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KEY PO INTS

� Somatic uniparental
disomy in the bone
marrow generated an
EFL1 allele combination
that confers selective
advantages.

� Nevertheless, the
resulting homozygous
EFL1 allele in the
hematopoietic system is
hypomorphic and still
responsible for SDS
features.

Shwachman-Diamond syndrome (SDS; OMIM #260400) is caused by variants in SBDS
(Shwachman-Bodian-Diamond syndrome gene), which encodes a protein that plays an impor-
tant role in ribosome assembly. Recent reports suggest that recessive variants in EFL1 are
also responsible for SDS. However, the precise genetic mechanism that leads to EFL1-
induced SDS remains incompletely understood. Here we present 3 unrelated Korean SDS
patients who carry biallelic pathogenic variants in EFL1with biased allele frequencies, result-
ing from a bonemarrow–specific somatic uniparental disomy in chromosome 15. The recom-
bination events generated cells that were homozygous for the relatively milder variant,
allowing for the evasion of catastrophic physiologic consequences. However, the milder
EFL1 variant was still solely able to impair 80S ribosome assembly and induce SDS features
in cell line and animalmodels. The loss of EFL1 resulted in a pronounced inhibition of terminal
oligopyrimidine element–containing ribosomal protein transcript 80S assembly. Therefore,
we propose a more accurate pathogenesis mechanism of EFL1 dysfunction that eventually
leads to aberrant translational control and ribosomopathy.

Introduction
Patients clinically diagnosedwith Shwachman-Diamond syndrome
(SDS; OMIM #260400) present with a constellation of disorders,
such as hematologic manifestations, exocrine pancreatic dysfunc-
tion with fatty infiltration, and skeletal dysplasia that results in short
stature.1-3 The hematologic manifestations include neutropenia
or, less severely, thrombocytopenia and anemia, with a predispo-
sition for myelodysplastic syndrome and acute myeloid leukemia
transformations.4,5 Variants in SBDS (Shwachman-Bodian-Dia-
mond syndrome gene), which encodes a protein that plays an
important role in ribosome assembly, are mainly responsible for
the disease.1,6-8 Thus, SDS is considered to be a ribosomopathy,
which is a collective term that is used to describe a group of con-
genital disorders caused by problems in ribosome biogenesis,
assembly, or function.9 Moreover, �10% of clinically diagnosed
SDS cases do not contain any pathogenic SBDS variants,

suggesting the existence of additional genetic mechanisms that
lead to the disorder.1,6 Recent reports demonstrate that variants
in genes other than SBDS, namely EFL1, DNAJC21, and SRP54,
are implicated in bone marrow failure syndrome and SDS.10-15

Homozygous variants of EFL1 cause an SDS-like syndrome in a
recessive manner, which is highlighted by the observation that 5
of the 7 reported kindreds harbor homozygous EFL1 variants (sup-
plemental Table 1).10,11,15 EFL1 directly interacts with SBDS to
release eukaryotic translation initiation factor 6 (eIF6) from the
60S ribosomal subunit for 80S ribosomal assembly.7,16 Therefore,
whether there is an additional genetic mechanism that leads to
SDS in outbred populations other than through homozygous
pathogenic variants in EFL1 must be further investigated.

As more human genomes with or without clinical significances
have continued to be sequenced, it has become clear that variants
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of unknown significance pose a substantial obstacle in the inter-
pretation of genotype-phenotype relationships. Because many
variants are believed to possess the ability to cause alterations
at the molecular level but only with subclinical levels of severity,
numerous scenarios that enable variants of unknown significance
to acquire clinical significance have been postulated. One of these
scenarios involves the assessment of somatically acquired unipa-
rental disomy (UPD) in the hematopoietic system, although only
a small number of instances have been previously reported. Nota-
ble examples include myeloid neoplasia,17,18 immunodefi-
ciency,19 and a single case of sickle cell disease.20

