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KEY PO INTS

� Negative flow
cytometric MRD after 1
course of induction
therapy did not identify
a favorable risk group
of patients with ML-DS
for whom HD-AraC
could be eliminated.

� Complex cytogenetics
were associated with
increased risk of
relapse in MRD2

patients after EOI-1
and not treated with
HD-AraC.

Myeloid leukemia in children with Down syndrome (ML-DS) is associated with young age
and somatic GATA1 mutations. Because of high event-free survival (EFS) and hypersensi-
tivity of the leukemic blasts to chemotherapy, the prior Children’s Oncology Group proto-
col ML-DS protocol (AAML0431) reduced overall treatment intensity but lacking risk
stratification, retained the high-dose cytarabine course (HD-AraC), which was highly associ-
ated with infectious morbidity. Despite high EFS of ML-DS, survival for those who relapse
is rare. AAML1531 introduced therapeutic risk stratification based on the previously iden-
tified prognostic factor, measurable residual disease (MRD) at the end of the first induc-
tion course. Standard risk (SR) patients were identified by negative MRD using flow
cytometry (<0.05%) and did not receive the historically administered HD-AraC course.
Interim analysis of 114 SR patients revealed a 2-year EFS of 85.6% (95% confidence inter-
val [CI], 75.7-95.5), which was significantly lower than for MRD2 patients treated with
HD-AraC on AAML0431 (P 5 .0002). Overall survival at 2 years was 91.0% (95% CI, 83.8-
95.0). Twelve SR patients relapsed, mostly within 1 year from study entry and had a
1-year OS of 16.7% (95% CI, 2.7-41.3). Complex karyotypes were more frequent in SR

patients who relapsed compared with those who did not (36% vs 9%; P 5 .0248). MRD by error-corrected sequencing
of GATA1 mutations was piloted in 18 SR patients and detectable in 60% who relapsed vs 23% who did not (P 5

.2682). Patients with SR ML-DS had worse outcomes without HD-AraC after risk classification based on flow cytomet-
ric MRD.

Introduction
Myeloid leukemia associated with Down syndrome (ML-DS)1 is a
clinically and biologically distinct form of leukemia occurring in
young children with Down syndrome (,4 years of age). ML-DS
is characterized by a predominant megakaryoblastic phenotype,
high prevalence of antecedent cytopenias,2 and somatic GATA1
mutations.3 Approximately 10% to 30% of newborns with DS
first develop a preleukemic disorder termed transient abnormal
myelopoiesis (TAM),1 previously also transient myeloproliferative
disorder or transient leukemia.4,5 In �20% of patients with TAM,
a subclone evolves into ML-DS, as evidenced by concordant

clonal GATA1 mutations.6-9 Treatment of ML-DS has been asso-
ciated with superior event-free survival (EFS) compared with
acute myeloid leukemia (AML) in children without DS10-15 likely
because of the hypersensitivity of ML-DS blasts to chemother-
apy, including cytarabine,16,17 an agent historically used at high
doses for the treatment of AML.

A series of clinical trials conducted by the Children’s Oncology
Group (COG) and other study groups have aimed to maintain a
high EFS while reducing intensity and toxicity of treatment, such
as the cardiotoxicity associated with anthracyclines.18 In contrast,
despite the increased drug sensitivity of ML-DS blasts, including
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to cytarabine, the use of high-dose cytarabine (HD-AraC) has
been preserved in most treatment regimens for ML-DS, includ-
ing the predecessor study, AAML0431, in which early introduc-
tion of HD-AraC was associated with an overall survival (OS) of
93.5% but the HD-AraC course was also associated with the
majority of the observed infectious toxicity.14 Excellent survival
outcomes combined with blast hypersensitivity to chemother-
apy, an association of treatment-related morbidity with
HD-AraC, and successful treatment of ML-DS without HD-AraC
by another study group,12 prompted us to investigate whether
elimination of HD-AraC was feasible in a favorable or standard
risk (SR) group defined by negative measurable residual disease
(MRD) by multidimensional flow cytometry after the first course
of therapy, as suggested by AAML0431.14

By contrast, 10% to 15% of patients with ML-DS do not survive,
primarily because of relapse or refractory disease,15,19-21 and in
AAML0431, were more frequently identified by the presence of
MRD after the first course of therapy.14 This high-risk group may
benefit from intensification of upfront treatment.

