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KEY PO INTS

� CRISPR/Cas9 kinome
screen identifies genes
involved in ASNase
sensitivity.

� Ibrutinib synergizes with
ASNase by inhibiting the
amino acid response
pathway via c-Myc–
mediated regulation of
GCN2.

Asparaginase (ASNase) therapy has been a mainstay of acute lymphoblastic leukemia (ALL)
protocols for decades and shows promise in the treatment of a variety of other cancers. To
improve the efficacy of ASNase treatment, we used a CRISPR/Cas9-based screen to identify
actionable signaling intermediates that improve the response to ASNase. Both genetic
inactivation of Bruton’s tyrosine kinase (BTK) and pharmacological inhibition by the BTK
inhibitor ibrutinib strongly synergize with ASNase by inhibiting the amino acid response
pathway, a mechanism involving c-Myc–mediated suppression of GCN2 activity. This
synthetic lethal interaction was observed in 90% of patient-derived xenografts, regardless
of the genomic subtype. Moreover, ibrutinib substantially improved ASNase treatment
response in amurinePDXmodel. Hence, ibrutinibmaybeused to enhance the clinical efficacy
of ASNase in ALL. This trial was registered at www.clinicaltrials.gov as # NCT02884453.

Introduction
The protein drug asparaginase (ASNase) is a key component of
acute lymphoblastic leukemia (ALL) treatment regimens world-
wide1 and has shown clinical efficacy in other cancers, such as
natural killer (NK)/T-cell lymphoma subtypes, acute myeloid
leukemia, and even some solid tumors.2,3 In contrast to genotoxic
agents, this metabolic therapy is not associated with long-term
adverse effects, a benefit that could be exploited by increasing
the efficacy of this drug. ASNase acts by catalyzing the conversion
of L-asparagine (Asn) into L-aspartate, depleting Asn from the
blood. Because leukemic blasts and some other tumor cells are
selectively dependent on exogenous Asn, sustained exposure to
ASNase leads to amino acid starvation, a cessation of growth, and
ultimately, the induction of apoptosis.1

Despite ASNase being a cornerstone drug of ALL treatment
regimens, its clinical efficacy is often compromised due to
inactivation of the drug, for instance, by the formation of inhibitory
antibodies4 or as a result of therapy violations in response to
allergic reactions or treatment-related toxicities.Moreover, incom-
plete depletion of Asn can occur because of poor penetrance of
the drug in the central nervous system (CNS)5,6 or by stromal
support in the bonemarrow niche.7 Suboptimal depletion at these

sanctuary sites may be sufficient to maintain leukemic blasts in a
quiescent state rather than induce apoptosis, increasing the
chance of relapse. Therefore, obtaining a detailed understanding
of the cell intrinsic and extrinsic factors that affect the opposing
cellular responses to ASNase is needed to further increase the
efficacy of ASNase therapy.

Methods
Reagents
The following plasmids were obtained via Addgene: pS-Pax2
(#12260), pMD2.G (12259), pCW-Cas9 (50661), gRNA library
targeting kinases (51044), and pLentiCRISPR-v1 (49535).

For targeted knockout (KO), gRNA sequences (supplemental
Table 1, available on the Blood Web site) were cloned into
pLentiCRISPRv1. Asparagine synthetase (ASNS) was expressed
from pMSCV-hygro. ASNase formulations (Paronal, Spectrila, or
Oncospar) were purchased from Takeda (Hoofddorp, The Neth-
erlands), Medac (Wedel, Germany), and Servier Pharmaceuticals,
Inc. (Boston, MA), respectively. Ibrutinib, evobrutinib, ARQ531,
and general control nonderepressible 2 (GCN2) inhibitor (A-92)
were purchased from Selleckchem (Munich, Germany).
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CRISPR/Cas9 screen
The use of the sgRNA library was described previously.8 Nalm6
cells were transduced with lentivirus encoding a doxycycline-
inducible Cas9. Next, the sgRNA library at an MOI,1 library
complexity was confirmed, andCas9 expression was induced for 2
weeks (2 mg/mL of doxycycline). Then, cells were split into 2 pools
and left untreated or exposed to 5 IU/mL of ASNase for 2 weeks.
Subsequently, gRNA’s abundance was determined by deep
sequencing (see supplemental Methods). Relevant genes were
identified using the MAGeCK algorithm (v0.5.3).9

Cell viability assays
Cell viabilitywasdeterminedusing theCellTiter 2 96AQueousOne
SolutionCell Proliferation (MTS) Assay (Promega,Madison,WI) and
flow cytometry was determined using Hoechst 33342 (Sigma
Aldrich, Zwijndrecht, The Netherlands) or amine staining (LIVE/
DEADFixableDeadCell StainSamplerKit, L349630;ThermoFisher
Scientific,Breda,TheNetherlands), according to themanufacturer’s
instructions.