In this study, we demonstrate a disease-causing mechanism in
patients who inherited compound heterozygous (CH) variants
in EFL1. A mosaic UPD caused a loss of heterozygosity (LOH) in
the EFL1 locus in the bone marrow and blood, simultaneously
homozygosing the less damaging variant and decreasing the rep-
resentation of the more damaging variant to avoid worse hemato-
logic phenotypes. However, this still led to EFL1 dysfunction in the
bone marrow and resulted in SDS features. We further demon-
strate that the remaining variant caused by the UPD was a hypo-
morph and pathogenic, by investigating the molecular
mechanism of the EFL1 dysfunction in cell and animal models.
Therefore, this study provides a template for searching for a path-
ologic variant that is caused by a nonconventional pathway. Using
this method may increase the probability of both identifying the
genetic cause and improving our understanding of the SDS dis-
ease mechanism. This approach could benefit additional patients
with severe hematologic abnormalities.

Methods
Patient recruitment and sampling
Patient enrollment and sampling were conducted under the
approval of the Institutional Review Board of Seoul National Uni-
versity Hospital (H-1408-014-599). Patients or their parents pro-
vided informed consent and signed for genetic testing and
collection of available tissues. Biopsy samples of I-1 (duodenum
and colon) were retrieved from the Department of Pathology of
Seoul National University for research purposes.

WES and variant calling
Trio whole-exome sequencing (WES) was performed on 1 kindred
(I-1, I-2, and I-3), and singleton WES was performed for the others
(II-1 and III-1) at Theragen Etex (Suwon, Korea) using genomic
DNA extracted from whole blood. Exome was captured using
the SeqCap EZ Exome v2 Kit (Roche Sequencing, Madison, WI)
or SureSelect Human All Exon V5 Kit (Agilent Technologies, Santa
Clara, CA) and sequenced using a HiSeq 2500 or HiSeq 4000 (Illu-
mina, Inc, San Diego, CA). Paired-end sequencing was performed
with read lengths of 75 or 100 base pairs. The raw reads were
aligned by BWA-MEM.21 Variants were called by GATK Haploty-
peCaller (version 3.8) and annotated by in-house pipeline and
SnpEff.21-23

Polysome profiling
To maintain the binding of messenger RNA (mRNA) to ribosome
subunits, cycloheximide (100mg/mL; Sigma-Aldrich, St Louis,MO)
was added to cell culture media and incubated for 10 minutes at
37�C. After incubation, cells were washed with cold phosphate-
buffered saline including cycloheximide (10 mg/mL) twice and

then lysed with 1 mL of polysome lysis buffer (20 mM of HEPES
[pH 7.6], 5 mM of magnesium chloride, 125 mM of potassium
chloride, 1% NP-40, and 2 mM of DTT) supplemented with cyclo-
heximide (100 mg/mL), protease inhibitor cocktail (EDTA free;
Roche), and RNase inhibitor (Invitrogen, Carlsbad, CA), on ice.
Cell lysates were tumbled for 20 minutes at 4�C and centrifuged
at 13200 rpm for 20 minutes. The supernatants were fractionated
in 17.5% to 50.0% linear sucrose gradients by ultracentrifugation
(35000 rpm for 160 minutes) in a Beckman ultracentrifuge using
an SW41-Ti rotor. Gradients were eluted with a gradient fraction-
ator (Brandel, Gaithersburg, MD) and monitored with a UA-5
detector (ISCO). Equal volume of each polysome fraction was
used for determining the level of eIF6 by western blot analysis.

Mouse strain construction, maintenance, and
experiments
All mouse experiments were performed under the standard proto-
cols approved by the Institutional Animal Care and Use Commit-
tee (17-0148-S1A0). The Efl1 knockout (Efl12) strain was
constructed by introducing a 10-base deletion in the 10th exon
of the gene in the C57BL6/J strain using the CRISPR/Cas9 system
in Macrogen (Seoul, South Korea). One-cell embryos were micro-
injected with 2 single guide RNAs (5'-ACTTCTTTAGGAT-
TAAAAATTGG-3' and 5'-CCGAGGACAGCGTGGGATATGGG-
3') and Cas9 protein mixture, incubated, and transplanted
into pseudopregnant recipient ICR mice. The Efl1 knock-in
(Efl1p.Thr1076Ala) variant was generated in C57BL6/J mice at the
University of Utah Mutation Generation and Analysis Core using
2 single guide RNAs (5'-GTTCTGGGTGCCGACCACGG-3' and
5'-GTGCAGGTACTCCTCCTCCG-3') and in the presence of
oligodeoxynucleotides, including the ACC.GCC changemimick-
ing the human EFL1p.Thr1069Ala and an MboI site for genotyping.
Genotyping strategies of the wild-type and mutant alleles and
phenotypic evaluations are described in the supplemental Data,
available on the Blood Web site.