Our study therefore introduced treatment stratification of che-
motherapy for ML-DS using MRD measured by difference from
normal (DN) flow cytometry at the end of the first course of
induction (EOI-1) therapy to allocate patients to either a SR
(MRD2) or high-risk (HR) (MRD1) arm. Treatment of SR patients
eliminated the single course of HD-AraC, but otherwise mirrored
AAML0431. In contrast, HR patients receive intensified chemo-
therapy modeled on that administered for high-risk AML in chil-
dren without DS. Here, we report survival outcomes for the SR
patients and examine the impact of cytogenetics, molecular MRD
based on error-corrected sequencing (ECS) of patient-specific
GATA1 mutations, and frequency of infectious complications.

Patients and methods
Trial design
Eligibility criteria were as follows: children with DS (constitutional
trisomy 21 or trisomy 21 mosaicism) and age .90 days and ,4
years with (1) AML ($20% bone marrow blasts) or (2) myelodys-
plastic syndrome (according to World Health Organization mye-
lodysplastic neoplasm criteria22), or (3) patients more than
8 weeks since resolution of TAM with $5% blasts in the periph-
eral blood or increasing blast count ($5%) in serial bone marrow
aspirates at least 4 weeks apart. All patients received the same
first course induction I (thioguanine 50 mg/m2/dose twice daily,
days 1-4; cytarabine 200 mg/m2 per 24 hours' continuous infu-
sion, days 1-4; daunorubicin 20 mg/m2 on days 1-4 over 1-15
minutes) and a single dose of age-based intrathecal cytarabine.
For patients younger than 36 months, dosing was based on
weight. After count recovery, residual disease in the bone mar-
row was measured by multidimensional flow cytometry. Patients
with an MRD level below 0.05% were assigned to the SR arm
(arm A). SR therapy consisted of 2 more courses of thioguanine,
cytarabine, and daunorubicin followed by 2 identical courses of
intensification therapy (intensification I and II: cytarabine 100
mg/m2 per 24 hours' continuous infusion, days 1-7; etoposide
125 mg/m2 per day, days 1-3). Patients with an MRD level of
0.05% or greater were assigned to the HR arm (arm B). Patients
were not required to meet minimal organ function requirements
before enrollment (Figure 1; supplemental Figure 1, available on

the Blood Web site). The trial was approved by the Central Insti-
tutional Review Board of the National Cancer Institute and insti-
tutional review boards of each enrolling center. Patients and
their families provided informed consent or assent as appropri-
ate. The trial was conducted in accordance with the Declaration
of Helsinki (NCT02521493).

Cytogenetics
Analyses were performed by COG-approved local and reference
cytogenetic laboratories in accordance with the American Col-
lege of Medical Genetics and Genomics and College of Ameri-
can Pathologists guidelines.21 A detailed summary of results
designated according to the International System for Human
Cytogenetic Nomenclature22 and images of representative kar-
yograms and ancillary fluorescence in situ hybridization images
were submitted by the laboratories for central review by 2 cyto-
genetics reviewers (S.R. and B.H.). Unbalanced abnormalities
(those resulting in whole chromosome or partial chromosome
gains and/or losses) were coded as follows: chromosome
involved, short arm or long arm, gain or loss. The complete kar-
yotype International System for Human Cytogenetic Nomencla-
ture designation was retained to enable analysis for recurring
rearrangements or breakpoints and for coding of balanced rear-
rangements. Each karyotype was scored for complexity defined
as presence of 3 or more independent abnormalities, including
$ structural abnormalities.23

Flow cytometry
Bone marrow samples were submitted at the end of the first
course of induction therapy to a single central reference labora-
tory (Hematologics Inc, Seattle, WA) and stained with a stan-
dardized panel of monoclonal antibodies (supplemental Data),
designed to detect residual disease by using the difference from
normal approach (DN).24-29 Specimens were processed as previ-
ously described.24,25 Our analysis of ML-DS samples paid partic-
ular attention to avoiding misclassification of nonleukemic
myeloid progenitors coexpressing CD56 and CD34, as well as
CD33 (in addition to CD117, CD13, CD34, and CD45), which
uniquely occur in regenerating normal bone marrow of children
with DS after chemotherapy for AML or acute lymphoblastic leu-
kemia,30,31 as residual leukemic disease. All data were reviewed
by 2 independent analysts, who were blinded to patient infor-
mation and came to agreement on a patient’s residual disease
status before issuing a report. A level of 0.05% of total nucle-
ated cells was chosen as the clinical cutoff based on threshold
of detection and regulatory agency requirements. Results were
reported through a Web-based platform (Rave EDC, Imedidata).