Colony assay
Cells were counted, and 5000 (Nalm6) or 10000 (Sem) viable cells
were seeded in 1 mL of medium substituted with 0.1% low-melt
agar type VII (A-4018; Sigma-Aldrich). Cells were incubated for 1
to 2 weeks until colony growth could be observed. Colonies were
counted and stained by using 0.005% crystal violet.

Ex vivo culture of patient-derived xenografts and
high throughput viability assay
PDXs were generated as described by intrafemoral injection of 1
3 105 to 5 3 106 viable primary ALL cells in NOD.Cg-
PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice.10 The ex vivo coculture has
been described previously.11 Data were analyzed using the
SynergyFinder software.12

Reverse phase protein array
Reverse phase protein array (RPPA) analysis was performed as
described.13,14 Protein expression data from treated samples
were normalized relative to untreated samples and subjected to a
principal component analysis. From this, the top 50 proteins that
contributedmost to principal component onewere selected, and
unsupervised hierarchical clustering with Ward’s linkage was
applied.

RNA sequencing
RNA sequencing, data analysis, and functional analysis (differential
gene expression analysis) were performed by NovoGene (Cam-
bridge, United Kingdom) on triplicate samples. mRNA was
purified from cell cultures using an RNeasy minikit (74106;
Qiagen, Venlo, The Netherlands). Raw data were deposited in
the Gene Expression Omnibus repository (GSE169152). Differen-
tial expression was analyzed using Venny,15 STRINGv11,16 and
ingenuity pathway analysis (Qiagen17).

In vivo study
Animal experiments were approved by the Animal Experimental
Committee of Radboud University (RU-DEC-2015-0050 and RU-
DEC-2019-0036).NSGmicewere randomized into4groups (8mice
per group) and injected intrafemorally with 0.53 106 viable cells in
each femur. Two weeks after transplantation, mice were treated as
indicated. Tumor load was determined weekly by flow cytometric

detection of human cells by staining for human CD10, CD45, and
CD19 and murine CD45 cells. Mice were euthanized after the
human CD451 reached 50% of total CD451 cells.

Statistical analyses
All statistical analyses were performed using PRISM 6 (GraphPad
Software, La Jolla, CA). Detailed methods can be found in the
supplemental data.

Results
CRISPR/Cas9 kinome screen identifies genes
involved in ASNase sensitivity
To identify actionable modifiers that control the delicate balance
between cell survival and apoptosis during ASNase treatment in
ALL, we performed a CRISPR/Cas9–based loss-of-function screen
in the pre-B ALL cell line Nalm6 (Figure 1A). We transduced cells
with a previously described lentiviral vector system to express a
doxycycline-inducible Cas9 (supplemental Figure 1A) and an
sgRNA library targeting all kinases encoded in the human genome
(507) with 10 distinct sgRNAs per gene8 and confirmed that library
complexity was sufficiently maintained (supplemental Figure 1B).
Of the kinases present in our pool of cells, 89%were targetedby at
least 6 individual sgRNAs (not shown). To identify genes essential
for the response to ASNase, we compared sgRNA frequencies in
the pool of cells treated with 5 IU/mL of ASNase to control cells
using massively parallel sequencing. Under these conditions,
�35% cell death was observed after 2 weeks of culture.

Remarkably, although we did not observe any significant gRNA
losses in the control cells after 2 weeks of unchallenged culturing
(data not shown), also in the treated cell population the relative
frequency of most sgRNAs remained largely unaffected (supple-
mental Figure 1C-D). The MAGeCK algorithm9 was used to
prioritize the few genes of which sgRNAs were selectively
enriched or depleted during treatment. This analysis yielded 20
genes for which loss of function appeared to be associated with
resistance (enriched gRNAs), whereas gRNAs for 31 genes were
selectively depleted during treatment, suggesting that loss of
these kinases enhances sensitivity to ASNase (Figure 1B; supple-
mental Figure 1E). A total of 7 of those 51 identified genes was
subsequently eliminated because expression of these gene
products was undetectable in Nalm6 cells, as determined after
RNA sequencing (supplemental Figure 1F).

