. Thrombocytosis was caused by accumulation of
megakaryocytic-erythroid and megakaryocytic progenitors due
to apoptosis resistance. Thus, Bcor loss of function induces dere-
pression of Hox andCebp family genes,37 myeloid differentiation,
and thrombocytosis.87 However, it is insufficient to promote mye-
loid malignancies alone, clearly pointing to the need of additional
cooperative events, as depicted in Figure 5.

Because BCOR and DNMT3A are frequently comutated in AML,9

we generated Bcor/Dnmt3a double knockout mice87 that rapidly
developed a lethal leukemic phenotype characterized by imma-
ture erythroid cells expansion87 (Figure 6). The aberrant erythroid
skewing was induced by an altered molecular program affecting
major cell cycle regulators (Mdm2, Tp53) and erythroid-specific
transcriptional factors (Gata1-2)87 (Figure 6). Another mouse
model of acute erythroid leukemia involving loss of Bcor and
Dnmt3a (in addition to Trp53) and characterized by deregulation
of aberrantly methylated driver genes has been recently
reported129 (Figure 6).

BCOR andRASmutations cooccur in bothAMLandMDS.Bcor-defi-
cient mice crossed with Kras mutant animals128 developed a lethal
disease characterized by leucocytosis, splenomegaly, and increased
leukemic blasts through Hoxa 9 upregulation (Figure 6). BCOR and
TET2 are also frequently comutated in MDS patients.51,76,130

Accordingly, Bcor and Tet2 disruption in mice induced a lethal
MDS phenotype with differentiation block, apoptosis, and activation
of myeloid regulator genes of the Cebp and Hoxa family through
reduction of H2AK119ub levels31 (Figure 6).

One of the BCOR functional domains (Figure 1) directly binds to
the commonMLL fusion partner AF9 (MLLT3), contributing to pro-
mote MLL rearranged leukemia.131 Mutagenesis studies identified
point mutations selectively disrupting the capability of BCOR to
bind MLLT3. Expression of these BCOR point mutations in BM
stem/progenitor cells caused partial differentiation and abrogated

the leukemogenic potential in a mousemodel131 through downre-
gulation of EYA1 phosphatase and c-MYC protein expression.131

We recently found BCORmutations in the AML cell lines MUTZ-2,
KG-1, and HL60-R (E. Tiachi and B. Falini, unpublished data).
BCOR reconstitution in HL60-R cells inhibited cell growth and
increased vitamin D3–induced differentiation (E. Tiachi and
B. Falini, unpublished data). BCORL1 mutations were detected
in the AML-193, SKM1, and OCI-AML5 cell lines.10 The MUTZ-2
AML cell line carries both BCOR and BCORL1 mutations.10 All
these cell lines may serve for functional studies and drug testing
in vitro and in vivo.

Lymphoid malignancies
About 10% of NUP98-PHF2 (NP23) transgenic mice develop an
aggressivepro-B1ALLthatcarriesspontaneousBcor indelmutations,
leading to premature stop codons, usually within a 9-bp hotspot in
exon 8.132,133 Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR)-Cas9 insertion of Bcor frameshift mutation into
NP23hematopoietic stem/progenitor cells and their transplantation
intorecipientirradiatedmiceledtopro-B1ALLdevelopment,134sug-
gesting a cooperationbetweenmutatedBcor andNP23 fusion. The
human counterpart of mouse B-1 cells remains elusive, and Bcor
mutations are very rare in human B-cell ALL. However, mouse
NP23/Bcorpro-B1ALLtendstoacquireJakmutationsandmayserve
as amodel for human B-progenitor ALL with Jakmutation and rear-
rangements causingoverexpression ofCRLF2,132 a receptor for thy-
mic stromal lymphopoietin critical for B-1 cell development.

Emu-Myc mice spontaneously develop a B-cell leukemia/lympho-
ma–like malignancy with 100% penetrance. Destructive Bcor
mutations and loss of Cdkn2a cooperate with overexpressed
Myc to promote this disease.135

Mice expressing Bcor lacking the BCL6-binding domain136

showed impaired B lymphopoiesis, and 50% of animals devel-
oped lethal T-ALL with late latency. However, the concomitant
p53 loss accelerated T-ALL development (Figure 6). Thymic leuke-
mic blasts displayed activated Notch1 and upregulation of its tar-
get genes Myc (via Bcor loss of function135) and Hes1. These
findings suggest a tumor suppressor role for Bcor in T-ALL, antag-
onizing the transcriptional activation of T-ALL related oncogenes
byNotch1.136 Bcor loss of function may induce leukemia abrogat-
ing the PRC1.1 complex formation because mice without the
ZF-CxxC DNA-binding domain of Kdm2b develop T-ALL.50

BCOR carrying the K607E mutation (located near the BCL6 bind-
ing site) binds to BCL6, PCGF1, and RING1B proteins with lower
affinity than BCOR wild type.113 Ectopic expression of BCOR-
K607E mutant drives the constitutive activation of T cells (ie,
enhanced cell proliferation, increased phosphorylation of AKT,
and production of interleukin-2). Similar effects were mimicked
by silencing BCOR in T cells.113 Similarly to AML, the BCOR
mutant led to upregulation of HOX genes.113

Conclusions and perspectives
BCOR is involved in the regulation of embryogenesis, mesenchy-
mal stem cell function, hematopoiesis, and lymphoid develop-
ment. BCOR and BCORL1 disruptive mutations contribute to
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the origin of various hematologic malignancies and are similar to
those found in OFCD and Shukla-Vernon syndromes.

Therapeutic targeting of BCOR-containing PRC1.1 complex func-
tions (eg, H2AK119 ubiquitylation and H3K36 demethylation)
should be explored.137 AML cells with BCOR mutations alone
are sensitive to the tankyrase/WNT inhibitor XAV-939 and themul-
tikinase inhibitor crizotinib.138 BCOR/RUNX1-comutated AML
cells are sensitive to JAK kinase inhibitors,138 whereas acute ery-
throid leukemia driven by Bcor and Dnmt3a loss is susceptible
to CDK7/CDK9 inhibitors.129 Better understanding of the role
played by BCOR and BCORL1 in leukemogenesis and screening
for synthetically lethal partners of thesemutationsmay help unrav-
eling new therapeutic opportunities.
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