Statistical analysis
Data were current as of 31 March 2020, with a median follow-up
of 2.1 (range, 0.48-3.6) years for SR patients. The significance of
observed proportions was tested using Pearson’s x2 and Fisher’s
exact test when data were sparse. The Kaplan-Meier method
was used to estimate OS and EFS. OS was defined as time from
study entry, EOI-1, or from relapse until death. EFS was defined
as time from EOI-1 to failure by not achieving complete remis-
sion, relapse, second malignancy, or death. Patients who experi-
enced refractory disease with $5% bone marrow blasts after
induction II or who experienced a relapse or were not in com-
plete remission by the end of induction III were defined as an
induction failure. The cumulative incidence of relapse was
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obtained by methods that account for competing events and
was defined as the time from EOI-1 to relapse where deaths
without a relapse were competing events. Gray’s test was used
for comparisons. Patients lost to follow-up were censored at the
date of last contact. Survival probabilities were reported with
95% confidence intervals (CI) calculated by the log–log transfor-
mation. This study was designed to compare SR patients against
a fixed 2-year EFS of 93.5%, which was observed for comparable
patients with ML-DS (ie, MRD2 at end of induction I) treated on
AAML0431. Assuming a null EFS of 93.5% at 2 years, there was
95% power to detect an alternative EFS of 87% at 2 years with
1-sided testing at the 10% level of statistical significance if there
were 200 SR patients who continued to induction II. The study
design included interim monitoring after �50% of the expected
number of EFS events had been observed. Monitoring for insuf-
ficient EFS from the EOI-1 of the treatment of SR patients used
monitoring based on the Lan-DeMets criterion with an
a-spending function at2 (truncated at 3 standard deviations) and
10% type I error. A Woolson 1-sample log-rank test was used to
compare the observed EFS with AAML0431 EFS for MRD2

patients who continued to induction II. EFS for AAML0431 was
characterized by a separate cure model for SR patients: S(t) 5

0.905 1 (0.095) 3 exp(20.00127 3 t) where t was measured in
days. A P value less than the boundary value of .025 for 50%
information time would result in rejection of the hypothesis. The
study specified comparing the Kaplan-Meier estimate of 2-year
EFS (KM2) vs AAML0431 using a test statistic of In(2In(KM2)) 2
In(2In(0.935)))/(estimated standard deviation of KM2 3

(In(2In(KM2))) compared with a standard normal distribution.

Results
Patient characteristics and accrual
A total of 201 patients with DS (constitutional trisomy 21 or tri-
somy 21 mosaicism) were enrolled between November 2015
and March 2020 (Figure 2). One patient was ineligible because
of the patient being diagnosed on peripheral blood alone
instead of bone marrow. The study was amended on 30 Octo-
ber 2018 and the SR arm was closed to accrual. Fifty-eight
patients were enrolled postamendment and are not included in
this report. As for the remaining 142 patients, 2 patients were
not assigned a risk group because of death during induction I or
removal from study by physician’s choice. The remaining
patients were assigned HR (n 5 26) and SR (n 5 114) by the

Post-Induction Standard Risk: Post-Induction High Risk:

Induction II, III Ara-C 200 mg/m2 (or 6.67 mg/kg) D1-4 by
continuous infusion, Daunorubicin 20mg/m2 (or 0.67 mg/kg/d) D1-
4 (4 doses), Thioguanine 50 mg/m2 (or 1.65 mg/kg/dose) D1-4 (8
doses)
Intensifications I, II: Ara-C 100 mg/m2/24 h D1-7 continuous
infusion, Etoposide 125 mg/m2-D1-3 (3 doses)

Induction II: Ara-C 33 mg/kg D1-4 (8 doses), Mitoxantrone 0.4
mg/kg/d D3-6 (4 doses)
Intensification I: Ara-C 33 mg/kg D1-5 (10 doses), Etoposide 5
mg/kg D1-5 (5 doses)
Intensification II: Ara-C 33 mg/kg D1, 2, 8, 9 (8 doses), L-
Asparaginase 200 U/kg D2,9 (2 doses) 