The cellular responses to amino acid starvation have been
described in detail18 (supplemental Figure 1G). Uncharged tRNAs
activate the cellular amino acid sensor eukaryotic translation
initiation factor 2 a kinase 4, better known as GCN2, to
phosphorylate the eukaryotic initiation factor 2 (eIF2). This leads
to a global suppression of protein translation, causing cells to
arrest in G1 of the cell cycle.19 At the same time, eIF2-
independent translation of activating transcription factor 4
(ATF4) increases. This nutrient stress-induced transcription factor
controls a wide range of adaptive genes within the amino acid
response (AAR) pathway to maintain cellular homeostasis in
response to amino acid starvation. However, upon sustained
nutrient stress, ATF4 will start a transcriptional program that favors
the induction of apoptosis.18
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Figure 1. CRISPR/Cas9-based kinome screen identify modifiers of ASNase sensitivity in BCP-ALL. (A) Schematic representation of our screening strategy. Nalm6 cells
were transduced stepwise with a doxycycline-inducible Cas9 and a kinome sgRNA library. Cells were cultured for 2 weeks in the presence of 2 mg/mL of doxycycline to
induce Cas9 expression and 1 week in the absence of doxycycline. Then, cells were treated for 2 weeks with 5 IU/mL of ASNase, DNA was isolated and subjected
to massively parallel sequencing, and results were analyzed using the MAGeCK algorithm. (B) Gene list of expressed gRNA targets that significantly modulate ASNase
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Consistent with its central role in activating the AAR, we found that
sgRNAs targetingGCN2were selectively depleted in response to
ASNase exposure (Figure 1B-C; supplemental Figure 1E). More-
over, other kinases that control translation, such as eukaryotic
elongation factor 2 kinase20 and RPS6KL1, also known as
P90RSK,21 were identified as potential modifiers of ASNase
therapy response (supplemental Figure 1H). These results illustrate
that translational control in response to ASNase-induced nutrient
starvation is key to survival and suggest that targeting these
kinasesmay enhance treatment efficacy (supplemental Figure 1G).

Conversely, sgRNAs targeting the pseudokinase Tribbles 3
(TRIB3), a proapoptotic target gene of ATF4,22 were enriched
upon selection, suggesting that loss of TRIB3 contributes to
ASNase resistance (Figure 1B-C; supplemental Figure 1E).

We used targeted CRISPR/Cas9-mediatedmutation of GCN2 and
TRIB3 to validate the results from our screen. Single cell clones of
GCN2 and unselected pools of TRIB3 targeted cells were
generated, and KO was confirmed on western blot (Figure
1D,F). Wild-type (WT) and targeted cells were exposed to ASNase
andDNA fragmentation, andmembrane integrity was determined
by flow cytometry as a measure of cell death, whereas metabolic
activity was used to determine cell viability. Whereas deletion of
GCN2 indeed sensitized cells to ASNase treatment (Figure 1E),
consistent with its proapoptotic function, TRIB3-deleted Nalm6
cells were more resistant to ASNase treatment (Figure 1G-H;
supplemental Figure 1I). We conclude that our reverse genetics
screening approach can be successfully used to (1) delineate
pathways that contribute to ASNase therapy resistance, and (2)
identify targets to modulate therapy response.

Bruton’s tyrosine kinase protects against ASNase-
induced apoptosis
In addition to regulators (or effectors) of protein translation, we
identified a number of kinases implicated in cell survival that can
be targeted to enhance the apoptosis induction in response to
ASNase, including the Src-like kinase Yes1, the Ser-Thr kinase
AKT3, and Bruton’s tyrosine kinase (BTK) (Figure 1B-C). The latter
one is a key component of the B-cell antigen receptor (BCR)
signaling pathway and is essential for B-cell development and
survival.23 BTK is predominantly expressed in cells of hematopoi-
etic origin, although ectopic expression in various solid tumors has
been reported.24 The BTK inhibitor ibrutinib has shown impressive
clinical efficacy in the treatment of mature B-cell malignancies.25

Both its restricted expression pattern and the availability of a
clinical grade inhibitor prompted us to investigate a potential
synergy between BTK inhibition and ASNase therapy. First, we
used CRISPR/Cas9 to generate single cell clones of Nalm6 fully
deficient for BTK and studied the response to ASNase (Figure 2A-
B; supplemental Figure 2A). In control cells, exposure to ASNase
induced cell cycle arrest (supplemental Figure 2B) without
induction of apoptosis (Figure 2A,C; supplemental Figure 2C). In

contrast, ASNase efficiently killed BTK KO cells (Figure 2A,C;
supplemental Figure 2B-C). Similarly, an increase in ASNase-
induced apoptosis was seen in Sem cells deficient for BTK relative
to control cells (supplemental Figure 2D-E).

To further substantiate these findings, we performed washout
experiments in which cells were allowed to recover by reseeding
in soft agar or normal growth medium in the absence of the drug
(Figure 2B). Although control Nalm6 cells recovered and ensued
proliferation, resulting in the formation of colonies, BTK KO cells
showed a strongly reduced ability to recover fromASNase therapy
(Figure 2D-E; supplemental Figure 2C,F). We conclude that when
challenged with ASNase, BTK is essential for survival of ALL cells.