Results
SDS patients without SBDS variants
We recruited 3 unrelated and nonconsanguineous Korean SDS
patients without plausible recessive mutations in SBDS
(Figure 1A; supplemental Table 2; supplemental Figure 1; data
supplement). Proband I-1 was a 3-year-old boy who had severe
intrauterine growth retardation that resulted in a preterm delivery
(351 3 weeks) and a birth weight of 1.7 kg. He had thrombocyto-
penia, neutropenia, and anemia at 2 months of age. A bone mar-
row examination performed at 6 months of age revealed
hypocellularity, reduced megakaryocytes, and an increase in iron
storage. He also had pancreatic lipomatosis, along with an exo-
crine pancreatic insufficiency and metaphyseal chondrodysplasia
(Figure 1A; supplemental Figure 2). Proband II-1 was a 9-year-
old girl who had severe intrauterine growth retardation that
resulted in a preterm delivery (36 weeks) and a birth weight of
1.6 kg. She had diffuse fatty infiltration of the pancreas and meta-
physeal chondrodysplasia that was accompanied by osteopenia
and short stature (Figure 1A). Her sister was unaffected. Proband
III-1 was a 25-year-old man who did not have any perinatal prob-
lems except for a low birth weight (40 1 4 weeks; 2.4 kg). At 2
years of age, he had pancreatic exocrine and endocrine insuffi-
ciencies, thrombocytopenia, anemia, intermittent neutropenia,
metaphyseal chondrodysplasia, and ichthyosis. Later, he
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developed osteoporosis, hepatomegaly, and a total fatty change
of the pancreas (Figure 1A).

Identification of mosaic EFL1 variants
To identify the genetic factors that predisposed the 3 patients to
SDS, we exome sequenced the patients, and the available paren-
tal DNA was extracted from whole blood (supplemental Table 3).
Notably, the heterozygous p.Thr1069Ala variant of EFL1
(chr15:82422872 T.C, hg19, NM_024580.5:c.3205A.G) was
identified in all 3 patients (Figure 1B-D, Table 1; supplemental
Table 4), which was not previously found in patients with SDS.
Based on gnomAD, this is a low-frequency variant that was carried
by 3 individuals among 17972 alleles in the East Asian (EA) pop-
ulation (EA AF, 1.7 3 1024).24 Under the assumption that EFL1
variants function in a recessive manner, we sought to ascertain
additional variants that may pose increased damage to the

gene function. Remarkably, we found second variants in EFL1 in
all 3 patients. These were not initially detected, either because
of a low number of variant-supporting reads in the proband
or because of low mapping quality caused by the sequence sim-
ilarity between the EFL1 and EFL1P1 loci. Proband I-1 carried
paternally originating frameshift variant p.Gly827TrpfsTer13
(chr15:82444316 C.CA, hg19, NM_024580.5:c.2478dupT; gno-
mAD EA AF, 0) with a minor AF of 8.3%, and probands II-1 and III-
1 carried inheritedmissense variant p.His30Arg (chr15: 82554031
T.C, hg19, NM_024580.5:c.89A.G; gnomAD EA AF, 5.1 3