Induction II - TAD

Induction III - TAD

Intensification I
Ara-C/Etoposide

Intensification II
Ara-C/Etoposide

Arm A Standard Risk
MRD <0.05%

Induction II 
Mitoxantrone/Ara-C

Intensification I 
HD Ara-C/Etoposide

Intensification II
HD Ara-C/Asp

Arm B High Risk
MRD ≥0.05%

Marrow (Diagnostic)

Marrow (End-Induction)

Induction I (all patients)
TAD + IT Ara-C

Down syndrome
Age < years

MRD Risk Group
Assessment

Figure 1. Study design of AAML1531.
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EOI-1. Patient characteristics of those assigned to SR are shown
in Tables 1 and 2 and supplemental Table 1.

Survival outcomes
An interim analysis, specified by the study protocol after half the
expected EFS events had occurred, was performed in October
2018, when a total of 114 subjects had been enrolled on the SR
arm (arm A). The observed 2-year EFS for SR patients (treated
without HD-AraC) was 85.6% (95% CI, 75.7-95.5) compared with
93.5% (95% CI, 87.5-96.7) for patients who were MRD2 at the
end of induction course 1 on AAML0431 (which had included
HD-AraC as the second course of overall therapy) (Figure 3A).
This difference was statistically significant (P 5 .0002), met

protocol criteria of inefficacy for AAML1531 SR therapy and led
to closure of arm A. At 2 years, the OS was 91.0% (95% CI,
83.8-95.0) (Figure 3B). Twelve SR patients experienced a
relapse, of which 11 occurred in the bone marrow and 1 was iso-
lated to the central nervous system (CNS). All but 1 relapse
event occurred within the first year from study entry (median
time-to-relapse 208 days; range 136-511 days) (supplemental
Table 2). The cumulative incidence of relapse for SR patients
was 10.8% (95% CI, 5.9-17.4) at 2 years (supplemental Figure 1).
For SR patients with relapse, OS was 16.7% (95% CI, 2.7-41.3)
at 1 year (supplemental Figure 3). Of 12 SR patients who
relapsed, two-thirds received relapse therapy with curative intent
and 1 patient remains alive, including 1 who underwent alloge-
neic stem cell transplantation (supplemental Table 2).

AAML1531 enrollment (n = 201)

Eligible and allocated to intervention
(n = 142)

Assigned to standard risk
(n = 114)

Completed Induction I and continued to
induction II
(n = 108)

Completed Induction III and continued to
intensification

(n = 98)

Completed 2 courses of intensification
and completed protocol therapy

(n = 89)

80 alive at last contact without relapse or death
2 relapsed and alive at last contact
7 relapsed and later died

Relapse and later died (n = 3)
Elective withdrawal due to:
- Physician’s choice (n = 5)
- Refusal of further therapy (n = 1)

Elective withdrawal due to:
- Physician’s choice (n = 10)

Elective withdrawal due to:
- Physician’s choice (n = 4)
- Refusal of further therapy (n = 2)

Off protocol therapy before risk asssignment, induction failure (n = 1)
Off study before risk assignment, induction death (n = 1)
Assigned to high risk and excluded from analyses (n = 26)

Excluded (n = 59)
- Ineligible: Patient diagnosed on peripheral blood
  alone instead of bone marrow (n = 1)
- Enrolled post amendment 4A (n = 58) 

Figure 2. CONSORT diagram.
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Cytogenetics
Of 110 SR patients with adequate cytogenetics, 91 (83%) had
leukemic blasts with acquired clonal abnormalities in addition to
constitutional trisomy 21. Most frequent were whole chromo-
some gains and structural rearrangements, leading to partial
chromosome losses and gains. Among whole chromosome
gains, trisomy 8 was most common (30% of patients), followed
by gain of a fourth copy of chromosome 21 (16% of patients).
Structural abnormalities present in at least 10% of patients
included loss of 7p (13%) and gain of 1q (11%). Other recurring
abnormalities present in at least 5% of patients included mono-
somy 7, trisomy 14, trisomy 11 or gain of 11q, and losses of 3q,
5p, or 13q. None of the recurring balanced rearrangements
common to de novo non-DS AML were detected, and no novel
recurring structural rearrangement was identified. A complex
karyotype was present in 12% (n 5 13) of patients with SR
ML-DS. Complex karyotypes were significantly more frequent
among SR patients who relapsed (n 5 4/11) compared with
those who did not (n 5 9/99): 36% vs 9% (P 5 .0248). The
cumulative incidence of relapse was 30.8% (95% CI, 8.8-56.5) at
2 years for SR patients with a complex karyotype compared with
7.5% (95% CI, 3.3-14.0) for those without (P 5 .001) (Figure 4).