The BTK inhibitor ibrutinib potentiates ASNase-
induced apoptosis in B-cell progenitor ALL
cell lines
The availability of FDA-approved BTK inhibitors opens the
possibility for combination therapies exploiting the synergy
between ASNase and loss of BTK function. Therefore, we tested
ibrutinib/ASNase combinations in different B-cell precursor–ALL
cell lines (Figure 3A; supplemental Figure 3A). At concentrations
at which treatments with ASNase and ibrutinib as a single agent
were effective at inhibiting proliferation but were unable to induce
cell death, the combination of the 2 drugs potently induced
apoptosis (Figure 3B; supplemental Figure 3B-D). To further test
this premise, we repeated the earlier described washout experi-
ments. Cells treated with ASNase or ibrutinib alone grew out to
form colonies, whereas cells treated with ASNase and ibrutinib
were effectively eradicated by the treatment (Figure 3C-D), even
after only 3 days of treatment (supplemental Figure 3E).

We also tested ASNase/ibrutinib combination in 4 different T-ALL
cell lines (supplemental Figure 4). In 3 of these cell lines, ibrutinib
potentiated ASNase-induced cell death, similar to our results in
BCP-ALL cell line models. However, in 1 T-ALL cell line (HBP-ALL),
we did not observe synergy, which may relate to the fact that it
was already highly sensitive to ASNase as a single agent.

Moreover, similar effects were seen with second-generation BTK
inhibitors (evobrutinib, ARQ531) (supplemental Figure 5A,C,E-
F,H). Of note, the Src-like kinase YES1, a known off-target of both
ibrutinib and ARQ531, and Fyn-related Src family tyrosine kinase
(FRK), a known off-target of ibrutinib, were also identified as
sensitizers from our screen (Figure 1B), suggesting that the
inhibition of these off-targets may also contribute to the observed
synergism. Indeed, ibrutinib retained some potentiating effect on
ASNase-induced killing in BTK KO cells (supplemental Figure 5B),
which is in agreement with the fact that we also observed
increased ASNase-induced apoptosis in YES1 KO cells compared
with WT cells (supplemental Figure 5D). However, the effects of
YES1 KO on ASNase-induced cell killing were smaller than those
seen in the BTK KOs.

Figure 1 (continued) response, ranked by P value calculated using the MAGeCK algorithm. (C) Counts of individual gRNAs targeting TRIB3, GCN2, and BTK, respectively,
before and after ASNase treatment. (D,F) Immunoblot analysis of TRIB3 or GCN2 protein expression in cells upon CRISPR/Cas9-based targeting of GCN2 or TRIB3,
respectively. (E) ASNase-induced cell death as determined by quantification of cells positive for amine-reactive dyes using flow cytometry in Nalm6 WT and Nalm6 GCN2-
deleted cells after a 3-day treatment with 1 IU/mL of ASNase. Each bar represents a mean of 3 independent experiments. ***P , .001; **P , .01; ***P , .05 (2-tailed,
unpaired Student t test). (G) ASNase-induced cell death as determined by quantification of cells in subG1 phase using flow cytometry of Hoechst-stained cells. Bars
represent mean 6 standard error of the mean (SEM) of n 5 3 independent experiments. ***P , .001; **P , .01; ***P , .05 (2-tailed, unpaired Student t test). (H) Cell
viability as measured by MTT in Nalm6 WT, and TRIB3del cells after treatment with the indicated dose of ASNase. Bars represent mean 6 SEM of n 5 3 independent
experiments. ***P , .001; **P , .01; ***P , .05 (2-tailed, unpaired Student t test).
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We conclude from these experiments that treatment of ALL cell
lines with either ASNase or BTK inhibitors as a single agent
induces a state of cellular quiescence, allowing cells to resume
proliferation after the treatment is ended, whereas combining the
2 drugs efficiently induces cell death.

Ibrutinib potentiates ASNase-induced apoptosis of
ALL xenografts across cytogenetic subtypes
To validate our results in cells that more closely reflect primary
human leukemia, we used patient-derived xenografts grown on
feeder layers of immortalized bone marrow stroma cells.11
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Previously, we showed that the ex vivo response to treatment
accurately reflects the sensitivity to in vivo treatment.11 We
performed co-titration experiments using 10 different con-
centrations of ASNase and ibrutinib and their combinations,
resulting in a 10 3 10 matrix. Of note, these treatment
conditions did not affect the viability or proliferation rate of
the stromal feeder layer (supplemental Figure 5I). A panel of
38 B-ALL xenografts was incubated for 3 and/or 7 days before
automated microscopy-based image analysis was used to
quantify living cells (Figure 4A). We used the SynergyFinder12

to plot the data in interaction landscapes and calculated
synergy using the zero interaction potential. In approximately
90% of patient-derived xenografts, ibrutinib synergized with
ASNase (Figure 4B). These effects appeared to be largely
independent of the ALL subtype (supplemental Table 2).
Importantly, these synergistic interactions were also
observed at a clinically relevant dose of 1 to 100 nM (Figure