1025) with minor AFs of 14.8% and 36.8%, respectively (Table 1).
In addition, proband III-1 harbored a de novo heterozygous SBDS
p.Asn110Asp variant (Figure 1D; supplemental Figure 3), which
had never been seen in the control databases. We then noted
that the nonreference allele of EFL1 p.Thr1069Ala for I-1 and
II-1 was dominantly covered compared with the reference allele
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Figure 1. EFL1 variants in SBDS2 SDS patients. (A) Noncontrast T1-weighted abdominal magnetic resonance (I-1) or computed tomography images (II-1 and III-1) show-
ing a diffuse enlargement with lipomatosis of the pancreas (arrows; upper) and both knees with metaphyseal widening and irregularities in the femora in the 3 patients and
associated genu varum in III-1 (lower). (B-D) Pedigrees and Sanger sequencing traces showing the inherited EFL1 variants and the de novo SBDSp.Asp110Asn variant in the 3
families. DNA was extracted from whole-blood samples. Note that the lower-case nucleotide letters were used on top of the Sanger traces to reflect their minor allelic
representation in the patient samples. (E) The residues with nonsynonymous changes in EFL1 and SBDS are evolutionarily conserved. The arrowheads on the protein
maps denote previously reported pathogenic variants (blue, missense; red, loss of function). (F) Molecular modeling–based structural analysis using PDB 5ANC.7 The insets
show the detailed interactions involving EFL1 His30, Thr1069, and SBDS Asp110. B.t., Bos taurus; C.i., Ciona intestinalis; D.r., Danio rerio; G.g., Gallus gallus; H.s., Homo
sapiens; M.m., Mus musculus; O.c., Oryctolagus cuniculus.
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(Table 1), which caused it to be an incomplete homozygous vari-
ant, whereas the ratio was comparable in III-1 (Figure 1B-D;
Table 1). All the EFL1 variants were equally represented in the
parental carriers. The patients did not carry any variant in other
SDS-associated genes, including DNAJC21 and SRP54 (data not
shown). The 2 EFL1 amino acid residues harboring the missense
variants (His30 and Thr1069) are highly conserved throughout
evolution and are predicted to be pathogenic (Figure 1E; supple-
mental Table 5). The protein structure analysis suggested that the
His30 and Thr1069 residues form hydrogen bonds with neighbor-
ing residues, which would presumably confer stability to the pro-
tein structure. Notably, previously reported pathogenic residues
Cys883 and Arg970 lie close to Thr1069 (Figure 1F; supplemental
Figure 4).15 The SBDS Asn110 reside is also conserved among the
vertebrate species (Figure 1E; supplemental Table 5) and is
expected to interact with neighboring amino acids, including
Lys151 (Figure 1F).

To understand the genetic cause of this observation, we investi-
gated whether large-scale structural variants exist that encompass
the region. Indeed, all the patients carried a partial LOH in chro-
mosome 15, where EFL1 resides (Figure 2A; supplemental Figures
5 and 6). This LOH was copy neutral and not seen in the healthy
parents (supplemental Figure 7), suggesting that it was caused
by a somatic UPD. This LOH of the EFL1 locus is not frequently
found in healthy Korean individuals (1/36675 2.73 1024; supple-
mental Figure 8). Also, according to a survey of hematopoietic
chromosomal mosaicism events, 117 of 151202 apparently
healthy individuals carry a copy-neutral LOH or copy-number
deletion of the EFL1 locus (7.7 3 1024).25 Thus, the LOH of the
EFL1 locus is a rare event. The sizes of the LOH intervals were var-
iable among the patients (100%, 100%, and 27.8% of the entire
chromosome span for I-1, II-1, and III-1, respectively; Figure 2A).