MRD level by flow cytometry and ML-DS
immunophenotype
EOI-1 bone marrow samples were available for all 114 SR
patients and a diagnostic sample was available for comparison
in 110 cases. A repeat sample was required for 3 patients after
blood counts had further recovered because the EOI-1 bone
marrow specimen was of inadequate quality. A post hoc re-anal-
ysis of EOI-1 MRD levels in the 12 SR patients who relapsed
confirmed the negative MRD result (undetectable [ie, ,0.02%]).
One SR patient had an EOI-1 MRD value of 0.03%. This patient
has not developed a relapse. See supplemental Data (including
supplemental Figure 4 and supplemental Table 3) for a summary
of data on MRD measurement by ECS of GATA1 mutations and
targeted sequencing identifying additional mutations in ML-DS
blasts, which were collected as part of an optional study compo-
nent from a subset of 18 patients.

Toxicity of treatment
Time to ANC recovery, rates of febrile neutropenia, and inten-
sive care unit (ICU) admissions per course of SR chemotherapy
are shown in supplemental Table 4. Comparing course-to-
course, despite identical chemotherapy, the proportion of
patients with bacterial infection at sterile sites was lower than in
AAML0431 (supplemental Table 5). There were no differences in
rates of febrile neutropenia or ICU admissions in a course-to-
course comparison excluding the HD-AraC course of AAML0431
(data not shown). Specific bacterial and fungal organisms are
listed in supplemental Table 6. Of the 11 deaths on study, only
1 was due to toxicity. This patient experienced human meta-
pneumovirus (hMPV) infection before and during induction I and
died of respiratory failure. Microbiologically documented non-
sterile site infections including viral infections are detailed in sup-
plemental Table 7. During induction I, 6 patients experienced
grade 3 or higher respiratory infection, including the patient
who died of respiratory failure from hMPV. A second patient
acquired hMPV during induction I and survived after a pro-
longed course of mechanical ventilation.

Similar to the predecessor study, SR patients received a cumula-
tive anthracycline exposure of 240 mg/m2 doxorubicin equiva-
lents. Because of bolus administration of anthracyclines in this
study, use of dexrazoxane was feasible and permitted at the dis-
cretion of treating physicians and documented for 60% of
patients in induction I, 58% in induction 2, and 59% in induction
3. Ejection fraction (EF) by echocardiogram was measured
before each anthracycline-containing chemotherapy course and
annually following completion of protocol therapy. No clinically
detected cardiac dysfunction of any grade was reported. Sub-
clinical cardiac toxicity was observed in only 3 patients: 1 with a
grade 3 decrease in EF following induction I (from 65% to 32%)
that resolved spontaneously; a second patient with a baseline
reduced EF (38%), which normalized during therapy and
declined after 3 years of follow-up (48%); and a third patient
with a first reduction of EF (to 48% and 55%) after 1 and 2 years
of follow-up, respectively. All 3 patients had received dexrazox-
ane with all anthracycline-containing treatment blocks. There
was no association between use of dexrazoxane and relapse.