4C). Three of the 5 xenografts that were unresponsive to the
combination appeared to be extremely responsive to
ASNase as a single agent (as exemplified in Figure 4C,
sample SK-5942D), which could explain the lack of synergy in
these cases. Notably, primary ALL cells of a rare primary
refractory patient could be sensitized to ASNase treatment
ex vivo using ibrutinib (Figure 4D). Primary cells obtained
from a patient with T-ALL were also responsive to the
combination treatment (supplemental Figure 5J).

Similar to the cell line models, the more selective BTK
inhibitor evobrutinib synergized with ASNase to induce
apoptosis in ALL-PDXs (supplemental Figure 5E,G). Consis-
tent with our earlier observations, ibrutinib was more
potent, however, most likely due to its broader off-target
effects, favoring the use of ibrutinib for clinical purposes in
this setting.
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Ibrutinib/ASNase combination therapy delays
leukemia development and prolongs survival
in vivo
We next tested whether the combination of ASNase and BTK
inhibition would be effective at concentrations that are manage-
able in vivo. Therefore, nonconditioned immunocompromised
mice were transplanted with patient-derived BCP-ALL cells. After
engraftment, mice were treated with vehicle, ibrutinib, or ASNase
alone or in combination (Figure 4E). Unfortunately, a known
adverse effect of a clinically effective dose of ASNase in these
mouse models is weight loss26 (supplemental Figure 6A), which
limited the duration of the treatment to 9 days. After treatment,
leukemia development was measured by flow cytometry (Figure
4F; supplemental Figure 6B-C), and mice were euthanized when
the leukemic clone expanded to .50% of the total number of
leukocytes. Mice treated with ibrutinib alone did not benefit from
the treatment, whereas mice treated with ASNase alone initially
showed suppression of leukemia development. However, this
response was not durable, and the delay in leukemia develop-
ment lasted approximately as long as the treatment (7 days;
supplementary Figure 6D). This is in accordance with our in vitro
data showing that 1-week exposure to ASNase effectively inhibits
cell growth without the widespread induction of apoptosis.
Importantly, despite the use of only a single, short block of
treatment, we observed a significant delay in leukemia develop-
ment and survival when using the combination treatment,
indicating that BTK inhibition strongly synergizes with ASNase to
induce leukemic cell death in vivo (Figure 4G).

BTK signaling intersects with the AAR
To determine how inhibition of BTK synergizes with ASNase, we
performed RNA sequencing (supplemental Figure 7A) to inves-
tigate which genes are affected in response to ASNase, ibrutinib,
or a combination. To be able to adapt to amino acid shortage,
cells induce the AAR upon ASNase treatment. We hypothesized
that the addition of ibrutinib would suppress this effect,
preventing the cells from adequately responding. To test this
hypothesis, we performed pathway analysis on the genes that are
induced upon ASNase treatment but suppressed by the combi-
nation treatment in 2 cell lines (Figure 5A). Many of the identified
mRNAs were mapped to pathways involved in amino acid
metabolism (supplemental Figure 7B-C). In addition, upstream
regulator analysis,17 which allows identification of transcription
factors acting upstream of differentially expressed target genes,
predicted that the activity of ATF4 and other AAR target genes
(GCN2, PERK, ERN1) to be suppressed by the combination
treatment (Figure 5B; supplemental Table 4).17 Conversely, TRIB3,
the proapoptotic effector of the AAR, which we also identified in
our CRISPR/CAS9 screen, appeared to be activated by the

combination treatment (Figure 5B). Moreover, many of the genes
that are suppressed by ASNase but activated by the combination
treatment are targets of P53 (Figure 5A-B). This finding suggests
that the combination treatment suppresses the cytoprotective
effect of the AAR, forcing these cells into apoptosis.