We also sought to identify the haplotype origins of the
variants that the probands carried and observed that the chromo-
somes that were dominantly represented (ie, the maternal
chromosome for I-1 and the paternal chromosome for III-1) har-
bored EFL1p.Thr1069Ala, which was consistent with their higher
coverage ratios compared with other variants as documented in
the WES analysis (Figure 2A). To test if the UPD event occurred
in a mosaic pattern and whether LOH-carrying and non–LOH-
carrying cells coexist, a single-cell single-nucleotide polymor-
phism microarray experiment was performed using bone marrow
(I-1) or cells frombuccal swabs (III-1). As expected, complete LOHs
in chromosome 15 were observed in a subset of the cells, confirm-
ing the mosaic UPD events that preferentially selected EFL1p.-
Thr1069Ala over the other variants (ie, EFL1p.Gly827TrpfsTer13 and
EFL1p.His30Arg; Figure 2B-D; supplemental Figure 9). Therefore,
cells containing the UPD of chromosome 15 are expected to be
homozygous for the EFL1p.Thr1069Ala allele and be homozygous
references for the other 2 alleles. II-1 was not tested, because a
sample was unavailable. Next, we checked the spatial extent of
the mosaic UPD by subjecting all available tissue samples from
I-1 to a high-depth amplicon sequencing analysis (.100003 cov-
erage depths). Variant AFs of p.Thr1069Ala in I-1 were �0.85 in
the peripheral blood and bone marrow but �0.5 in most tissues.
Conversely, AFs of p.Gly827TrpfsTer13 in the peripheral blood
and bonemarrow were�0.15 and displayed frequencies comple-
mentary to those of p.Thr1069Ala (Figure 2E). This observation
suggested that the mosaic UPD was restricted at least to the
bone marrow. These results were concordant with the Sanger
sequencing results (supplemental Figures 10 and 11). The degree
of mosaicism in the bonemarrow tissue changed dynamically over
the time course of I-1 but did not strongly correlate with the clinical
status of the patient (supplemental Figure 12). These results sug-
gest that CH variants that may disable EFL1 function and impair

Table 1. Coverage depths and AFs of EFL1 variants

Patient
Variant in

EFL1 Method

Allele coverage depths AF in gnomAD

Patient Mother Father Overall EA

I-1 p.Thr1069Ala
(M)

WES 10:64 (86.5) 39:40 (50.1) 33:0 (0) 3.2 3 1025 1.7 3 1024

Amplicon
sequencing

23 914:131 714
(84.6)

63 582:63 954
(50.1)

121 502:507
(0.4)

p.Gly827
TrpfsTer13 (P)

WES 22:2 (8.3) 27:0 (0) 9:14 (60.9) 0 0

Amplicon
sequencing

243 610:43 042
(15.0)

505 158:74
(0.01)

221 532:218
976 (49.7)

II-1 p.Thr 1069Ala
(U)

WES 15:59 (79.7) NA NA 3.2 3 1025 1.7 3 1024

p.His30Arg (U) WES 127:22 (14.8) NA NA 1.8 3 1025 5.1 3 1025

III-1 p.Thr 1069Ala
(P)

WES 43:30 (41.1) NA NA 3.2 3 1025 1.7 3 1024

Amplicon
sequencing

135 196:149
160 (52.5)

189 517:1786
(0.9)

87 347:85 317
(49.4)

p.His 30Arg (M) WES 74:43 (36.8) N/A NA 1.8 3 1025 5.1 3 1025

Amplicon
sequencing

25 316:22 680
(47.3)

119 382:121
508 (50.4)

41 684:76 (0.2)

Data in “Allele coverage depths” column presented as ratio of reference allele/nonreference allele (% nonreference allele).

AF, allele frequency; M, maternal origin; NA, not available; P, paternal original; U, unknown origin.
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cell survival formed a cellular environment such that cells with (less
damaging) recombinant alleles gained survival advantages over
the parental ones (Figure 2F).

EFL1 deficiency impairs 80S ribosome assembly
Our interpretation of the genetic analysis assumes that the EFL1
variants are pathogenic and harbor a gradient of severity
(Figure 2F).More specifically, p.His30Argmay possess a compara-
ble severity with the frameshift variant (p.Gly827TrpfsTer13), and
these 2 are more severe than p.Thr1069Ala. To test this, we mea-
sured ribosome assembly function in the presence of the EFL1 var-
iants, because EFL1 is known to mediate GTP hydrolysis-coupled
release of eIF6 together with SBDS during the maturation of
the 60S ribosome subunit.7,15,16 Therefore, we monitored the