Discussion
Increased sensitivity of ML-DS blasts to chemotherapy drugs,
including but not limited to cytarabine, and the desire to avoid
excessive infectious and cardiac toxicity18 have led study groups
to develop specific treatment protocols for ML-DS with decreas-
ing treatment intensity.14,15,32 Most of these chemotherapy pro-
tocols, however, continue to incorporate courses of HD-AraC
and none incorporates a stratification of treatment intensity
according to relapse risk, in contrast to the majority of contem-
porary treatment approaches for childhood cancer. Prior to this
COG study, the Japanese Childhood AML Cooperative Study
Group observed a comparable 3-year EFS and OS after treat-
ment of ML-DS without HD-AraC.12 The predecessor study
AAML0431 showed that flow cytometric MRD at EOI-1 could
significantly classify risk groups,14 but there remained persis-
tently poor outcomes for the �10% to 15% of patients with
relapsed or refractory ML-DS.14 Our study was designed to
introduce risk stratification of treatment intensity for ML-DS while
continuing on the trajectory of a therapy reduction for the major-
ity of patients. SR patients were defined as MRD-negative
(,0.05%) by multidimensional flow cytometry at EOI-1 and did
not receive HD-AraC, whereas HR patients were directed to
more intense consolidation (this arm continues to accrue and is
not reported here). As a result, for the SR patients, the cumula-
tive dose of cytarabine decreased from 27.8 g/m2 over 6
courses in AAML0431 to 3.8 g/m2 over 5 courses in the current
study (supplemental Table 8). Because of the extreme rarity of
CNS involvement by ML-DS, no patient was identified among
375 enrolled in 2 large recent studies,14,15 the number of intra-
thecal chemotherapy doses was further reduced from 2 to 1.
Omission of HD-AraC, however, resulted in a statistically and
clinically significant decrease of the 2-year EFS from 93.5% to
85.6%. Only 2 of 12 SR patients who relapsed survived, despite
intensive relapse chemotherapy and stem cell transplantation,
resulting in a dismal 16% OS. In contrast to others,20 we did not
observe responses to relapse chemotherapy in patients who
had previously not been treated with HD-AraC. Although flow
cytometric MRD had identified a subgroup with extremely favor-
able prognosis (2-year EFS 93%) when treated with HD-AraC,
negative MRD in our study did not identify a favorable risk
group for whom HD-AraC was dispensable. We conclude that
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HD-AraC is an essential component of treatment to maintain the
previously shown excellent EFS when using solely MRD by flow
cytometry for therapy stratification.

Absence of any detectable EOI-1 MRD in the bone marrow of
all 12 SR patients who relapsed suggests that this outcome is
not explained by the slightly higher threshold for positivity used
in the current study (0.05% vs 0.01% in AAML0431). In contrast
to the prognostic value of EOI-1 MRD in non-DS AML,25 we
conclude that flow cytometric EOI-1 MRD does not adequately

identify patients with ML-DS who can safely benefit from a
reduction in therapy intensity. Our results obtained from a sub-
set of patients detected GATA1 mutations in 89% of ML-DS
patients at diagnosis and confirmed the experience of others
that false-negative results may occur because of a low blast per-
centage in the bone marrow sample, deletions that encompass
primer annealing sites, and rare mutations mapping outside
exons 2 and 3.3 They also suggest that MRD measurement by
GATA1 ECS MRD is feasible in most but not all patients with
ML-DS. Further work is needed, including the definition of a

Table 1. Demographics and clinical presentation

Standard-risk patients (n 5 114)

N %

Age, y from study entry, median, range 1.68 0.66-3.55

Sex
Male 54 47.4
Female 60 52.6

Race
American Indian or Alaska Native 2 2.0
Asian 5 5.1
Black or African American 16 16.3
White 72 73.5
Multiple races 3 3.1
Unknown 16

Ethnicity
Hispanic 30 27.8
Not Hispanic 78 72.2
Unknown 6

History of TAM
No 81 71.1
Yes 33 28.9

Prior treatment of TAM
No 23 69.7
Yes 10 30.3

CNS status41

1 90 88.2
2a 5 4.9
2b 4 3.9
2c 1 1.0
3a 1 1.0
3c 1 1.0
Unknown 12

Patient diagnosed with non-CNS extramedullary
disease at study entry
No 112 98.2
Yes: orbit site 2 1.8

CNS 1, absence of blasts on cytospin preparation of CSF; CNS 2a, ,5/mL WBCs and cytospin positive for blasts in CSF containing ,10/mL RBCs; CNS 2b, ,5/mL WBCs and
cytospin positive for blasts in CSF containing $10/mL RBCs; CNS 2c, $10/mL RBCs, $5/mL WBCs and cytospin positive in CSF containing a ratio of WBC to RBC that is not greater
than twice that found in the peripheral blood; CNS 3a, $5/mL WBCs and cytospin positive for blasts in CSF containing ,10/mL RBCs; CNS 3b, $5/mL WBCs and $10/mL RBC in
CSF containing a ratio of WBC to RBC that is greater than twice that found in peripheral blood; CNS 3c, clinical signs of CNS leukemia (eg, cranial nerve palsy, involvement of
brain/eye) cerebrospinal fluid; RBC, red blood cell; WBC, white blood cell.
.
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prognostically relevant cutoff variant allele frequency, before
conclusions regarding the clinical utility of this new tool are
possible.