To further corroborate our findings, we performed an RPPA
analysis, in which we evaluated expression and/or activation state
of 235 key cancer-related proteins in response to treatment.13

Using this platform, we compared the RPPA proteome from
Nalm6 and Sem cells that were either left untreated or exposed to
ASNase or ibrutinib as a single agent or in combination (Figure
5C). Although each single treatment only had moderate effect on
protein expression in both cell lines, the combination treatment
profoundly affected protein expression/phosphorylation, consis-
tent with the observed strong synergy between both drugs (Figure
5C). In line with our previous results, pro-apoptotic activators such
as cleaved caspase (7 and 9) or PARP and Bcl2L11 (Bim) were only
mildly affected by single agent treatment but strongly increased
when the 2 drugs were combined. In accordance with our
transcriptomic data, the combination treatment specifically
affected expression and phosphorylation of several proteins
involved in the AAR, including the phosphorylated form of the
translation factor eIF2a, suggesting that ibrutinib suppresses the
ability of cells to mount the AAR (Figure 5C), a finding further
verified by western blotting (Figure 5D). Moreover, this analysis
also identified other AAR proteins affected by the ASNase/
ibrutinib combination treatment, including ATF4, asparagine
synthetase [glutamine-hydrolyzing] (ASNS) (Figure 5D). Further-
more, ASNase-induced apoptosis in BTK-deleted cells could be
rescued by overexpression of ASNS (Figure 5E-F), confirming that
the suppression of the AAR is responsible for the induction of cell
death in BTK-deficient cells.

Based on the observation that many of the affected genes/
proteins act downstream of GCN2, we hypothesized that ibrutinib
might suppress GCN2 function. Indeed, targeted KO (Figure 1E)
as well as pharmacological inhibition could phenocopy the effects
of ibrutinib on the response to ASNase (supplemental Figure 8A).
Furthermore, ibrutinib almost completely lost its potentiating
effect on ASNase-induced killing in GCN2 KO cells, which
underscores its central role in ibrutinib’s effects on ASNase-
induced cell death (supplemental Figure 8B).

To obtain further insight into how BTK inhibition suppresses the
GCN2-ATF4 axis, we repeated the upstream regulator analysis
using all genes that were differentially expressed between
ASNase and the combination treated cells. This analysis identified
c-Myc as the most prominently suppressed transcription factor
(Figure 6A). Of note, activity of BRD4, a known cofactor and

Figure 4. Ibrutinib synergizes with ASNase treatment in a large panel of ALL PDX ex vivo and induces a delay in leukemia development in vivo. (A) Schematic
overview representing the workflow used to determine ex vivo drug responses in PDX samples. ALL-PDX samples were seeded on hTERT-immortalized mesenchymal stem
cells and treated with ASNase, ibrutinib, or combinations of both. After 3 and 7 days of incubation, cell death was analyzed by automated microscopy using a live cell
staining using CyQuant (synergy matrix). (B) Overview of the calculated drug interactions between ASNase and ibrutinib in the PDX samples. (C) Dose-response curves and
synergy matrix plots showing d-scores of 3 representative ALL PDX samples treated with drug matrix of ASNase and ibrutinib (upper panel). (D) ASNase-induced cell death
as determined by quantification of cells positive for amine-reactive dyes using flow cytometry in a primary refractory ALL patient sample. Cells were seeded on hTERT-
immortalized mesenchymal stem cells and treated with indicated doses of ASNase in the presence or absence of 10 mM of ibrutinib. (E) Schematic overview of the
experimental procedure. NSG mice were engrafted with 2 ALL-PDX 2 weeks before start of treatment with vehicle, 300 IU/kg of ASNase (days 1, 4, and 7), 25 mg/kg of
ibrutinib (days 1 to 9), or a combination of both. Leukemia development was followed over time by weekly determination of the percentage of human CD101, CD451, and
CD191 cells in the blood. Postmortem, histological analysis of organs was executed. (F) Leukemia development as determined by percentage of human CD10 cells detected
by flow cytometry in peripheral blood samples of mice treated with ibrutinib, ASNase, or a combination of both. Lines represent percentage of human CD101 cells in 1
mouse. (G) Survival analysis of mice of different treatment groups. ***P , .001; **P , .01; ***P , .05 (log-rank (Mantel-Cox) test).
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activator of c-Myc, was also predicted to be suppressed in 1 of the
cell lines, whereas activity of MXD1, a protein antagonizing the
activity of c-Myc, was found activated.

Indeed, we observed a decrease in protein expression of c-Myc in
response to ibrutinib, particularly when combined with ASNase
(Figure 6B), which cannot be fully explained by changes in mRNA
expression (supplemental Figure 8C). Myc is known to play a
prominent role in fueling cancer metabolism to sustain cell growth
and proliferation. It was shown recently, that c-Myc activates
GCN2by increasing the presence of newly synthesized uncharged
tRNAs,27 leading to upregulation of ATF4. Furthermore, c-Myc is
intimately linked to BCR signaling.28,29Whereas overexpression of
c-Myc enhances BCR signaling,30 inhibition of c-Myc can be used
to prevent or overcome ibrutinib resistance.31 The notion that
ibrutinib suppresses c-Myc function in solid tumors32,33 has led to
the development of clinical trials studying the efficacy of ibrutinib
in Myc-transformed tumors. To confirm a role for c-Myc in the
suppression of the GCN2-ATF4 pathway in response to ibrutinib,
we investigated whether loss of c-Myc activity would mirror the
effects of ibrutinib on ASNase-induced apoptosis. Therefore, we
used the BET bromodomain inhibitor JQ1 to target BRD4 activity
and, by proxy, the c-Myc transcriptional activity.34 Similar to
ibrutinib, JQ1 potentiated ASNase-induced apoptosis by pre-
venting activation of ATF4 and ASNS (Figure 6C-D).