ribosomal assembly status of the wild-type, small interfering
RNA–mediated, or CRISPR/Cas9-mediated ablation of EFL1
(EFL1KD or EFL12/2) in HeLa and K562 cell lines to further eluci-
date the molecular function of the mutant protein (Figure 3A; sup-
plemental Figure 13). Polysome profiling of the EFL1KD and
EFL12/2 cells showed a significantly reduced 80S peak
(Figure 3A-C; supplemental Figure 13). This abnormal polysome
profile was completely rescued after the introduction of FLAG-
tagged wild-type EFL1 but not by the clones that harbored the
mutations (Figure 3A-C; supplemental Figure 14). Interestingly,
EFL1p.His30Arg failed to rescue the mutant phenotype, whereas
EFL1p.Thr1069Ala displayed a moderate effect on ribosome assem-
bly. These results indicate that EFL1 plays a crucial role in ribo-
some assembly, and EFL1p.His30Arg possesses a null function,
whereas EFL1p.Thr1069Ala is hypomorphic.
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Figure 2. EFL1 variants display somatic mosaicism. (A) All 3 patients demonstrate a partial LOH in chromosome 15, as indicated by the deviation from variant AF (VAF) of
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Molecular mechanism of EFL1-mediated SDS
pathogenesis
Next, we explored the molecular function of the variants in ribo-
some assembly. Variant function was not mediated via phosphor-
ylation of Thr1069, aberrant subcellular localization of EFL1, or
changes in binding affinity to SBDS (supplemental Figure 15).
Next, because the release of eIF6 from 60S is a crucial step for
80S assembly and is mediated by SBDS-EFL1, we investigated
eIF6 level changes by altering EFL1. The assessment of eIF6 in
wild-type and EFL12/2 cells revealed that the absence of EFL1
induced eIF6 levels, which was partially rescued by the introduc-
tion of EFL1p.Thr1069Ala or EFL1p.His30Arg (Figure 3D; supplemental
Figure 16). Immunoblot analysis of each ribosomal subunit–bound
fraction revealed that eIF6 was more highly enriched in the 60S

ribosome fraction of the EFL12/2 cells as compared with the
wild-type or EFL1-overexpressed cells (Figure 3E). Remarkably,
introduction of EFL1p.Thr1069Ala rescued the increased eIF6 in the
60S fraction, whereas EFL1p.His30Arg failed to do so (Figure 3E).
Also, absence of EFL1 caused an impaired shuttling of cytoplas-
mic eIF6 back to the nucleus, consistent with the previous obser-
vation (supplemental Figure 17).15 This result, along with the
observation that changes in eIF6 and SBDS were not due to tran-
scription levels (supplemental Figure 18), implies that the blocked
exclusion of eIF6 and SBDS from the 60S ribosomal subunit is a
mechanism by which the mutant protein functions, which results
in impaired 80S ribosome assembly. This result also supports
our hypothesis that the severity of p.His30Arg is greater than
that of p.Thr1069Ala.
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Deficiency of EFL1 orthologs reproduces SDS
phenotypes in zebrafish and mouse models
To determine whether the milder allele (EFL1p.Thr1069Ala) was still
pathogenic enough to cause SDS, a morpholino-targeting zebra-
fish model of efl1 was subjected to rescue experiments (supple-
mental Figure 19). The efl1 morphants had smaller heads and
eyes as well as slightly bent tails and displayed an increased

number of apoptotic cells during development (Figure 4A,C).
Also, primitive erythrocytes and granulocytes were significantly
reduced in the efl1morphants, indicating impaired primitive hema-
topoiesis in these embryos (Figure 4B,D-E). All phenotypes were
rescued by the introduction of wild-type human EFL1 mRNA, but
less so by EFL1p.Thr1069Ala mRNA (Figure 4C-E), confirming that
the milder efl1 allele caused SDS-like features in zebrafish.
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In addition, mouse models were created to further investigate the
impact of Efl1 dysfunction. Efl1 knockout and p.Thr1076Ala
knock-in mice (mouse Thr1076 is orthologous to human
Thr1069; herein designated as Efl1m) were generated and sub-
jected to phenotypic analyses (supplemental Figure 20). Embryos
that were homozygous for the null allele (Efl12/2) were not
retrieved on embryonic day 8.5, implying the essential require-
ment for the gene in early embryogenesis (supplemental Fig-
ure 20). In contrast, mice homozygous for the knock-in allele
(Efl1m/m) were viable and healthy (supplemental Figure 20),