Cytogenetic data from 110 SR patients confirm that the cytoge-
netic landscape of ML-DS is distinct from non-DS AML. As
expected, none of the common recurring rearrangements of
non-DS pediatric AML were identified. The majority of abnor-
malities in ML-DS blasts were unbalanced, resulting in gain or
loss of chromosomal material. Trisomy 8, tetrasomy 21, gain of
1q, loss of 7p, and gain of 11q were identified as the most fre-
quent abnormalities similar to the predecessor study,21

highlighting the comparability of study populations. These
abnormalities have also been observed by other groups.33-36

Gains of 8, 21, and/or 1q are not exclusive to ML-DS and
instead represent frequent secondary abnormalities in diverse
hematologic malignancies.37 The small number of SR patients
with relapse precludes prognostic conclusions for individual
abnormalities. Monosomy 7, which has been variably described
as either prognostically unfavorable,32 similar to non-DS AML, or
neutral38 in ML-DS, was not more frequent among SR patients
who relapsed. Of note, although a complex karyotype may39 or
may not be42 prognostic in pediatric non-DS AML, our data sug-
gest that a complex karyotype is associated with a higher risk of
relapse in MRD2 patients with ML-DS who are treated without
HD-AraC.

Reduction of treatment-related mortality2 and anthracycline-
related cardiomyopathy18 remains a goal for patients with

ML-DS. The BFM study group reported microbiologically docu-
mented infections in 30% of patients, the majority of which were
gram-positive bacteria, and highlighted the importance of seri-
ous viral infections (infection-related mortality was 4.9% and all 3
deaths were due to viral infections40). Therefore, the driving
force behind the elimination of HD-AraC from the treatment of
SR patients was the association of this chemotherapy course
with the highest rates of grade 3 and higher febrile neutropenia
(29.7%), sterile-site bacterial infections (22.6%), and ICU admis-
sions (7%).14 Despite identical chemotherapy during all remain-
ing courses, we observed a significantly lower rate of sterile-site
infections, likely because of improvement in supportive care
such as administration of prophylactic antibiotics during periods
of prolonged neutropenia, data that were not captured by our
study. Like others,40 we observed severe viral infections, specifi-
cally 2 patients with hMPV pneumonia and respiratory failure
during induction 1, one of which was fatal, prompting a recom-
mendation to participating centers to prioritize recovery of
patients with ML-DS from acute viral infection over early start of
protocol chemotherapy. Following this recommendation, no fur-
ther cases of virally induced respiratory failure were observed.

Although long-term follow up for these patients will be critical to
monitor for a decrease in cardiac function over time, short-term
cardiotoxicity of AAML1531 SR protocol therapy appears to be
minimal after use of dexrazoxane in the majority of patients.

In summary, our study shows the current limit of a further reduc-
tion in treatment intensity for ML-DS, specifically, the need to

Table 2. Laboratory findings

Standard-risk patients (n 5 114)

Median Range

Hemoglobin, g/dL 10.2 2.1-34

Peripheral WBC count, 3103/mL 5.5 1.4-103.4

Peripheral platelet count, 3103/mL 40.5 3-339

Peripheral blasts, % 3 0-88.9

Bone marrow blast, % 22 0-100

Cytogenetic findings (n 5 110 patients) N %
Normal (constitutional trisomy 21 only) 19 17
Translocations and inversions recurrent in
de novo AML

0 0

1q gain 12 11
3q loss 6 5
5p loss 5 5
Monosomy 5 1 1
7p loss 14 13
Monosomy 7 7 6
18 33 30
111 or 11q gain 8 7
13q loss 5 5
114 8 7
121 18 16
Complex karyotype 13 12
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continue the administration of HD-AraC. We found that the
prognostic value of flow cytometric MRD in patients with ML-DS
needs to be assessed with caution and that MRD via flow cytom-
etry alone is insufficient to identify patients for whom treatment

intensity can be reduced. Incorporation of cytogenetics and
more sensitive MRD methodologies, as well as molecular dis-
ease mechanisms are likely to be required to improve risk strati-
fication of ML-DS and guide the integration of molecularly
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targeted small molecules or immunotherapy into future trials to
reduce the number of patients who relapse and to improve
overall outcomes.
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