Conversely, we investigated whether ectopic expression of c-Myc
would blunt the apoptosis-potentiating effect that ibrutinib has on
ASNase treatment. As we observed that sustained overexpression
of c-Myc was incompatible with cell proliferation, we introduced a
doxycycline inducible c-Myc gene in Nalm6 and Sem cells by
lentiviral transduction. Cells were pretreated for 1 day with
doxycycline to induce expression of c-Myc (supplemental Figure
8D) before the addition of ibrutinib, ASNase, or a combination of
both. Indeed, in c-Myc–overexpressing cells, a reduction in cell
death was observed in response to the combination treatment
relative to control cells (supplemental Figure 8E). Together, our
findings support amodel in which BTK signalingmodifies the AAR
by regulation of c-Myc, which in turn controls GCN2 activity
(Figure 6E). Future experiments will have to provide more insights
regarding the exact molecular mechanisms behind this regulation.

Discussion
Amino acid deprivation has recently gained interest as a thera-
peutic intervention, even beyond hematological malignancies.2,3

The successful application of these metabolic therapies may allow
less intensive use of classical chemotherapeutics such as DNA-
damaging agents, reducing the potential risk of long-term adverse
effects or the occurrence of secondary malignancies. In this study,

we show the potential of combining amino acid depletion with
small molecule inhibitors that further sensitize tumor cells to this
form of treatment. A CRISPR/Cas9-based loss-of-function screen
allowed us to identify BTK as a therapeutic target that strongly
enhances the clinical efficacy of ASNase. Inhibition of BTK
function, either by gene disruption or by pharmacological
inhibition, synergizes with ASNase treatment to induce leukemic
cell death. This effect is seen in cell lines and xenografts of
pediatric BCP-ALL samples across cytogenetic subtypes as well as
in some T-ALL models. In contrast to treatment with ASNase or
ibrutinib as a single agent, which appears to induce a reversible
state of cellular quiescence, the combination therapy effectively
kills the leukemic cells. The lack of cell killing at clinically relevant
doses of ASNase is somewhat surprising, but it may relate to the
relative short treatment duration (between 3 and 7 days) that was
used in most of our experiments and the fact that ASNase in a
patient is given in combination with other therapies.

Our findings further indicate that inhibition of BTK signaling
interferes with c-Myc function. As a result of the reduced
c-Myc–induced proteotoxic stress, GCN2 kinase activity, a critical
regulator of the AAR pathway, is suppressed.27 The exact
mechanism by which loss of BTK activity acts to inhibit c-Myc
remains to be fully resolved, although our results favor a
posttranscriptional mechanism. We demonstrate that the
observed inhibition of GCN2 protein activity and the resulting
decrease in eIF2 phosphorylation limits the ability of leukemic cells
to activate ATF4 and adapt to amino acid deprivation.

GCN2 is an essential regulator of the cellular response to amino
acid limitation in all tissues. Although the use of a GCN2 inhibitor
has been explored in preclinical studies,35 observations in GCN2
KO mice suggest that loss of GCN2 function enhances the risk of
treatment-related morbidities such as liver toxicity and pancrea-
titis.36,37 In contrast, BTK expression in healthy individuals is
largely restricted to the hematopoietic compartment and there-
fore allows tissue-specific treatment. Ibrutinib is currently used for
the treatment of indolent B-cell malignancies, particularly chronic
lymphocytic leukemia, and is generally well tolerated. Moreover,
the addition of ibrutinib did not enhance the toxic effects of
ASNase.

Recently, a potential clinical use of ibrutinib in pre–BCR-positive
ALL was suggested.38 Despite the fact that BTK function is mostly
associated with pre-BCR signaling, it has other functions inde-
pendent of the BCR.39 One of the intriguing observations of our
study is the finding that the combination therapy is effective across
BCP-ALL subtypes, regardless of B-cell maturation status or the
presence of an active pre-BCR and may therefore be more
broadly applicable.