indicating a differential phenotypic tolerance between mice and
humans. To model an accurate Efl1 dose that may induce an
SDS-like phenotypic expression, we intercrossed the 2 strains
and compared phenotypes of the CH animals (Efl1m/2) with the lit-
termates (Efl11/1, Efl11/2, and Efl11/m), with an emphasis on
major SDS symptoms. The CH mice were smaller (Figure 5A-B)
and died earlier (Figure 5C). The blood counts revealed reduced
hemoglobin, white blood cells, and platelets (Figure 5D), and
the bone marrow images displayed a consistent deficiency
(Figure 5E). These results validated our observation that the
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reduced function of the EFL1p.Thr1069Ala variant caused SDS in
human patients. To determine whether EFL1 expression was
affected by the Efl1m variant, we measured the protein expression
from embryonic day–17.5 livers (Figure 5F). The liver heterozygous
for Efl1m (Efl11/m) showed reduced EFL1 expression, suggesting
that the variant not only reduced EFL1 activity but also destabilized
the protein. This observation was consistent with the result from
patient tissue (supplemental Figure 21). The expression of eIF6
was also detected in the CH livers and was increased compared
with the wild-type livers, which was consistent with our previous

observation in the HeLa cells (Figure 5G). Ribosome profiling of
the wild-type and CH livers revealed that the CH livers showed a
lower 80S peak compared with the wild-type livers (Figure 5H-I).

Screening downstream factors of EFL1 dysfunction
To further investigate the features of downstream genes that are
strongly affected by reduced EFL1 function, we performed
RNA sequencing on the total RNA and 40S-, 80S-, and
polysome-bound RNAs from wild-type and EFL12/2 K562 cells
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(Figure 6A; supplemental Figure 22). The 60S-bound RNAs were
not analyzed, because it is unlikely that the large subunit would
bind with RNA by itself. The 248 genes that were decreased in
the 80S-bound fraction compared with the 40S-bound fraction in
the mutant cells were extracted. A gene ontology analysis sug-
gested that RP genes (GO:0003735) were the major constituents
of the genes that were reduced by the absence of EFL1 (adjusted
P 5 5.2 3 10277; adjusted by the Benjamini-Hochberg method;
Figure 6B-C). There was no significantly enriched gene group in
the increased gene set. The fractions of the transcripts bound by
40S, 80S, or polysome differed substantially for the RP genes in
the absence of EFL1 (P , 1.0 3 10213 for differences in both
40S- and 80S-bound transcripts; Wilcoxon signed rank test),
whereas neither the TP53 target genes nor other genes showed
such a change (Figure 6D; P . .05; Wilcoxon signed rank test).
The enrichment of RP genes in 40Swas rather unexpected; we infer
that it may reflect molecular congestion resulting from the lack of
EFL1, causing a delay of the RP transcripts in progression to the
80S ribosome–bound form. Next, we compared whether transcript
sizes (supplemental Figure 23), expression levels, or consensus
sequence elements in the 5' untranslated regions may serve as fac-
tors that enabled RP-specific regulation. Notably, highly expressed
RP transcripts with a TOP element (5'-CUUYCUUUUNS-3') were
specifically altered (Figure 6E; supplemental Figure 24; P 5 6.9
3 1027). This result revealed that, among all the genes in the
genome, 80S ribosome assembly of RP transcripts containing a
TOP element was heavily dependent on normal EFL1 function.

Discussion
We identify and describe a unique bone marrow–specific somatic
UPD event that preferentially selects cells with EFL1 alleles of a
weaker severity. Although biallelic variants in EFL1 may occur in
other parts of the body, the hematologic system was partially res-
cued by a somatic UPD resulting in homozygous EFL1p.Thr1069Ala

with a weaker severity. We provide evidence suggesting that a
majority of the cells carrying homozygous EFL1p.Thr1069Ala are
pathogenic. We hypothesize that a somatic UPD in the patients
could occur and be detected because of the dynamic nature of
bone marrow, where the whole stem cell population can be
potentially replaced by a few clones. Indeed, the somatic UPD
was not detected in other solid organs or tissues that were avail-
able for investigation. Two lines of evidence suggest infrequent
LOH events in the EFL1 locus in normal populations (2.7 3 1024