Figure 5. BTK signaling intersects with the amino acid stress response pathway. (A) Fold induction of fragments per kilobase million (FPKM) values of RNA expression of
genes upregulated (upper panel) or downregulated (lower panel) in response to ASNase treatment while suppressed (upper panel) or induced (lower panel) when combined
with ibrutinib. RNA expression in Nalm6 and Sem cells treated with ASNase, ibrutinib, or a combination of both was determined by RNA sequencing. (B) Upstream
regulators of gene products identified in panel (A) determined by Ingenuity software. (C) Protein expression in Nalm6 and Sem cells treated with ASNase, ibrutinib, or a
combination of both as determined by RPPA. Quantified protein expression levels from treated samples were normalized relative to untreated samples and subjected to
principal component analysis. The top 50 proteins that contributed most to the difference between the treatments (PC1) were selected, and unsupervised hierarchical
clustering with Ward’s linkage was applied. (D) Immunoblot analysis of protein expression. Nalm6 and Sem cells were treated for 72 hours (Sem) or 96 hours (Nalm6) with
indicated doses of ASNase and ibrutinib. Representative of 3 independent experiments is shown. (E) Cell death determined by quantification of cells positive for amine-
reactive dyes using flow cytometry. Nalm6 BTK KO control cells or cells made to express an ASNS transgene were treated with indicated doses of ASNase. Each bar
represents a mean of 3 independent experiments. ***P , .001; **P , .01; ***P , .05 (2-tailed, unpaired Student t test). (F) Apoptosis induction, measured by immunoblot
analysis of PARP in Nalm6 BTK KO control cells or cells with ASNS overexpression. Cells were treated with indicated doses of ASNase. A representative of 3 independent
experiments is shown.
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Combining ibrutinib with ASNase in the treatment of BCP-ALL
may have several additional benefits. Leukemic cell infiltration
of the CNS poses a challenge for successful treatment, for
instance, because of the limited penetrance of therapeutic
compounds through the blood-brain-barrier (BBB). Although
the therapeutic protein ASNase will not cross the BBB, it is

effective in lowering asparagine levels in the cerebrospinal
fluid through exchange with the blood. However, depletion in
the cerebrospinal fluid can be incomplete, creating a sanctu-
ary site that allows leukemic cells to survive.5,40 Importantly,
ibrutinib was shown to cross the BBB.41–43 Therefore, we
hypothesize that ASNase/ibrutinib combination therapy may
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Figure 6. Loss of BTK potentiates ASNase-induced apoptosis by repression of GCN2 activity mediated by c-Myc. (A) Upstream regulators of genes differentially
expressed in Nalm6 and Sem treated with ASNase alone vs treatment with ASNase and ibrutinib, determined by Ingenuity software. (B) Immunoblot analysis of c-Myc
protein expression. Nalm6 and Sem cells were treated for 72 hours (Sem) or 96 hours (Nalm6) with indicated doses of ASNase and ibrutinib. (C) Cell death determined by
quantification of cells positive for amine-reactive dyes using flow cytometry. Nalm6 and Sem cells were treated with indicated doses of JQ1 and/or ASNase for 3 days (Sem)
or 6 days (Nalm6). Each bar represents a mean of 3 independent experiments. ***P , .001; **P , .01; ***P , .05 (2-tailed, unpaired Student t test). (D) Immunoblot analysis
of PARP, ATF4, ASNS, and actin. Nalm6 and Sem cells were treated for 72 hours with indicated doses of ASNase and JQ1. (E) Working model explaining the synergistic
interaction of BTK inhibition and ASNase treatment. In response to ASNase treatment, cells upregulate the AAR pathway via GCN2 to adapt to nutrient stress. BTK
inhibition renders cells incapable of activating c-Myc, thus preventing activation of the GCN2-ATF4 axis. As a consequence, cells cannot mount an appropriate amino acid
stress response and eventually die.
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also effectively reduce the threshold for ASNase-induced
apoptosis in the CNS.

Moreover, in patients with chronic lymphocytic leukemia, ibrutinib
treatment leads to transient lymphocytosis, forcing the leukemic
cells out of the bonemarrow as a result of repression of expression
of adhesion receptors.44 Because the bone marrow microenvi-
ronment has been recognized as a potential protective niche that
supports leukemic cell survival during ASNase treatment, this
could provide an additional therapeutic benefit. Finally, because
ibrutinib was shown to inhibit allergic response,45 it may also
prevent the formation of inhibitory antibodies or immune
cell–related toxicities, the most frequently occurring adverse
effects of ASNase treatment.4

In summary, our study shows that that inhibition of BTK signaling
effectively suppresses the AAR, sensitizing BCP-ALL cells to
ASNase-induced apoptosis. Because ectopic expression of BTK
has been reported in a variety of other tumor types responsive to
ASN depletion,46,47 the results from our study may have clinical
implications beyond B-cell malignancies.
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