to 7.7 3 1024; see “Results”). The odds of 1 person having all
the p.Thr1069Ala and p.His30Arg variants and the LOH by UPD
in the EFL1 locus by chance is roughly estimated as 1 in 3 trillion,
indicating that detectable UPD is not an independent event but is
associated with the biallelic EFL1 variants. It is still not clear if the
EFL1 dysfunction somehow contributed to the occurrence of UPD,
causing the resulting clone to be expanded by positive selection.
Nevertheless, the degree of mosaicism did not seem to directly
determine clinical severity (supplemental Figure 12). More accu-
rate temporal and spatial occurrence of the event could be delin-
eated if additional clinical samples were to become available.

Several lines of evidence from our experiments suggest that
although p.Thr1069Ala is the mildest among the variants that
we found, it is still functional and hypomorphic: (1) the parents
of patients who were heterozygous for EFL1p.Thr1069Ala were
asymptomatic, whereas the patients carried the variant in a homo-
zygous status in their bone marrow and showed the pathology; (2)

a ribosome profiling assay using a variant allele partially rescued
the 80S assembly problem, whereas the wild-type allele
completely rescued it (Figure 3); (3) efl1 morpholino-treated
zebrafish were partially rescued by the variant-containing RNA
(Figure 4); and (4) Efl1m/2 mice displayed an SDS-like phenotype,
which was of intermediate severity relative to the Efl12/2 and
Efl11/2 mice (Figure 5). It is notable that although our mouse
model successfully phenocopied most of the SDS features, the
genotype was not in complete concordance with that of human
patients. Our mouse model with Efl1m/m did not show significant
phenotypes, whereas human patients with bone marrow–specific
homozygous EFL1p.Thr1069Ala by somatic UPD still had hemato-
logic abnormalities, such as anemia and neutropenia. This discrep-
ancy between the 2 species is not rare,26,27 and it again
underscores differences in tolerance of a given variant, perhaps
resulting from different physiologic and genetic systems, which
is critical in modeling human clinical features in mice.

Nonetheless, we demonstrated that the altered function of EFL1
specifically influenced the translation of RP genes containing a
TOP element in the 5' untranslated region, which led to amechanis-
tic mimicry of Diamond-Blackfan anemia (DBA), which is another
ribosomopathy caused by insufficient RP doses.28,29 The activation
of TP53 is considered a targetable downstream pathway that leads
to SDS or a DBA phenotype.30-32 However, our data suggest that
the loss of EFL1 does not induce TP53 activation, which is consistent
with previous studies of the zebrafish sbds model and DBA (Figure
6D; supplemental Figure 18 [RNAsequencingofEFL12/2 cells]; sup-
plemental Figure 21 [western blots of patient tissue and EFL12/2

cells]).33,34 In addition to the TP53 pathway, an extended search
for expression changes in other potentially SDS causal genes did
not reveal significant differences (supplemental Figures 18 and 19).

It is known that LARP1 directly binds to the TOP element of RP
genes to repress translation in a phosphorylation-dependentman-
ner and that mTOR partially regulates LARP1 phosphoryla-
tion.35,36 To determine if we could use this pathway to
derepress RP translation and rescue the SDS phenotype in the ani-
mal models, we considered a molecular signaling pathway that
may regulate RP gene translation through the TOP element. How-
ever, both LARP1 binding to RP TOP elements and mTOR signal-
ing were unchanged in the mutant cells, suggesting an alternative
mechanism that may regulate RP translation (data not shown).

Here, we demonstrate a mechanism by which biallelic variants of
EFL1 phenocopied classical SDS in 3 unrelated patients. The
bone marrow–specific somatic UPD in these patients mitigated
the potentially catastrophic hematologic phenotype by homozy-
gosing the less damaging variant (EFL1p.Thr1069Ala). We demon-
strate that defective EFL1 caused impaired 80S ribosomal
assembly and that the zebrafish and mouse models displayed sim-
ilar features to humans through the alteration of 80S ribosome
assembly of RP transcripts. An extensive search of such SDS
patients may provide more insight into the development of
somatic mosaicism and subsequent molecular cascades that may
lead to new avenues of treatment of ribosomopathy.
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